• Nem Talált Eredményt

1. N. N. Greenwood, A. Earnshaw, Az elemek kémiája, Nemzeti Tankönyvkiadó, Budapest (1997)

2. Balázs L., A kémia története I-II. Nemzeti Tankönyvkiadó, Budapest, (1996)

3. F. Hollemann, E. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, (1995)

4. R. A. Minear, L. H. Keith, Water Analysis Vol. 1, Academic Press, New York (1982)

5. Wasserchemische Gesellschaft - Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker zusammen mit dem Normenausschuß Wasserwesen (NAW) im Deutschen Institut für Normung e. V. (DIN), Deutsche Einheitsverfahren zur Wasser-,Abwasser- und Schlammuntersuchung - Physikalische, chemische, biologische undbakteriologische Verfahren, Beuth Verlag, Berlin (2001) 6. W. Stumm, J. J. Morgan, Aquatic Chemistry - An introduction emphasising

chemical equilibrium in natural water, John Wiley & Sons, New York (1981) 7. H. Breuer, Atlas zur Chemie, Band 1 und 2, Deutscher Taschenbuch Verlag,

München, (1985)

8. Umweltbundesamt, Was Sie schon immer über Umweltchemikalien wissen wollten, Verlag W. Kohlhammer, Stuttgart (1990)

9. P. Karlson, Biochemie, Georg Thieme Verlag, Stuttgart, (1988)

10. W. Kaim, B. Schwederski, Bioanorganische Chemie, Teubner Studienbücher Chemie, Stuttgart (1991)

11. Standard Methods for the Examination of Water and Waste Water, American Public Health Association, New York (1980)

12. F. Bosch Reig, A. Checa Moreno, M. Barbas Pardillo, V. Peris Martinez, J. V.

Gimeno Adelantado, Determination of fluoride after direct separation from acid medium by collection of its volatile compounds, Microchim. Acta, 99 (1989) 49-57 .

13. MSZ EN ISO 10304-1:1998 Vízminőség. Az oldott fluorid-, klorid-, nitrit-,

ortofoszfát-, bromid-, nitrát- és szulfátanionok meghatározása ionkromatográfiával.

1. rész: Kis szennyezettségű víz vizsgálata

14. MSZ 21978-42:1999: Veszélyes hulladékok vizsgálata. A fluoridtartalom meghatározása

- 120 -

15. D. L. Zellmer: The Fluoride Ion Selective Electrode Experiment, Direct Potentiometry and Standard Addition Methods

http://zimmer.csufresno.edu/~davidz/Chem102/FluorideISE/FluorideISE.html 16. M. S.Frant, J. W. Ross Jr., Use of a Total Ionic Strength Adjustment Buffer for

Electrode Determination of Fluoride in Water Supplies, Anal. Chem., 40 (1968) 1169-1171.

17. Sarudi I., Csapó-Kiss Zs., Szabó A., Adatok a magyarországi ivóvizek és ásványvizek fluortartalmáról, Acta Agr. Kapos. 5 (2001) 55-63.

18. M. Tafu, S. Kagaaya, T. Chohji, A Separation Method for Simplified

Determination of Fluoride by Using Calcium Phosphate, Analitical Sciences 17 (2001) 753-756.

19. S. Staub: Entwicklung und Anwendung einer Ionenpaar-Chromatographie mit makrozyklischen polyethern zur Analyse anionischer Spezies in aquatischen Kompartimenten, Doktori értekezés, Hamburg (2002)

20. M. C. Quintana , M. H. Blanco , L. Hernández, Highly Sensitive Methods for Determination of Fluoride in Biological Samples, J. Liq. Chromatogr. Relat.

Technol., 26 (2003) 763-772.

21. S. Karthikeyan, S.W. See, R. Balasubramanian, Simultaneous determination of inorganic anions and selected organic acids in airborne particulate matter by ion chromatography, Anal. Lett., 40 (2007) 793-804.

22. C. Johns, W. Yang, M. Macka, P. R. Haddad, Simultaneous separation of anions andd cations by capillary electrophoresis with high magnitude, reversed

electroosmotic flow, J. Chromatogr., A 1050, 2, 217-222 23. P. Wang, S.F.Y. Li, H.K. Lee, Simultaneous determination of

monofluorophosphate and fluoride in toothpaste by capillary electrophoresis, J.

Chromatogr. A, 765 (1997) 353-359.

24. S.S. Yamamura, M.A. Wade, J.H. Sikes, Direct Spectrophotometric Fluoride Determination, Anal. Chem., 34 (1962) 1308-1311.

25. E. Bellack, P.J. Schouboe, Rapid Photometric Determination of Fluonde in Water, Anal. Chem., 30 (1958) 2032-2034.

26. R. Rastogi, H. R. Mhatre, M. A. Mahajan, N. K. Chaudhuri, S. K. Patil,

Microdetermination of fluoride by spectrophotometry of arsenazo(III)-complex of Zr back-extracted from htta in benzene, Microchim. Acta, 103 (1991) 45-52.

27. A. Sen, K. Kesava Rao, M.A. Frizzell, G. Rao, A Low-Cost Device for the

Estimation of Fluoride in Drinking Water, Field Anal. Chem. Tech., 2 (1998) 51-58.

28. K. Hayashi, T. Danzuka, K. Ueno: Spectrophotometric determination of fluoride using lanthanum chloranilate, Talanta, 4(1960) 126-132.

- 121 -

29. T.P. Cheng, H.D. Anderson, D.S. Mills, V.L. Spate, C.K. Baskett, J.S. Morris, Determination of the fluoride distribution in rabbit bone using instrumental neutron activation analysis, J.Radioanal. Nucl. Chem. 217 (1997), 171-174.

30. Borszéki J.: Optikai spektroszkópia II., Egyetemi jegyzet, Veszprémi Egyetemi Kiadó, (1998)

31. Y. Okamoto, Determination of fluoride ion in aqueous samples by inductively coupled plasma atomic emission spectrometry with tungsten boat furnace vaporiser, J. Anal. At. Spectrom. 16 (2001) 539–541.

32. D.L. Windsor, M. B. Denton, Elemental analyis of gas-chromatographic effluents with an inductively coupled plasma, J. Chromatogr. Sci. 17 (1979) 492-496.

33. R. C. Fry, S. J. Northway, R. M. Brown, S. K. Hughes, Atomic fluorine spectra in the argon inductively coupled plasma, Anal. Chem. 52 (1980) 1716-1722.

34. J. M. Keane, R. C. Fry, Red and near-infrared inducively coupled plasma emission-spectra of fluorine, chlorine, bromine, iodine, and sulfur with a photodiode array detector, Anal. Chem. 58 (1986) 790-797.

35. F. Augusto, A. L. P. Valente, Enhanced sensitivity and selectivity of a gas

chromatography microwave-induced plasma atomic emission system (GC-MIP) at the 685.6-nm fluorine emission line, J. Microcolumn Sep., 11 (1999) 23-27.

36. K. Jankowski, A. Jackowska, M. Mrugalska , Direct spectrometric determination of total fluorine in geological materials by continuous powder introduction into

helium microwave induced plasma, J. Anal. At. Spectrom., 22 (2007) 386-391.

37. Y. Okamoto, Determination of fluorine in aqueous samples by electrothermal vaporisation inductively coupled plasma mass spectrometry (ETV-ICP-MS), J.

Anal. At. Spectrom. 16 (2001) 539–541.

38. M. M. Bayón, A. R. Garcia, J. I. G. Alonso, A. Sanz-Medel, Indirect determination of trace amounts of fluoride in natural waters by ion chromatography: a comparison of on-line post-column fluorimetry and ICP-MS detectors, Analyst 124 (1999) 27–

31.

39. M. A. Palacios Corvillo, M. Gomez Gomez, C. Camara Rica, Determination of fluoride in sea-water by molecular absorption spectrometry of aluminum

monofluoride after removal of cation and anion interferences, Talanta 37 (1990) 719-724.

40. M. Gomez, M. A. Palacios, C. Camara, Determination of Fluoride by Alf-MAS in N2O-C2H2 Flame: Application to Toothpaste, Microchem J. 47 (1993) 399-403.

41. G. D. Chirkova, N. V. Bondareva, E. S. Zolotovitskaya, V. G. Potapova, N. S.

Granova, L. I. Kseskach, Atomic absorption determination of fluorides using selective dissolution of lead zirconate-titanate, Zh. Anal. Khim. 48 (1993) 648-653.

- 122 -

42. M. Burguera, A. Townshend, S. L. Bogdanski, Molecular-emission cavity analysis.17. Indirect determination of fluoride by volatilization of silicon tetrafluoride, Anal. Chim. Acta 117 (1980) 247-255.

43. N. Barnett, H. Beere, L. Ebdon, B. Fairman, Chemical generation of silicon tetrafluoride with direct-current plasma atomic emission-spectrometry for the determination of fluorine, J. Anal. At. Spectrom. 4 (1989) 805-806.

44. T. J. Manning, W. R. Grow, Inductively Coupled Plasma -Atomic Emission Spectrometry, The Chemical Educator, 2 (1997)

45. N. M. M. Coelho, A. Cósmen da Silva, C. Moraes da Silva, Determination of As(III) and total inorganic arsenic by flow injection hydride generation atomic absorption spectrometry, Anal. Chim. Acta 460 (2002) 227–233.

46. J. C. Raposo, J. Sanz, O. Zuloaga, M. A. Olazabal, J. M. Madariaga, Validation of the thermodynamic model of inorganic arsenic in non polluted river waters of the Basque country (Spain), Talanta 63 (2004) 683–690.

47. N. Ulrich, Determination of antimony species with fluoride as modifier and flow injection hydride generation inductively-coupled plasma emission spectrometry, Anal. Chim. Acta 417 (2000) 201–209.

48. C. S. Chen, S. J. Jiang, Determination of As, Sb, Bi and Hg in water samples by flow-injection inductively coupled plasma mass spectrometry with an in-situ nebulizer/hydride generator. Spectrochim. Acta B 51 (1996) 1813-1821.

49. S. Dadfarnia, T. Assadollahi, A. M. Haji Shabani, Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection–

flame atomic absorption spectrometry using immobilized oxine as sorbent. J.

Hazard. Mater. 148 (2007) 446–452.

50. J. M. Estela,V. Cerdá, Flow analysis techniques for phosphorus: an overview.

Talanta 66 (2005) 307–331.

51. R. Q. Aucélio, R. M. de Souza, R. C. de Campos, N. Miekeley, C. L. P. da Silveira, The determination of trace metals in lubricating oils by atomic spectrometry.

Spectrochim. Acta B 62 (2007) 952–961.

52. M. Bau, P. Dulski, Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids, Contrib. Mineral. Petr. 119 (1995) 213-223.

53. B. R. Lipin, G. A. McKay, Geochemistry and Mineralogy of Rare Earth Elements, Mineral. Soc. Amer. (1989)

54. R.H. Byrne, K.-H. Kim, Rare earth element scavenging in seawater, Geochim.

Cosmochim. Acta 54 (1990) 2645-2656.

55. J. R. Haas, E. L. Shock, D. C. Sassan, Rare earth elements in hydrothermal systems:

Estimates of standard partial molal thermodynamic properties of aqueous

complexes of the rare earth elements at high pressures and temperatures, Geochim.

Cosmochim. Acta 59 (1995) 4329-4350.

- 123 -

56. R. I. Grauch, Rare earth elements in metamorphic rocks. In Geochemistry and Mineralogy of Rare Earth Elements, Mineral. Sot. Amer. (1989) 147- 167.

57. E. Matijevic, W. P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds, J. Colloid Interf. Sci. 118 (1987) 506-523.

58. L. Zhu, J. Meng, X. Cao, Synthesis and photoluminescent properties of silica-coated LaCeF3:Tb nanocrystals, J. Nanopart. Res. 10 (2008) 383-386.

59. J. W. Kury, Z. Z. Hugus, W. M. Latimer, The complexing of cerium(III),

lanthanum(III) and gadolinium(III) by fluoride ions in aqueous solution, J. Phys.

Chem. 61 (1957) 1021.

60. J.B. Walker, G.R. Choppin, Thermodynamic parameters of fluoride complexes of the lanthanides, Adv. Chem. Series 71 (1967) 127-140.

61. S. J. Lyle, S. J. Naqvi, The distribution of positively charged cerium(III) and gadolinium complexes between a cation-exchanger and an aqueous phase, J. Inorg.

Nucl. Chem. 29 (1967) 2441-2451.

62. B.A. Bilal, J. Kob, Complex formation of trace elements in geochemical systems III. Study ont he distribution of fluoro complexes of rare earth elements in fluorite bearing model system, J. Inorg. Nucl. Chem. 42 (1980) 629-630.

63. J. H. Lee, R. H. Byrne, Rare earth element complexation by fluoride ions in aqueous solution, J. Solution. Chem. 22 (1993) 751-766.

64. M. P. Menon, J. James, J. D. Jackson, Complexation, solubilities and

thermodynamic functions for cerium(III) fluoride-water system, J. Radioanal. Nucl.

Chem. 102 (1986) 419-428.

65. A. Aziz, S. L. Lyle, Applications of the fluoride sensitive electrode to the study of metal fluoride ion association constants, Anal. Chim. Acta 47 (1969) 49-56.

66. G. N. Koroleva, S. A. Gava, N. S. Poluektov, A. I. Kirillov, M. E. Kornelli Interaction of lanthanide ions with fluoride ions, Dokl. Akad. Nauk SSSR, 228 (1976) 1384-1386.

67. P. Becker, B. A. Bilal, Lanthanide-fluoride ion association in aqueous sodium chloride solutions at 25 °C, J. Solution Chem. 14 (1985) 407-415.

68. M. P. Menon, J. James, Solubilities, Solubility products and solution chemistry of lanthanon trifluoride-water systems, J. Chem. Soc. Faraday. Trans. 85 (1989) 2683-2694.

69. M. P. Menon, J. James, Stability constant for the lanthanide fluoride complexes in aqueous solution at 25 °C, J. Solution. Chem. 18 (1989) 735-742.

70. B.A. Bilal, F. Hermann, W. Fleischer, Complex formation of trace elements in geochemical systems I. Potenciometric study of fluoro complexes of rare earth elements in fluorite bearing model systems, J. Inorg. Nucl. Chem., 41 (1979) 347-350.

- 124 -

71. R. M. Sawant, N. K. Chaudhuri, K. L. Ramakumar, Ensuring complete absence of Ce(IV) and measurement of the stability constant of the fluoride complex of Ce(III), Talanta 53 (2001) 707-713.

72. J. Schijf, R. H. Byrne, Determination of stability constants for the mono- and difluoro-complexes of Y and the REE, using a cation-exchange resin and ICP-MS, Polyhedron 18 (1999) 2839-2844.

73. Y. Luo, F. J. Millero, Effects of temperature and ionic strength on the stabilities of the first and second fluoride complexes of yttrium and the rare earth elements, Geochim. Cosmochim. Acta 68 (2004) 4301-2308.

74. Y. Luo, R. H. Byrne, The influence of ionic strength on yttrium and rare earth element complexation by fluoride ions in NaClO4, NaNO3 and NaCl solutions at 25 °C, J. Solution Chem. 36 (2007) 673-689.

75. R. M. Sawant, R. K. Rastogi, M. A. Mahajan, N. K. Chaudhuri, Stabilisation of tetravalent cerium in perchloric acid medium and measurement of the stability constants of its fluoride complexes using ion selective potentiometry, Talanta 43 (1996) 89-94.

76. I. Grenthe, H. Wanner, Guidelines for the extrapolation to zero ionic strenght;

Agence de L’ocde pour l’énergie nucléaire, OECD Nuclear Energy Le Seine-St.

Germain, France, 2000.

77. P. L. Sarma, M. S. Davis, Reactions between cereus and fluoride ions, J. Inorg, Nucl. Chem. 29 (1967) 2607-2614.

78. T. P. Makarova, A. V. Stepanov, B. I. Shestakov, Electromigration investigation...

Russ. J. Inorg. Chem. 18 (1973) 783-785.

79. S. W. Mayer, S. D. Schwartz, The association of cerous ion with iodide, bromide and fluoride ions, J. Am. Chem. Soc. 73 (1951) 222-224.

80. J. W. Kury, Problems in the Aqueous Chemistry of Cerium (+3) Fluoride and Lanthanum(+3) Fluoride, Univ. Calif. Radiat. Lab. (Berkeley) Report No. UCRL-2271, (1953)

81. J. L. Weaver, W. C. Purdy, The apparent solubility product of cerous fluoride, Anal.

Chim. Acta, 20 (1959) 376-379.

82. J. J. R. Frausto da Dilva, M. M. Queimado, Solubility products of lanthanide fluorides Rev. Port. Quim, 15(1973) 29-34.

83. V. P. Vasil’ev, E. V. Kozlovskii, Solubility products of some rare earth element fluorides, Zh. Neorg. Khim. 22 (1977) 853-856.

84. R. G. de Carvalho, G. R. Choppin, Lanthanide and actinide sulfate complexes—I.

Determination of stability constants, J. Inorg. Nucl. Chem. 29 (1967) 725–735.

85. A. V. Stepanov, Comparative stabilities of certain lanthanide and actinide sulphate complexes, Russ. J. Inorg. Chem. 18 (1973) 194–196.

- 125 -

86. V. A . Fedorov, N. R. Deriagina, V. E. Mironov, Interaction of cerium(III) with sulfate ion in aqueous solutions, SSSR Khim. Khimich. Tekhnol. 26 (1983) 1030–

1032

87. T. W. Newton, G. M. Arcand, A spectrophotometric study of the complex formed between cerous and sulfate ions, J. Am. Chem. Soc. 75 (1953), 2449–2453.

88. R. E. Connick, S. W. Mayer Ion exchange measurements of activity coefficients and association constants of cerous salts in mixed electrolytes. J. Am. Chem. Soc.

73 (1951) 1176–1179.

89. L. A. Blatz, The use of a cation-exchange resin to study the cerous and sulfate ion complexes, J. Phys. Chem. 66 (1962) 160–164.

90. S. Fronaeus, An ion exchange study of the cerous sulphate system, Svensk Kem.

Tidskr. 64 (1952) 317–324.

91. T. G. Spiro, A. Revesz, J. Lee, Volume changes in ion association reactions. Inner- and outer-sphere complexes, J. Am. Chem. Soc. 90 (1968) 4000–4006.

92. B. A. Bilal, V. Kob, Complex formation of trace elements in geochemical

systems—IV. Study on the distribution of sulfatocomplexes of rare earth elements in fluorite bearing model system, J. Inorg. Nucl. Chem. 42 (1980) 1064–1065.

93. J. Schijf, R. H. Byrne, Determination of SO41 for yttrium and the rare earth elements at I = 0.66 m and t= 25°C — Implications for YREE solution speciation in sulfate-rich waters, Geochim. Cosmochim Acta 68 (2004) 2825–2837.

94. F. A. Kröger, J. Bakker, Luminescence of cerium compounds, Physica 8 (1941) 628-646.

95. G. Blasse, A. Bril, Investigated of Some Ce3+-Activated Phosphors, J. Chem. Phys.

47 (1967) 5139-5145.

96. A.G. Svetashev, M.P. Tsvirko, Influence of temperature on spectral-luminescent properties of trivalent cerium salts, Theor. Exp. Chem. 1985, 20, 653-657.

97. B. Keller, J. Legendziewicz, J. Glin´ski, Investigation of optical properties of

praseodymium and cerium chlorides in nonaqueous solutions, Spectrochim. Acta A, 54 (1998) 2207-2213.

98. R. A. Glukhov, A. N. Belsky, C. Pedrini, A. N. Vasil’ev, Simulation of energy conversion and transfer in CeF3 after VUV photon absorption, J. Alloy. Compd.

275–277 (1998) 488-492.

99. H. Kunkely, A. Vogler, Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides, Inorg.

Chem. Commun. 9 (2006) 1-3.

100. G. Oczko, L. Macalik, J. Legendziewicz, J. Hanuza, Comparison of the spectroscopic behaviour of single crystals of lanthanide halides (X = Cl, Br), J. Alloy. Comp. 380 (2004) 327-336.

- 126 -

101. B.F. Aull, H. P. Jenssen, Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. I. A phenomenological crystal-field model, Phys.

Rev. B 34 (1986) 6640-6646.

102. D.F. Anderson, Cerium fluoride: A scintillator for high-rate applications, Nucl.

Instrum. Meth. A. 287 (1990) 606-610.

103. C. Pedrini, B. Moine, D. Bouttet, A.N. Belsky, V.V. Mikhaihn, A.N. Vasil’ev, E.I.

Zinin, Time-resolved luminescence of CeF3 crystals excited by X-ray synchrotron radiation, Chem. Phys. Lett. 206 (1993) 470-474.

104. E.D. Thomas, H. Shields, Y. Zhang, B.C. McCollumb, R.T. Williams, EPR and luminescence studies of LaF3, and CeF3, under X-ray and laser irradiation, J. Lumin. 71 (1997) 93-104.

105. R. Lindner, M. Reichling, E. Matthias, H. Johansen, Luminescence and damage thresholds of cerium-doped LaF3 for ns-pulsed laser excitation at 248 nm, Appl.

Phys. B. 68 (1999) 233-241.

106. W. W. Moses, S. E. Derenzo, M. J. Weber, A. K. Ray-Chaudhuri, F. Cerrina, Scintillation mechanisms in cerium fluoride, J. Lumin. 59 (1994) 89-100.

107. O. Guillot-Noël, J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U.

Güdel, Optical and scintillation properties of cerium-doped LaCl3 , LuBr3 , LuCl3

J. Lumin. 85 (1999) 21-35.

108. Y. Pei, X. Chen, D. Yao, G. Ren, The role of CeF3 in LaCl3 scintillation crystal, Radiat. Meas. 42 (2007) 1351-1354.

109. K. V. Narayana, B. D. Raju, S. K. Masthan, V. V. Rao, P. K. Rao, A. Martin, Cerium fluoride supported V2O5 catalysts: physico-chemical characterization and 3-picoline ammoxidation activity, J. Mol. Catal. A 223 (2004) 321-328.

110. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers, Opt. Mater. 24 (2003) 77-81.

111. Y. V. Orlovskii, T. T. Basiev, E. O. Orlovskaya, Y. S. Privis, V. V. Fedorov, S. B.

Mirov, Direct nanosecond Nd-Ce nonradiative energy transfer in cerium trifluoride laser crystals, J. Lumin. 101 (2003) 211-218.

112. B. J. Nelson, S. A. Wood, J. L. Osiensky, Partitioning of REE between solution and particulate matter in natural waters: a filtration study, J. Solid State Chem.

171 (2003) 51-56.

113. J. Lu, Q. Xue, J. Wang, J. Ouyang, The effect of CeF3 on the mechanical and tribological properties of Ni-based alloy, Tribol. Int. 30 (1997) 659-662.

114. J. Lu, Q. Xue, J. Ouyang, Thermal properties and tribological characteristics of CeF3 compact, Wear 211 (1997) 15-21.

115. J. Lu, Q Xue, Sliding friction, wear and oxidation behavior of CeF3 compact in sliding against steels at temperatures to 700 °C in air, Wear 219 (1998) 73-77.

- 127 -

116. J. Lu, Q. Xue, Comparison on the microstructure and mechanical strength of a Ni-based alloy with and without 3wt.% CeF3 addition, Mat. Sci. Eng. A-Struct. 257 (1998) 268-272.

117. S. Qiu, J. Dong, G. Chen, Tribological properties of CeF3 nanoparticles as additives in lubricating oils, Wear 230 (1999) 35-38.

118. S. Qiu, J. Dong, G. Chen, Synthesis of CeF3 nanoparticles from water-in-oil microemulsions, Powder Technol. 113 (2000) 9-13.

119. M. Kobayashi, M. Ishii, E.A . Krivandina, M. M . Litvinov , A. I. Peresypkin, Y.

D. Prokoshkin, V. I . Rykalin, B. P. Sobolev, K. Takamatsu, V. G. Vasil'chenko, Cerium fluoride, a highly radiation-resistive scintillator, Nucl. Instrum. Meth. A.

302 (1991) 443-446.

120. G. Blasse, The luminescence efficiency of scintillators for several applications:

State- of-the-art, J. Lumin. 60-61 (1994) 930-935.

121. J. Jiang, G. Zhang, M. Poulain, Cerium-containing glasses for fast scintillators, J. Alloy. Compd. 275–277 (1998) 733-737.

122. V. G. Vasil’chenko, Yu. A. Krechko, Yu. D. Motin, B. P. Sobolev, Study of radiation-induced optical effects in heavy crystals, Nucl. Instrum. Meth. B. 122 (1997) 63-72.

123. K. Tanaka, K. Fujita, N. Soga, J. Qiu, K. Hirao, Faraday effect of sodium borate glasses containing divalent europium ions, J. Appl. Phys. 82 (1997) 840-844.

124. L. Dmitruk, N. Vinogradova, V. Kozlov, V. Machov, E. Devitsin, V. Fyodorov, Scintillating HfF4-based glasses doped cerium chloride and cerium oxide

compounds, J. Non-Cryst. Solids 213-214 (1997) 311-314.

125. M. Kobayashi, M. Ishii, B. P. Sobolev, Z. I. Zhmurova, E. A. Krivandina, Scintillation characteristics of nonstoichiometric phases formed in MF2-GdF3 -CeF3 systems Part III. Dense Gd1-x-yMxCeyF3-x tysonite-related crystals (M=Ca, Sr), Nucl. Instrum. Meth. A 421 (1999) 180, 191, 199-210.

126. M. Nikl, P. Bohacek, E. Mihokova, S. Baccaro, A. Vedda, M. Diemoz, E. Longo, M. Kobayashi, E. Auffray, P. Lecoq, Radiation damage processes in wide-gap scintillating crystals. New scintillation materials, Nucl. Phys. B. 78 (1999) 471-478.

127. K. W. Bell, R. M. Brown, D. J. A. Cockerill, P. S. Flower, P. R. Hobson, B. W.

Kennedy, A. L. Lintern, J. M. Parker, M. Sproston, Investigation into the effects of indium, and the purity of precursor materials on the scintillation yield of cerium-doped heavy metal fuoride glasses for electromagnetic calorimetry in particle physics, J. Non-Cryst. Solids 256-257 (1999) 42-47.

128. T. Inagaki Y. Yoshimura, Y. Kanda, Y. Matsumoto, K. Minami, Development of CeF3 crystal for high-energy electromagnetic calorimetry, Nucl. Instrum. Meth. A 443 (2000) 126-135.

- 128 -

129. P. Belli, R. Bernabei, R. Cerulli, C. J. Dai, F. A. Danevich, A. Incicchitti, V. V.

Kobychev, O. A. Ponkratenko, D. Prosperi, V. I. Tretyak, Yu. G. Zdesenko, Performances of a CeF3 crystal scintillator and its application to the search for rare processes, Nucl. Instrum. Meth. A 498 (2003) 352-361.

130. K. Shimamura, E. G. Víllora, S. Nakakita, M. Nikl, N. Ichinose, Growth and scintillation characteristics of CeF3; PrF3 and NdF3 single crystals, J. Cryst.

Growth 264 (2004) 208-215.

131. E. G. Víllora, K. Shimamuraa, S. Nakakita, M. Nikl, N. Ichinose, Scintillation properties of REF3 (RE=Ce, Pr, Nd) single crystals, Nucl. Instrum. Meth. A. 537 (2005) 139-143.

132. S. Marrone, E. Berthomieux, F. Becvar, D. Cano-Ott, N. Colonna, C. Domingo-Pardo, F. Gunsing, R. C. Haight, M. Heil, F. Käppeler, M. Krticka, P. Mastinu, A.

Mengoni, P. M. Milazzo, J. O’Donnell, R. Plag, P. Schillebeeckx, G. Tagliente, J.

L. Tain, R. Terlizzi, J. L. Ullmann, Pulse shape analysis of signals from BaF2 and CeF3 scintillators for neutron capture experiments, Nucl. Instrum. Meth. A 568 (2006) 904-911.

133. K. Kawano, H. Tasaki, B. C. Honga, T. Ishitsuka, Rare-earth doped glass scintillators effective to spent nuclear fuels through photocatalyst, J. Alloy.

Compd. 451 (2008) 314-316.

134. M. Boutonnet, J. Kizling, P. Stenius, G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf. 5 (1982) 209-225.

135. H. Zhang, H. Li, D. Li, S. Meng, Synthesis and characterization of ultrafine CeF3

nanoparticles modified by catanionic surfactant via a reverse micelles route, J.

Colloid Interf. Sci. 302 (2006) 509-515.

136. C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, T.

Fukuda, Spectroscopic properties of CeF3 and LuF3: Ce3+ thin films grown by molecular beam epitaxy, Opt. Mater. 16 (2001) 69-76.

137. C. Feldmann, H. O. Jungk, Polyol vermittelte Präparation nanoskaliger Oxidpartikel, Angew. Chem. 113 (2001) 372-374.

138. S. Eiden-Assmann, G. Maret, CeF3 nanoparticles: synthesis and characterization, Mater. Res. Bull. 39 (2004) 21-24.

139. R. Lo Nigro, G. Malandrino, I. L. Fragalà, M. Bettinelli, A. Speghini, MOCVD of CeF3 films on Si(100) substrate: synthesis, characterization and luminescence spectroscopy, J. Mater. Chem. 12 (2002) 2816-2819.

140. X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Hydrothermal Synthesis of Rare Earth Fluoride Nanocrystals Inorg. Chem. 45 (2006) 6661-6665.

141. L. Wang, M. Zhang, X. Wang, W. Liu, The preparation of CeF3 nanocluster capped with oleic acid by extraction method and application to lithium grease, Mater. Res. Bull. 43 (2008) 2220-2227.

- 129 -

142. L. Zhu, Q. Li, X. Liu, J. Li, Y. Zhang, J. Meng, X. Cao, Morphological Control and Luminescent Properties of CeF3 Nanocrystals, J. Phys. Chem. C. 111 (2007) 5898-5903.

143. Z. L. Wang, Z.W. Quan, P. Y. Jia, C. K. Lin, Y. Luo, Y. Chen, J. Fang, W. Zhou, C. J. O'Connor, J. Lin, A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (Core/Shell) Nanoparticles, Chem. Mater. 18 (2006) 2030-2037.

144. C. Li, X. Liu, P. Yang, C. Zhang, H. Lian, J. Lin, LaF3, CeF3, CeF3 : Tb3+, and CeF3 : Tb3+@LaF3 (core-shell) nanoplates: Hydrothermal synthesis and

luminescence properties, J. Phys. Chem. C. 112 (2008) 2904-2910.

145. Zetasizer Nano User Manual, Malvern Instruments Ltd. 2007

146. Bánhegyi Gy., Winkler P., Részecskeméret eloszlás és reológiai jellemzők

meghatározása a Malvern cég műszereivel – műanyag- és gumiipari alkalmazások, Műanyag és gumi, 43 (2006) 14-19.

147. PerkinElmer honlap: www.perkinelmer.com

148. analitykjenaAG, Product Guide, Molecular spectroscopy:

http://analitica.inycom.es/es-es/productos/Documents/specord.pdf

149. MSZ 21978-9:1998 Veszélyes hulladékok vizsgálata. Hulladékkivonatok készítése fizikai, kémiai és ökotoxikológiai vizsgálatokhoz

150. G. Peintler, I. Nagypál, A. Jancsó, I. R. Epstein, K. Kustin, Extracting experimental information from large matrixes. 1. A new algorithm for the application of matrix rank analysis, J. Phys. Chem. 101 (1997) 8013-8020.

151. L. Zékány, I. Nagypál, G. Peintler, PSEQUAD for Chemical Equilibria, Technical Sofware distributors, 1991.

152. D.F. Eaton, Reference materials for fluorescence measurement, Pure & Appl.

Chem., 60 (1988) 1107-1114.

153. M. Kovács, Zs. Valicsek, Equilibrial, spectrophotometrical and photophysical investigation of cerium(III)-fluoro complexes, készítés alatt

154. L. Fodor, A. Horváth, Characterization of exciplexes generated by tris-diimine-ruthenium(II) complexes and silver(I) ion of ground state, J. Photochem.

Photobiol. A. 112 (1998) 213-223.

155. G. Peintler: Reference Maual ZITA Version 4.1, A Comprehensive Program Package for Fitting Parameters of Chemical Reaction Mechanisms; Attila József University, Szeged, Hungary, 1997.

156. S. Yonezawa, K. Jae-Ho, M. Takashima, Pyrohydrolysis of rare-earth trifluorides in moist air, Solid State Sci. 4 (2002) 1481–1485.

157. H. Lian, M. Zhang, J. Liu, Z. Ye, J. Yan, C. Shi, Synthesis and spectral properties of lutetium-doped CeF3 nanoparticles, Chem. Phys. Lett. 395 (2004) 362–365.

- 130 -

158. H.H. Adler, P.F. Kerr, Infrared absorption frequency trends for anhydrous normal carbonates, Am. Mineral. 50 (1965) 132-147.

159. K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds, J Wiley, N.Y. 5th Ed. Part A, 1977.

160. C.G. Barraclough, M.L. Tobe, The Preparation and Properties of Chelated Sulphatobis-(ethylenediamine)cobalt(III) Salts, J. Chem Soc. (1961) 1993-1996.

161. R. Eskenazi, J. Raskovan, R.J. Levitus, Sulphato complexes of palladium(II), J. Inorg. Nucl. Chem. 28 (1966) 521-526.

- 131 -