• Nem Talált Eredményt

1 Cefic European Facts & Figures http://www.cefic.org/Facts-and-Figures/

(letöltve 2017. június 20.)

2 Központi Statisztikai Hivatal, http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_qpt015.html (2017. június 20.)

3 BP Statistical Review of World Energy June, 2017.

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf (letöltve 2017. Június 20.) 4 Jacobson, M. Z.; Delucchi, M. A. Providing All Global Energy with Wind, Water, and Solar

Power, Part I Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy 2011, 39, 1154–1169.

5 Delucchi, M. A.; Jacobson, M. Z. Providing All Global Energy with Wind, Water, and Solar Power, Part II Reliability, System and Transmission Costs, and Policies. Energy Policy, 2011, 39, 1170–1190.

6 Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass Into Chemicals. Chem. Rev. 2007, 107, 2411–2502.

7 Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels From Biomass: Chem-istry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098.

8 Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, J.; Cairney, C. A., Frederick, W.

J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplin-ski, T. The Path Forward for Biofuels and Biomaterials. Science, 2006, 311, 484–489.

9 Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous Catalysis for Sustainable Biodiesel Production Via Esterification and Transesterification. Chem. Soc. Rev. 2014, 43, 7887−7916.

10 Zhou, C.-H.; Xia, X.; Lin, C.-X.; Tong, D.-S.; Beltramini, J. Catalytic Conversion of Lignocel-lulosic Biomass to Fine Chemicals and Fuels. Chem. Soc. Rev. 2011, 40, 5588−5617.

11 Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558.

12 Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Liquid Fuels, Hydrogen and Chemicals From Lignin: a Critical Review. Renewable Sustainable Energy Rev. 2013, 21, 506−523.

13 Deffeyes, K.S. Beyond Oil: The View from Hubbert’s Peak, Farrar, Straus and Giroux, New York, 2005.

14 Arakawa, H.; Aresta, M.; Armor, J. N. M.; Barteau, A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A. et al. Chem. Rev. 2001, 101, 953–996.

15 Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homo-geneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev.

2018, 118, 372–433.

16 Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. Eds:

Kamm, B.; Gruber, P. R.; Kamm, M. WILEY-VCH, Weinheim, 2006.

17 Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass, Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Pacific Northwest Nation-al Laboratory (PNNL) and the NationNation-al Renewable Energy Laboratory (NREL), US Depart-ment of Energy, 2004.

18 Bozell, J. J.; Petersen, G. R. Technology Development for the Production of Biobased Prod-ucts From Biorefinery Carbohydrates—the US Department of Energy’s “Top 10” Revisited.

Green Chem. 2010, 12, 539–554.

19 Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic Conversion of Carbohydrates to Initial Plat-form Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613.

20 Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; daba, I. S. X.; Granados, M. L. X. P. Furfural: a Renewable and Versatile Platform Molecule for the Synthesis of Chemicals and Fuels. Energy Environ. Sci. 2016, 9, 1144–1189.

21 Horváth, I. T.; Mehdi, H.; Fábos, V.; Boda, L.; Mika, L. T. g-Valerolactone—a Sustainable Liquid for Energy and Carbon-Based Chemicals. Green Chem. 2008, 10, 238–242.

22 Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-Valerolactone, a Sustainable Platform Molecule Derived From Lignocellulosic Biomass. Green Chem. 2013, 15, 584–595.

23 Horváth, I. T.; Anastas, P. Innovations and Green Chemistry. Chem. Rev. 2007, 107, 2169–

2173.

24 Tuck, C. O.; Perez, E.; Horvath, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of Biomass:

Deriving More Value from Waste. Science, 2012, 337, 695–699.

25 Sheldon, R. A. Green Chemistry, Catalysis and Valorization of Waste Biomass. J. Mol. Catal.

A: Chem. 2016, 422, 3–12.

26 Barta, K.; Ford, P. C. Catalytic Conversion of Nonfood Woody Biomass Solids to Organic Liquids. Acc. Chem. Res. 2014, 47, 1503–1512.

27 CALL – WASTE: A Resource to Recycle, Reuse and Recover Raw Materials, Waste-7-2015:

Ensuring sustainable use of agricultural waste, co-products and by-products.

https://ec.europa.eu (2017. július 11.)

28 Mika, L. T.; Cséfalvay, E.; Horváth, I. T. The Role of Water in Catalytic Biomass-Based Technologies to Produce Chemicals and Fuels. Catal. Today, 2015, 247, 33–46.

29 Cséfalvay, E.; Akien, G. R.; Qi, L.; Horváth, I. T. Definition and Application of Ethanol Equivalent: Sustainability Performance Metrics for Biomass Conversion to Carbon-Based Fuels and Chemicals. Catal. Today, 2015, 239, 50–55.

30 Kumar, A. K.; Sharma, S. Recent Updates on Different Methods of Pretreatment of Lignocel-lulosic Feedstocks: a Review. Bioresources and Bioprocessing, 2017, 1–19.

31 Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve P. Methods for Pretreatment of Lignocel-lulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729.

32 Chang, V. S.; Burr, B.; Holtzapple, M. T. Lime Pretreatment of Switchgrass. Appl Biochem Biotechnol. 1997, 63-65, 3–19.

33 Chen, H.Z.; Fu, X.G. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sust. Energ. Rev. 2016, 57, 468–478.

34 Uppugundla, N.; Sousa, L.C.; Chundawat, S.P.S.; Yu, X.; Simmons, B.; Singh, S.; Gao, X.;

Kumar, R.; Wyman, C.E.; Dale, B.E.; Blan, V. A comparative study of ethanol production us-ing dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol. Biofuels, 2014, 7, 72–85.

35 Ishizawa, C. I.; Davis, M. F.; Schell, D. F.; Hohnson, D. K. Porosity and its effect on the di-gestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 2007, 55, 2575–

2581.

36 Israilides, C. J.; Grant, G. A.; Han, Y. W. Sugar Level, Fermentability, and Acceptability of Straw Treated with Different Acids Appl. Environ. Microbiol. 1978, 36, 43–46.

37 Brink, D. L. Method of treating biomass material. U.S. Patent 5221357, 1993.

38 Qin, L.; Li, W-C.; Zhu, J-Q.; Li, B-Z.; Yuan, Y-J. Hydrolysis of Lignocellulosic biomass to Sugars. In Production of Platform Chemicals from Sustainable Resources. Fang, Z.; Smith Jr., R.; Qi, X. Eds. Springer Singapore, 2017, pp 3-45.

39 Brandt, A.; Gräsvik, J.; Hallett, J. P.; Welton, T. Deconstruction of Lignocellulosic Biomass with Ionic Liquids. Green Chem. 2013, 15, 550–583.

40 Zhou, C.-H.; Xia, X.; Lin, C. X.; Tong, D. S.; Beltramini, J. Catalytic Conversion of Lignocel-lulosic Biomass to Fine Chemicals and Fuels. Chem. Soc. Rev. 2011, 40, 5588−5617.

41 Hoydonckx, H. E.; Van Rhijn, W. M.; Van Rhijn, W.; De Vos, D. E.; Jacobs, P. A. Furfural and Derivatives. In Ullmanns’ Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.

42 Fitzpatrick, S. W. In Feedstocks for the Future; Bozell, J. J., Patel, M. K., Eds.; ACS Symposi-um Series 921; American Chemical Society: Washington, DC, 2006; pp 271−287.

43 Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. Green Chemicals: a Kinetic Study on the Con-version of Glucose to Levulinic Acid. Chem. Eng. Res. Des. 2006, 84, 339−349.

44 Zhang, X.; Wilson, K.; Lee, A. F. Heterogeneously Catalyzed Hydrothermal Processing of C5–C6 Sugars. Chem. Rev. 2016, 116, 12328–12368.

45 Sweeney, M. D.; Xu, F. Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalysts, 2012, 2, 244–263.

46 Kulkarni, A. D.; Modak, H. M.; Jadhav, S. J. Preparation and commercial significance of 5-hydroxymethyl-2-furancarboxaldehyde: a review. J. Sci. Ind. Res., 1998, 47, 335−339

47 Düll, G. Action of oxalic acid on inulin. Chem. Zeit. 1895, 19, 216−217.

48 Kuster, B. F. M. 5-Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture.

Starch/Stärke, 1990, 42, 314–321.

49 Delidovich, I.; Hausoul, P. J. C.; Deng, L., Pfützenreuter; R., Rose, M.; Palkovits, R. Alterna-tive Monomers Based on Lignocellulose and Their Use for Polymer Production. Chem. Rev.

2016, 116, 1540–1599.

50 Teong, S. W.; Yi, G.; Zhang, Y. Hydroxymethylfurfural Production from Bioresources: Past, Present and Future. Green Chem. 2014, 16, 2015–2026.

51 Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a Building Block Platform: Biological Properties, Synthesis and Synthetic Applica-tions. Green Chem. 2011, 13, 754–793.

52 Mukherjee, A.; Dumont, M.-J.; Raghavan, V. Review: Sustainable Production of Hy-droxymethylfurfural and Levulinic Acid: Challenges and Opportunities. Biomass Bioenergy, 2015, 72, 143–183.

53 van Putten, R.-J.; van der Waal, J. C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J.

G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources.

Chem. Rev. 2013, 113, 1499–1597.

54 Kuster, B. F. M. 5-Hydroxymethylfurfural (HMF). A Review Focussing on Its Manufacture.

Starch/Stärke, 1990, 42, 314–321.

55 Newth, F. H. The Formation of Furan Compounds from Hexoses. Adv. Carbohydr. Chem.

1951, 6, 83–106.

56 Anet, L. F. J. L. 3-Deoxyglycosuloses (3-Deoxyglycosones) and the Degradation of Carbohy-drates. Adv. Carbohydr. Chem. 1964, 19, 181–218.

57 Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J. Dehydration of Fructose to 5-Hydroxymethylfurfural over H-Mordenites. Appl. Catal. A: Gen. 1996, 145, 211–224.

58 Feather, M. S.; Harris, J. F. Dehydration Reactions of Carbohydrates. Adv. Carbohydr. Chem.

Biochem. 1973, 28, 161–224.

59 Antal, M. J.; Mok, W. S. L.; Richards, G. N. Mechanism of Formation of 5-(Hydroxymethyl)-2-Furaldehyde from D-Fructose and Sucrose. Carbohydr. Res. 1990, 199, 91–109.

60 Speck, J. C., Jr. The Lobry de Bruyn-Alberda van Ekenstein transformation Adv. Carbohydr.

Chem. 1958, 13, 63–103.

61 Jadhav, H.; Pedersen, C. M.; Sølling, T.; Bols, M. 3-Deoxy-glucosone is an Intermediate in the Formation of Furfurals from D-Glucose. ChemSusChem, 2011, 4, 1049–1051.

62 Kimura, H.; Nakahara, M.; Matubayasi, N. Solvent Effect on Pathways and Mechanisms for D-Fructose Conversion to 5-Hydroxymethyl-2-Furaldehyde: In Situ 13C NMR Study. J. Phys.

Chem. A. 2013, 117, 2102–2113.

63 Amarasekara, A. S.; Williams, L. D.; Ebede, C. C. Mechanism of the Dehydration of D-Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide at 150 °C: an NMR Study. Car-bohydr. Res. 2008, 343, 3021–3024.

64 Qi, L.; Mui, Y. F.; Lo, S. W.; Lui, M. Y.; Akien, G. R.; Horváth, I. T. Catalytic Conversion of Fructose, Glucose, and Sucrose to 5-(Hydroxymethyl)furfural and Levulinic and Formic Acids in γ-Valerolactone as a Green Solvent. ACS Catal. 2014, 4, 1470–1477.

65 Yang, G.; Pidko, E. A.; Hensen, E. J. M. Mechanism of Bronsted Acid-catalyzed Conversion of Carbohydrates. J. Catal. 2012, 295, 122–132.

66 Zhang, J.; Das, A.; Assary, R. S.; Curtiss, L. A.; Weitz, E. A Combined Experimental and Computational Study of the Mechanism of Fructose Dehydration to 5-Hydroxymethylfurfural in Dimethylsulfoxide Using Amberlyst 70, PO43−/Niobic Acid, or Sulfuric Acid Catalysts.

Appl. Catal. B, Environ. 2016, 181, 874–887.

67 Qiao, Y.; Pedersen, C. M.; Wang, Y.; Hou, X. NMR Insights on the Properties of ZnCl2 Mol-ten Salt Hydrate Medium Through Its Interaction with SnCl4 and Fructose. ACS Sustainable Chem. Eng. 2014, 2, 2576–2581.

68 Zhang, J.; Xiao, Y.; Zhong, Y.; Du, N.; Huang, X. Alcohol Effect and the Related Mechanism on Fructose Dehydration into 5-Hydroxymethylfurfural in the Deep Eutectic Solvent of [Em-im]Cl/Alcohol. ACS Sustainable Chem. Eng. 2016, 4, 3995–4002.

69 Binder, J. B.; Raines, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985.

70 Tewari, Y. B. Thermodynamics of Industrially-Important, Enzyme-Catalyzed Reactions. Appl.

Biochem. Biotechnol. 1990, 23, 187–203.

71 The Statistics Portal. High Fructose Corn Syrup (HFCS) Production in the United States from 2005 to 2015 (In 1,000 Short Tons). Statista. [Online] ff.

https://www.statista.com/statistics/496475/high-fructose-corn-syrup-production-in-the-us/ (le-töltve 2017. március 1.).

72 Delidovich, I.; Palkovits, R. Catalytic Isomerization of Biomass-derived Aldoses: A Review.

ChemSusChem, 2016, 9, 547–561.

73 Zhao, S.; Guo, X.; Bai, P.; Lv, L. Chemical Isomerization of Glucose to Fructose Production.

Asian J. Chem. 2014, 26, 1–6.

74 Román-Leshkov, Y.; Davis, M. E. Activation of Carbonyl-containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catal. 2011, 1, 1566–1580.

75 Mondal, S.; Mondal, J.; Bhaumik, A. Sulfonated Porous Polymeric Nanofibers as an Efficient Solid Acid Catalyst for the Production of 5-Hydroxymethylfurfural from Biomass. Chem-CatChem, 2015, 7, 35703578.

76 Liu, R.; Chen, J.; Huang, X.; Chen, L.; Ma, L.; Li, X. Conversion of Fructose into 5-Hydroxymethylfurfural and Alkyl Levulinates Catalyzed by Sulfonic Acid-functionalized Carbon Materials. Green Chem. 2013, 15, 2895–2903.

77 Shi, X.-L.; Zhang, M.; Li, Y.; Zhang, W. Polypropylene Fiber Supported Ionic Liquids for the Conversion of Fructose to 5-Hydroxymethylfurfural Under Mild Conditions. Green Chem.

2013, 15, 3438–3438.

78 Liu, R.; Chen, J.; Huang, X.; Chen, L.; Ma, L.; Li, X. Conversion of Fructose Into 5-Hydroxymethylfurfural and Alkyl Levulinates Catalyzed by Sulfonic Acid-Functionalized Carbon Materials. Green Chem. 2013, 15, 2895–2899.

79 Siankevich, S.; Fei, Z.; Scopelliti, R.; Laurenczy, G.; Katsyuba, S.; Yan, N.; Dyson, P. J.

Enhanced Conversion of Carbohydrates to the Platform Chemical 5-Hydroxymethylfurfural Using Designer Ionic Liquids. ChemSusChem, 2014, 7, 16471654.

80 Shi, J.; Gao, H.; Xia, Y.; Li, W.; Wang, H.; Zheng, Ch. Efficient Process for the Direct Transformation of Cellulose and Carbohydrates to 5-(Hydroxymethyl)furfural with Dual-core Sulfonic Acid Ionic Liquids and Co-catalysts. RSC Adv. 2013, 3, 7782–7790.

81 Mulder, G. J. Untersuchungen Über Die Humussubstanzen. J. Prakt. Chem. 1840, 21, 203–

240.

82 Freiherm, A.; Grote, V.; Tollens, B. Untersuchungen Über Kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsäure auf Zucker Entstehende Säure (Levulinsäure), Justus Liebigs.

Ann. Chem. 1875, 175, 181–204.

83 Grand View Research. Levulinic acid market to grow at 5.7% CAGR from 2014 to 2020.

2015, http://www.grandviewresearch.com/press-release/global-levulinic-acid-market (letöltve:

2017. május 26.).

84 Climent, M. J.; Corma, A.; Iborra, S. Conversion of Biomass Platform Molecules Into Fuel Additives and Liquid Hydrocarbon Fuels. Green Chem. 2014, 16, 516–532.

85 Joshi, H.; Moser, B. R.; Toler, J.; Smith, W. F.; Walker, T. Ethyl Levulinate: a Potential Bio-Based Diluent for Biodiesel Which Improves Cold Flow Properties. Biomass and Bioenergy, 2011, 35, 3262–3266.

86 Wang, Z.-W.; Lei, T.-Z.; Liu, L.; Zhu, J.-L.; He, X.-F.; Li, Z.-F. Performance Investigations of a Diesel Engine Using Ethyl Levulinate-Diesel Blends. BioResources, 2012, 7, 5972–5982.

87 Texaco/NYSERDA/Biofine, ed., Ethyl levulinate D-975 Diesel Additive Test Program, 2000.

88 Erner, W. E. Synthetic liquid fuel and fuel mixtures for oil-burning devices U.S. Patent 4364743 1982.

89 Rebeiz, C. A.; Montazer-Zouhoor, A.; Hopen, H. J.; Wu, S. M. Photodynamic Herbicides: 1.

Concept and Phenomenology. Enzyme and Microbial Technology, 1984, 6, 390–396.

90 Rebeiz, C. A.; Gut, L. J.; Lee, K.; Juvik, J. A.; Rebeiz, C. C.; Bouton, C. E.; Towers, G. H. N.

Photodynamics of Porphyric Insecticides. Critical Reviews in Plant Sciences, 1995, 14, 329–

366.

91 Isoda, Y.; Azuma, M. Preparation of bis(hydroxyaryl)pentanoic acids: JP08053390, 1996.

92 Bozell, J. J.; Moens, L.; Elliott, D. C.; Wang, Y.; Neuenscwander, G. G.; Fitzpatrick, S. W.;

Bilski, R. J.; Jarnefeld, J. L. Production of Levulinic Acid and Use as a Platform Chemical for Derived Products. Resour. Conserv. Recycl. 2000, 28, 227–239.

93 Leonard, R. H. Levulinic Acid as a Basic Chemical Raw Material. Ind. Eng. Chem. 1956, 48, 1330–1341.

94 Horvat, J.; Klaić, B.; Metelko, B.; Šunjić, V. Mechanism of Levulinic Acid Formation. Tetra-hedron Lett. 1985, 26, 2111–2114.

95 Horvat, J.; Klaić, B.; Metelko, B.; Šunjić, V. Mechanism of Levulinic Acid Formation in Acid Catalysed Hydrolysis of 2-Hydroxymethylfurane and 5-Hydroxymethylfurane-2-Carhaldehyde. Croat. Chem. Acta, 1986, 59, 429–438.

96 Patil, S. K. R.; Lund, C. R. F. Formation and Growth of Humins via Aldol Addition and Con-densation During Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Energy Fuels, 2011, 25, 4745–4755.

97 Flannelly, T.; Lopes, M.; Kupiainen, L.; Dooley, S.; Leahy, J. J. Non-stoichiometric Formation of Formic and Levulinic Acids from the Hydrolysis of Biomass Derived Hexose Carbohy-drates. RSC Adv. 2016, 6, 5797–5804.

98 Farnleitner, L.; Stueckler, H.; Kaiser, H.; Kloimstein, E. Verfahren zur Herstellung Lagersta-biler Lävulinsäure. EP 0401532 B1, 1990.

99 Brochure Fine Chemicals Program at a Glance. Regular Product Range – Development Prod-ucts, version Q2; DSM Fine Chemicals Austria: Linz, Austria, 2006.

100 van der Waal, J. C.; de Jong, E. Avantium Chemicals: The High Potential for the Levulinic Acid Product Tree. In Industrial Biorenewables: A Practical Viewpoint; Domínguez de María, P. Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2016.

101 Ben F M Kuster; van der Baan, H. S. The Influence of the Initial and Catalyst Concentrations on the Dehydration of D-Fructose. Carbohydr. Res. 1977, 54, 165–176.

102 Salak Asghari, F.; Yoshida, H. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural From D-Fructose in Subcritical Water. Ind. Eng. Chem. Res. 2006, 45, 2163–2173.

103 Alipour, S.; Omidvarborna, H. High Concentration Levulinic Acid Production from Corn Stover. RSC Adv. 2016, 6, 111616111621.

104 van Dam, H. E.; Kieboom, A. P. G.; van Bekkum, H. The Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural. Starch/Stärke 1986, 38, 95–101.

105 Szabolcs, Á.; Molnár, M.; Dibó, G.; Mika, L. T. Microwave-assisted Conversion of Carbohy-drates to Levulinic Acid: an Essential Step in Biomass Conversion. Green Chem. 2013, 15, 439–445.

106 Qi, L.; Mui, Y. F.; Lo, S. W.; Lui, M. Y.; Akien, G. R.; Horváth, I. T. Catalytic Conversion of Fructose, Glucose, and Sucrose to 5-(Hydroxymethyl)furfural and Levulinic and Formic Acids in g-Valerolactone as a Green Solvent. ACS Catal. 2014, 4, 1470–1477.

107 Tukacs, J. M.; Fridrich, B.; Dibó, G.; Székely, E.; Mika, L. T. Direct Asymmetric Reduction of Levulinic Acid to Gamma-Valerolactone: Synthesis of a Chiral Platform Molecule. Green Chem. 2015, 17, 5189–5195.

108Alipour, S.; Omidvarborna, H. Enzymatic and Catalytic Hybrid Method for Levulinic Acid Syn-thesis from Biomass Sugars. J. Cleaner Prod. 2016, 143, 490–496.

109 Girisuta, B. Levulinic Acid from Lignocellulosic Biomass; Ph.D Thesis., Chemical Engineer-ing, University of Groningen: Groningen, The Netherlands, 2007.

110 Weingarten, R.; Conner, W. C.; Huber, G. W. Production of Levulinic Acid From Cellulose by Hydrothermal Decomposition Combined with Aqueous Phase Dehydration with a Solid Acid Catalyst. Energy Environ. Sci. 2012, 5, 7559–7574.

111 Deng, L.; Li, J.; Lai, D.-M.; Fu, Y.; Guo, Q.-X. Catalytic Conversion of Biomass-Derived Carbohydrates Into Γ-Valerolactone Without Using an External H 2Supply. Angew. Chem. Int.

Ed. 2009, 48, 6529–6532.

112 Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. Green Chemicals. Chem. Eng. Res. Des. 2006, 84, 339–349.

113 Rackemann, D. W.; Bartley, J. P.; Doherty, W. O. S. Methanesulfonic Acid-Catalyzed Con-version of Glucose and Xylose Mixtures to Levulinic Acid and Furfural. Ind. Crops Prod.

2014, 52, 46–57.

114 Peng, L.; Lin, L.; Zhang, J.; Zhuang, J.; Zhang, B.; Gong, Y. Catalytic Conversion of Cellu-lose to Levulinic Acid by Metal Chlorides. Molecules, 2010, 15, 5258–5272.

115 Weiqi, W.; Shubin, W. Experimental and Kinetic Study of Glucose Conversion to Levulinic Acid Catalyzed by Synergy of Lewis and Brønsted Acids. Chem. Eng. J. 2017, 307, 389–398.

116 Choudhary, V.; Mushrif, S. H.; Ho, Ch.; Anderko, A.; Nikolakis, V.; Marinkovic, N. S.; Fren-kel, A. I.; Sandler, S. I.; Vlachos, D. G. Insights into the Interplay of Lewis and Bronsted Acid

Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. J. Am. Chem. Soc. 2013, 135, 3997–4006.

117 Cunshan, Z.; Xiaojie, Y.; Haile, M.; Ronghai, H.; Vittayapadung, S. Optimization on the Con-version of Bamboo Shoot Shell to Levulinic Acid with Environmentally Benign Acidic Ionic Liquid and Response Surface Analysis. Chin. J. Chem. Eng. 2013, 21, 544–550.

118 Redmon BC. US 2,738,367. United States of America: National Distillers Products Corpora-tion; 1956.

119 Ya’aini, N. Y.; Amin, N. A. S.; Asmadi, M. Optimization of Levulinic Acid From Lignocellu-losic Biomass Using a New Hybrid Catalyst. Bioresource Technol. 2012, 116, 58–58–65.

120 Ya’aini, N. Y.; Amin, N. A. S.; Endud, S. Characterization and Performance of Hybrid Cata-lysts for Levulinic Acid Production From Glucose. Microporous and Mesoporous Materials 2013, 171, 14–23.

121 Ramli, N. A. S.; Amin, N. A. S. Kinetic Study of Glucose Conversion to Levulinic Acid Over Fe/HY Zeolite Catalyst. Chem. Eng. J. 2016, 283, 150–159.

122 Upare, P. P.; Yoon, J.-W.; Kim, M. Y.; Kang, H.-Y.; Hwang, D. W.; Hwang, Y. K.; Kung, H.

H.; Chang, J.-S. Chemical Conversion of Biomass-derived Hexose Sugars to Levulinic Acid over Sulfonic Acid-functionalized Graphene Oxide Catalysts. Green Chem. 2013, 15, 2935–

2943.

123 Shen, F.; Smith Jr, R. L.; Li, L.; Yan, L.; Qi, X. Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst.

ACS Sustainable Chem. Eng. 2017, 5, 2421–2427.

124 Zuo, Y.; Zhang, Y.; Fu, Y. Catalytic Conversion of Cellulose into Levulinic Acid by a Sul-fonated Chloromethyl Polystyrene Solid Acid Catalyst. ChemCatChem, 2014, 6, 753–757.

125 Sun, Zh.; Wang, Sh.; Wang, X.; Jiang, Z. Lysine Functional Heteropolyacid Nanospheres as Bifunctional Acid-base Catalysts for Cascade Conversion of Glucose to Levulinic Acid. Fuel, 2016, 164, 262–266.

126 Liu, Y.; Li, H.; He, J.; Zhao, W.; Yang, T.; Yang, S. Catalytic Conversion of Carbohydrates to Levulinic Acid with Mesoporous Niobium-containing Oxides. Catal. Commun. 2017, 93, 20–

24.

127 Wang, R.; Xie, X.; Liu, Y.; Liu, Zh.; Xie, G.; Ji, N.; Ma, L.; Tang, M. Facile and Low-cost Preparation of Nb/Al Oxide Catalyst with High Performance for the Conversion of Kiwifruit Waste Residue to Levulinic Acid. Catalysts, 2015, 5, 1636–1648.

128 Antonetti, C.; Licursi, D.; Fulignati, S.; Valentini, G.; Raspolli Galletti, A. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.

129 Son, P. A.; Nishimura, S.; Ebitani, K. Synthesis of Levulinic Acid from Fructose Using Am-berlyst-15 as a Solid Acid Catalyst. Reac. Kinet. Mech. Cat. 2012, 106, 185–192.

130 Shen, J.; Wyman, C. E. Hydrochloric Acid-catalyzed Levulinic Acid Formation from Cellu-lose: Data and Kinetic Model to Maximize Yields. AIChE J. 2012, 58, 236246.

131 Efremov, A. A.; Pervyshina, G. G.; Kuznetsov, B. N. Thermocatalytic Transformations of Wood and Cellulose in the Presence of HCl, HBr, and H2So4. Chem. Nat. Compound. 1997, 33, 84–88.

132 Wang, K.; Ye, J.; Zhou, M.; Liu, P.; Liang, X.; Xu, J.; Jiang, J. Selective Conversion of Cellu-lose to Levulinic Acid and Furfural in Sulfolane/Water Solvent. Cellulose, 2017, 24, 1383–

1394.

133 Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. Kinetic Study on the Acid-Catalyzed Hydroly-sis of Cellulose to Levulinic Acid. Ind. Eng. Chem. Res. 2007, 46, 1696–1708.

134 (Serrano-Ruiz, J. C.; Braden, D. J.; West, R. M.; Dumesic, J. A. Conversion of Cellulose to Hydrocarbon Fuels by Progressive Removal of Oxygen. Appl. Catal. B. Environ. 2010, 100, 184–189.

135 Qin, K.; Yan, Y.; Zhang, Y.; Tang, Y. Direct Production of Levulinic Acid in High Yield from Cellulose: Joint Effect of High Ion Strength and Microwave Field. RSC Adv. 2016, 6, 39131–

39136.

136 Ren, H.; Zhou, Y.; Liu, L. Selective Conversion of Cellulose to Levulinic Acid via Micro-wave-assisted Synthesis in Ionic Liquids. Bioresour. Technol. 2013, 129, 616–619.

137 Weingarten, R.; Conner Jr, Wm. C.; Huber, G. W. Production of Levulinic Acid from Cellu-lose by Hydrothermal Decomposition Combined with Aqueous Phase Dehydration with a Sol-id AcSol-id Catalyst. Energy Environ. Sci. 2012, 5, 7559–7574.

138 Ding, D.; Wang, J.; Xi, J.; Liu, X.; Lu, G.; Wang, Y. High-yield Production of Levulinic Acid from Cellulose and Its Upgrading to γ-Valerolactone. Green Chem. 2014, 16, 3846–3853.

139 Joshi, S. S.; Zodge, A. D.; Pandare, K. V.; Kulkarni, B. D. Efficient Conversion of Cellulose to Levulinic Acid by Hydrothermal Treatment Using Zirconium Dioxide as a Recyclable Solid Acid Catalyst. Ind. Eng. Chem. Res. 2014, 53, 18796–18805.

140 Yu, F.; Thomas, J.; van de Vyver, S.; Smet, M.; Dehaen, W.; Sels, B. F. Molecular Design of Sulfonated Hyperbranched Poly(Arylene Oxindole)s for Efficient Cellulose Conversion to Le-vulinic Acid. Green Chem. 2016, 18, 1694–1705.

141 Alonso, D. M.; Gallo, J. M. R.; Mellmer, M. A.; Wettstein, S. G.; Dumesic, J. A. Direct Con-version of Cellulose to Levulinic Acid and Gamma-Valerolactone Using Solid Acid Catalysts.

Catal. Sci. Technol. 2013, 3, 927–931.

142 Sun, Zh.; Xue, L.; Wang, Sh.; Wang, X.; Shi, J. Single Step Conversion of Levulinic Acid Us-ing Temperature-responsive Dodeca-Aluminotungstic Acid Catalysts. Green Chem. 2016, 18, 742–752.

143 Chang, C.; Cen, P.; Ma, X. Levulinic Acid Production From Wheat Straw. Bioresource Tech-nol., 2007, 98, 1448–1453.

144 Galletti, A. M. R.; Antonetti, C.; De Luise, V.; Licursi, D.; Nassi, N. Levulinic Acid Produc-tion from Waste Biomass. BioResources, 2012, 7, 1824–1835.

145 Farone, w. A.; Cuzens, J. Method for the production of levulinic acid and its derivatives. US Patent 6054611, 2000.

146 Galletti, A. M. R.; Antonetti, C.; Ribechini, E.; Colombini, M. P.; Di Nasso, N. N. O.; Bonari, E. From Giant Reed to Levulinic Acid and Gamma-Valerolactone: a High Yield Catalytic Route to Valeric Biofuels. Applied Energy, 2013, 102, 157–162.

147 Licursi, D.; Antonetti, C.; Bernardini, J.; Cinelli, P.; Coltelli, M. B.; Lazzeri, A.; Martinelli, M.; Galletti, A. M. R. Characterization of the Arundo Donax L. Solid Residue From Hydro-thermal Conversion: Comparison with Technical Lignins and Application Perspectives. Indus-trial Crops and Products 2015, 76, 1008–1024.

148 Efremov, A. A.; Pervyshina, G. G.; Kuznetsov, B. N. Production of Levulinic Acid From Wood Raw Material in the Presence of Sulfuric Acid and Its Salts. Chemistry of Natural Com-pounds 1998, 34, 182–185.

149 Tabasso, S.; Montoneri, E.; Carnaroglio, D.; Caporaso, M.; Cravotto, G. Microwave-Assisted Flash Conversion of Non-Edible Polysaccharides and Post-Harvest Tomato Plant Waste to Le-vulinic Acid. Green Chem. 2014, 16, 73–76.

150 Alonso, D. M.; Wettstein, S. G.; Mellmer, M. A.; Gürbüz, E. I.; Dumesic, J. A. Integrated Conversion of Hemicellulose and Cellulose From Lignocellulosic Biomass. Energy Environ.

Sci. 2013, 6, 76–80.

151 Girisuta, B.; Dussan, K.; Haverty, D.; Leahy, J. J.; Hayes, M. H. B. A Kinetic Study of Sugar Cane Bagasse to Levulinic Acid. Chem. Eng. J. 2016, 217, 61–70.

152 Bevilaqua, D. B.; Rambo, M. K. D.; Rizzetti, T. M.; Cardoso, A. L.; Martins, A. F. Cleaner Production: Levulinic Acid From Rice Husks. J. Clean. Prod. 2013, 47, 96–101.

153 Mukherjee, A.; Dumont, M.-J. Levulinic Acid Production From Starch Using Microwave and Oil Bath Heating: a Kinetic Modeling Approach. Ind. Eng. Chem. Res. 2016, 55, 8941–8949.

154 Chen, H.; Bin Yu; Jin, S. Production of Levulinic Acid From Steam Exploded Rice Straw via Solid Superacid. Bioresource Technol. 2011, 102, 3568–3570.

155 Wang, R.; Xie, X.; Liu, Y.; Liu, Z.; Xie, G.; Ji, N.; Ma, L.; Tang, M. Facile and Low-Cost Preparation of Nb/Al Oxide Catalyst with High Performance for the Conversion of Kiwifruit Waste Residue to Levulinic Acid. Catalysts 2015, 5, 1636–1648

156 Jeong, G.-T.; Park, D. H. Production of Sugars and Levulinic Acid from Marine Biomass Geldinium amanssi. Appl. Biochem. Biotechnol. 2010, 161, 41–52.

157 Jeong, G.-T.; Ra, C. H.; Hong, Y.-K.; Kim, J. K.; Kong, I.-S.; Kim, S.-K.; Park, D.-H. Conver-sion of Red-Algae Gracilaria Verrucosa to Sugars, Levulinic Acid and

157 Jeong, G.-T.; Ra, C. H.; Hong, Y.-K.; Kim, J. K.; Kong, I.-S.; Kim, S.-K.; Park, D.-H. Conver-sion of Red-Algae Gracilaria Verrucosa to Sugars, Levulinic Acid and