• Nem Talált Eredményt

(HILIC/RP)-LC/MS method mouse regions model in of anxiety disorder using onlinetwo-dimensional Comprehensive and phospholipid sphingomyelin profiling of differentbrain Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(HILIC/RP)-LC/MS method mouse regions model in of anxiety disorder using onlinetwo-dimensional Comprehensive and phospholipid sphingomyelin profiling of differentbrain Journal of Pharmaceutical and Biomedical Analysis"

Copied!
10
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Comprehensive phospholipid and sphingomyelin profiling of different brain regions in mouse model of anxiety disorder using online

two-dimensional (HILIC/RP)-LC/MS method

Róbert Berkecz

a,∗

, Ferenc Tömösi

a

, Tímea Körmöczi

a

, Viktor Szegedi

b

, János Horváth

b

, Tamás Janáky

a

aDepartmentofMedicalChemistry,FacultyofMedicine,UniversityofSzegedDómtér8,H-6720,Szeged,Hungary

bDepartmentofPhysiology,AnatomyandNeuroscience,UniversityofSzeged,Középfasor52,H-6726,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received11September2017

Receivedinrevisedform29October2017 Accepted30October2017

Availableonline8November2017

Keywords:

Phospholipid Sphingomyelin Brain 2D-LC/MS Lipidomics Anxietydisorder

a b s t r a c t

Anovelonlinesystemincludingtwo-dimensionalliquidchromatographycoupledtohigh-resolution massspectrometry(2D-LC/MS)wasdevelopedandappliedforcomprehensivephospholipid(PL)and sphingomyelin(SM)profilingofdorsalhippocampus(DHPC),ventral(VHPC)andprefrontalcortex(PFC) brainregionsinamousemodelofanxietydisorder.Inthefirstdimension,lipidclassesweredistinguished byhydrophilicinteractionliquidchromatography(HILIC),whiletheseconddimensionalseparationof individualPLandSMspecieswasachievedbyreversed-phase(RP)chromatography.Fortheenrichment oflipidspeciesindilutedHILICeffluent,twoRPtrappingcolumnswereusedseparately.Thedeveloped fully-automated2Dmethodallowedthequantitativeanalysisofover150endogenousPLandSMspecies inmousebrainregionswithin40min.Thedevelopedmethodwasappliedinapilotstudy,whichaimed tofindalterationofPLandSMcompositioninamousemodelofanxietydisorder.Inthecaseof37PL andSMspecies,significantdifferenceswereobservedbetweenhighanxiety-relatedbehavior(AX)and lowanxiety-relatedbehavior(nAX)mice.Inmicehavingelevatedanxiety,themosttypicaltrendwas thedownregulationofPLspecies,inparticular,inVHPC.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Non-targetedanalysisofbiomoleculesisanimportanttrendin thefieldofomicssuchasproteomics,genomics,transcriptomics andmetabolomics.Lipidomics,anemergingfieldofmetabolomics, aims for the comprehensive analysis of lipids in cells, tissues andbiologicalfluidsandmonitorsthelipidresponsestovarious externalor internal effects/events [1–4]. Chemically,eight lipid

Abbreviations: 1D,one-dimensional;2D-LC/MS,two-dimensionalliquidchro- matography coupled to high resolution mass spectrometry; AGC, automatic gaincontrol; AX, anxiety-related behavior; C18, octadecylsilyl; DHPC, dorsal hippocampus;FA,fattyacyl;HILIC,hydrophilicinteractionliquidchromatogra- phy;IS,internalstandard;LPL,lysophospholipid;ME, matrixeffect;nAX,low anxiety-relatedbehavior;NP,normalphase;OPLS-DA,orthogonalpartialleast squarediscriminant analysis; PA, phosphatidic acid; PC, phosphatidylcholine;

PE,phosphatidylethanolamine;PFC,prefrontalcortex;PG,phosphatidylglycerol;

PI,phosphatidylinositol; PL, phospholipid;PS, phosphatidylserine; RE,extrac- tionrecovery;RP,reversed-phase;RS,chromatographicresolution;SEM,standard errors;SM,sphingomyelin;VHPC,ventralhippocampus.

Correspondingauthor.

E-mailaddress:berkecz.robert@med.u-szeged.hu(R.Berkecz).

categoriesareknown,namely,fattyacyls(FA),glycerolipids,sac- charolipids,polyketides,sterollipids,prenollipids,sphingolipids andPLs.AccordingtothepolarheadgroupofPLs,phosphatidyl- choline(PC),phosphatidylethanolamine(PE),phosphatidylinositol (PI),phosphatidylserine(PS),phosphatidylglycerol(PG)andphos- phatidicacid(PA)classesaredistinguished[5,6].

Nowadays,thecouplingofLCtoMSisoneofthemostpower- fulandwidespreadtechniquestoanalyzelipidmolecularspecies in complex samples. The main advantages of the use of this hyphenatedtechnique,comparedtodirectinfusioncalled“shot- gun”methods,areitsabilitytodistinguishisomers(isobars)and obtainhighersensitivityoflow-abundancelipidsowingtoreduced ionsuppressioneffect[7–9].InLC,lipidsareusuallyseparatedby RP,HILICornormalphase(NP)methods.InRP-LC,theretention behaviorof lipidsareincorrelationwiththeequivalentcarbon number,whileinthecaseofNP-LCandHILIC,theretentionoflipid classesdependsonthehydrophilicpropertiesofthepolarhead group[4,10,11].ThesolventsystemusedinNP-LCusuallyprovides lowionizationefficiencyinMSdetection,whileRP-LCandHILIC mobilephasesareMScompatibleandresultingoodionization[12].

https://doi.org/10.1016/j.jpba.2017.10.043 0731-7085/©2017ElsevierB.V.Allrightsreserved.

(2)

Lipidomicsdealswithlargesamplecomplexity;therefore,one- dimensional(1D)chromatographicseparationcanprovidelimited selectivityforlipidspeciesinanychromatographicmoderesulting indifficultiesinidentificationandquantification[13].Thecombi- nationofdifferentLCmodescouldprovideanumberofpossibilities toimproveseparationoflipidmolecularspeciesthroughenhanced chromatographicresolutionandhigher peakcapacity.Twocon- nectedorthogonalLCmodes,suchasNP-LCorHILICorsilver-ion chromatography(fornonpolarlipids)withRP-LC,eitheronlineor offline,havealreadybeenusedinlipidomics.[13–21].Themain benefitofoffline2Dtechniquesisthatthechromatographiccon- ditionsin bothdimensionscanbecompletelyoptimized,which helpstoimprovetheseparationoflipidspecies.Ontheotherhand, itisnotautomatedandadditionalsamplepreparationsteps,such asfractioncollection,evaporationofmobilephase,reconstitution andreruninseconddimension,makethismethodtime-consuming andlabor-intensiveandmayresultindegradationofthesample.

Online2Dtechniques,inturn,giveanopportunityforthedevel- opmentofcompletelyautomatedmeasurementswithalowrisk ofsamplelossanddegradation.However,thistechniqueprovides compromisingchromatographicresolutioninthefirstand/orsec- onddimensionduetothesynchronizationofbothdimensionsand requiresahighlevelofinstrumentation[14,16,19].

Althoughanxietydisorders are among themostwidespread affectivediseases,theirpathogenesisisstillpoorlyunderstood.The generationandregulationofthesustainedanxiousmoodareacom- plexprocess,in whichseveralbrainregions(alsoreferred toas thefearcircuitry)areinvolvedinthegenerationoffear.Keyareas ofthebrainarethemedialPFCandVHPC,sharingamonosynap- ticconnection,whichfunctionallyinteractsduringinnateanxiety tasks[22–25].It istheVHPC,whichis alsointerconnectedwith theamygdalaandtheentorhinalcortexandmediatestheeffectof glucocorticoidsonanxietyinthebrain[26–29].Theuseofanimal modelsofanxietydisordermayhelptounderstandhumandis- orders.Twomousestrainswithextremesintheiranxiety-related phenotypehavebeenestablishedbyusinganintra-strainanda selectivebidirectionalinbreedingapproachthatledtoanaccumu- lationofgeneticmaterialassociatedwiththerespectiveanxiety phenotype.Ourgrouphaspreviouslystudiedneurophysiological andbrainproteomedifferencesinAXandnAXmousestrainsand nowwepresentourlipidomicsresultsonthisanimalmodel[30,31].

Themain goalofthis studywasthedevelopmentof a new, online2D-LC/MS methodforthecharacterizationof thePL and SMcompositionof differentbrainregionsofnAXand AXmice.

Comprehensivelipidomicsanalysiswasachievedbyseparationof lipidclassesbyHILICchromatography(firstdimension)followedby reversed-phasechromatography(seconddimension)onaUHPLC columnpackedwithfullyporoussub–2␮mC18particlestosep- aratelipidsspecies.Theidentificationofbrainpolarlipidspecies wasbasedontheretentiontimesinbothdimensions,theaccurate m/zvaluesandisotopepatternsofthedetectedions([M−H]or [M+HCOO],dependingonPLclasses).QuantificationofPLspecies identifiedwascarriedoutbyusinginternalstandards.

2. Materialsandmethods 2.1. Animalsandtissuesamples

InbredmousestrainshavingeitherAXor nAXwerebred in ouranimalfacility.ThesestrainswereoriginallydevelopedatEGIS PharmaceuticalsPLC(Budapest,Hungary)bybidirectionalinbreed- ingbasedonanticipatoryanxiety[30].2.5–3-month-oldmalemice werehousedindividuallyunderalight/dark12-hcycle(lightson at08:00)at24±1Ctemperaturegivingadlibitumaccesstofood andwater.Fortheexperiments,80–85thgenerationswereused.

Themiceweresacrificed,theirbrainswererapidlyremovedand PFC,VHPCandDHPCregionsweredissected.Thewetsampleswere weighed,snap-frozeninliquidnitrogenandstoredat−80Cbefore homogenization.ThestudywasincompliancewithEUdirective 2010/63/EUandwasapprovedbytheregionalStationforAnimal HealthandFoodControlunderProjectLicenseXXXI/2012.

2.2. Chemicalsandstandards

1-Heptadecanoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt) (LPA 17:0), 1,2-dimyristoyl-sn-glycero-3-phosphate (sodium salt) (PA 14:0/14:0), N-lauroyl-d-erythro- sphingosylphosphorylcholine (SM d18:1/12:0), 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1-rac-glycerol) (sodium salt) (LPG 14:0), 1,2-diheptadecanoyl-sn-glycero- 3-phospho-(1-rac-glycerol) (sodium salt) (PG 17:0/17:0), 1-nonadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 19:0), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (PC 14:0/14:0), 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (sodium salt) (PS 14:0/14:0), 1-myristoyl-2-hydroxy- sn-glycero-3-phosphoethanolamine (LPE 14:0), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (PE 14:0/14:0)were purchased fromAvanti Polar Lipids (Alabaster, USA)and usedasinternal standards(IS).Water,methanol,ace- tonitrile,ammonium formate (all LC–MS grade), n-hexane, and chloroform (HPLC grade) were purchased from VWR (Radnor, USA).LC–MS-grade2-propanolwaspurchasedfromFluka(Buchs, Switzerland) and acetone (GC–MS grade) was from MERCK (Darmstadt,Germany).

2.3. Samplepreparation

Theweighedbrainsampleswereplacedinto1.7mLmicrocen- trifugetubesand anappropriate volumeofammoniumformate buffer(50mM)wereaddedinordertoobtain5␮g/␮Lconcentra- tionofeachhomogenate.Thesampleswereindividuallysonicated withaBioLogicsModel150VTultrasonichomogenizer(BioLogics Inc,Manassas,VA,USA)for1minusingfullpowersettingwitha 50%pulseonthemicro-tipprobe.

Extraction of lipids from brain homogenate was performed according to a slightly modified Folch procedure [32]. Prior to extraction, 10␮L brain homogenate was spiked with 10␮L lipidstandard mixture(100pmol/␮LPC14:0/14:0,100pmol/␮L LPC 19:0, 50pmol/␮L PE 14:0/14:0, 30pmol/␮L LPE 14:0, 5pmol/␮LPG 17:0/17:0, 5pmol/␮L LPG 14:0, 50pmol/␮L PA 14:0/14:0, 50pmol/␮L LPA 17:0, 50pmol/␮L PS 14:0/14:0 and 125pmol/␮LSMd18:1/12).Aftervortexmixing,5␮Lofbutylated hydroxytoluene (2mg/mL in ethanol) and 450␮L of chloro- form/methanol(2:1,v/v)wereadded,followedbyvortexmixing.

Themixturewasshakenfor15minatroomtemperature.After theadditionof115␮Lofammoniumformate(50mM),thesample wasvortexedfor20s.Upon5minofincubationatroomtempera- ture,thesamplewascentrifugedat1000gfor10min200␮Lofthe lowerphasewascollected,andtheupperphasewasre-extracted with200␮Lofchloroform.Aftercentrifugation,300␮Lofthelower phasewascombinedwiththefirstportionoforganicphaseand driedbyanitrogenstreamatambienttemperature.For2D-LC/MS measurements,the driedextracts werereconstitutedin 100␮L chloroform/methanol(2:1,v/v)mixture.

2.4. 2D-LC/MSconditions

2D-LC/MSanalysiswasperformedbyusingaWatersAcquityI- ClassUPLCTMsystem(Waters,Manchester,UK),equippedwithtwo binarysolventmanagers,anauto-samplerandacolumnmanager withtwosix-port,two-positionautomaticswitchingvalves.The

(3)

Fig.1.Flowschemeoftheestablished2D-LC/MSsysteminbothvalvepositions:Position1andPosition2.

eluentofthefirst-dimensionalHILICcolumnwasdilutedusinga HITACHIL-7100pump(Hitachi,Tokyo,Japan)andahigh-pressure staticmixingtee(IDEX,OakHarbor,WA,USA).Thefirstandsecond

dimensionalanalyticalcolumnswerethermostatedinthecolumn manageroftheUPLCsystem,whilefortheenrichmentcolumns,a L-7350LaChromcolumnoven(Merck,Darmstadt,Germany)was

(4)

used.The ultrahigh-performance liquidchromatography (UPLC) systemwascoupledtoThermoScientificQExactivePlushybrid quadrupole-Orbitrap(ThermoFisherScientific,Waltham,MA,USA) massspectrometer.Theexperimentalconfigurationofouronline 2D-LC/MSsystemisillustratedinFig.1.

In the 2D-LC/MS system, the first- and second-dimension columnswereconnectedthroughtwosix-portvalvesandtwoLuna C18(20×2.0mm,5␮m,100Å,Phenomenex)enrichmentcolumns (Fig. 1). By thescheduled switching of the six-portvalves,the dilutedmobilephasefromtheHILICcolumninfirstdimensionwas trappedonC18enrichmentcolumn,whilethetrappedcompounds ontheotherC18enrichmentcolumnwereanalyzedinthesec- onddimensioninsync(Table1).Topreventtheelutionoflipid speciesfromtheenrichmentcolumnsduringthetrappingprocess, thediluterpumpdelivered5mMammoniumformateeluentata flowrateof0.6mL/minintothestaticmixingtee,whichwascon- nectedaftertheHILICcolumnandinfrontofthefirstsix-portvalve.

Thetrapcolumnsweremaintainedat50C.

Fig.1demonstrates theschematicrepresentation ofour2D- LC/MSsystemin“Position1”arrangement,wherethe“RPtrap1”

columnwasfirstusedtoenrichanalytesfromthedilutedefflu- entoftheHILICcolumn.Thesystemwaskeptinthisconfiguration for8min.Thenswitchingvalveswereturnedinto“Position2”as showninFig.1.ThedilutedmobilephasefromtheHILICcolumn wasthentrappedonthe“RPtrap2”columnand,atthesametime, theanalytestrappedonthe“RPtrap1”columnwerewashedonto andseparatedonthesecond-dimensionalRPanalyticalcolumn.

ThecompletescheduleofeventtimesisdetailedinTable1.The numberofvalveeventswasodd(5),whichwouldhaveresultedin thesameinitialvalvepositionsinconsecutiveanalysis.Namely, inthefirstHILICeffluenttrapping section(0–8min),theeluted analytesofthegivenmeasurementwouldhaveenrichedonthe sametrapcolumnthatwasusedinlastsectionofpreviousmea- surement.Therefore,topreventtheundesired“doubletrapping”

ontheenrichmentcolumns,twomethodswiththesameLCand MSparametershadtobeestablished,whichdifferedonlyinthe order ofvalve positions (Table1). Thetwo methods had tobe strictlyalternatedinsamplesequence.Componentsthattrapped in the washing and re-equilibration steps of theHILIC column (32–40min)weredetectedinthefirstRP-LCrunofthefollowing samplebutwereignoredindataevaluation(Fig.2).

Lipid classes were separated in the first dimension after injecting 10␮L of sample/standard on a Kinetex HILIC column (150×2.1mm, 2.6␮m, 100Å, Phenomenex) using programmed gradientofeluentA(50mMammoniumformatesolution)andelu- entB(acetone)(Table1).Theflowrateofthemobilephaseand thetemperaturewerekept,respectively,at0.4mL/minand50C duringtheanalysis.Theinjectorneedlewaswashedwithhexane- 2-propanol-water(2:2:0.1,v/v/v)mixtureaftereachinjection.

Intheseconddimension,eluentAandBwerewater/acetonitrile (50:50,v/v)andwater/acetone(5:95,v/v),respectively,bothcon- taining5mMammoniumformate.Themobilephasewashedthe substancestrappedona givenC18enrichmentcolumnontoan AcquityUPLC BEHC18analytical column (2.1×50mm, 1.7␮m, 130Å,Waters)ataflowrateof0.4mL/min.Thecolumnwasmain- tainedat 50C. Thegradient programsofboth dimensionalare detailedinTable1.

Themassspectrometerwasoperatedinthenegative-ionmode usingaheatedESIsourcewiththefollowingconditions:capillary temperature250C,S-LensRFlevel50,sprayvoltage2.5kV,sheath gasflow45,sweepgasflow2andauxiliarygasflow10,andfull scanwithamassrangeof100–1000andaresolutionof35,000.

Theautomaticgaincontrol(AGC)settingwasdefinedas3×106 chargesandthemaximuminjectiontimewassetto100ms.

TheLCsystemwascontrolledbyMassLynx4.1SCN901(Waters, Milford,MA,USA).ThecontrolofMSsystemandMSdataacquisi-

tionwereconductedbytheXcaliburTM4.0software(ThermoFisher Scientific,Waltham,MA).

2.5. Dataprocessing

Thealignmentofretentiontimes,peakpicking,deconvolution, determinationofpeakarea,aswellaspreliminaryidentification usingLipidBlastdatabasewereperformedfromrawdatabyProge- nesisQI(NonlinearDynamics,Newcastle,UnitedKingdom)[33].

Then, the processed data including peak area, m/z value, and retention timewereimported intoMicrosoftExcelsoftwarefor normalizationofthepeakareas,whichwasbasedoncalculation oftheanalyte/ISpeakarearatios.Identificationoflipidspecieswas accomplishedviaaccuratemass(<3ppm)databasesearchingof LIPIDMAPSandourhomemadedatabasebuiltonourownmea- surements,literaturesourcesandthepredictionofretentiontimes basedonretentionbehaviorofPLclassesandPLspeciesinboth dimensions[6,34–39].

Multivariatedataanalysisofdataincludingthenormalizedpeak areaandtheabbreviationoftheobtainedidentifiedlipidswasper- formedbySIMCAsoftware14.1(Umetrics,Umeå, Sweden).The obtainedresultsoftheorthogonalpartialleastsquarediscriminant analysis(OPLS-DA)andthecorrespondingS-plotsallowedthepre- dictionofsignificantfeatures(potentialbiomarkers)ofwhichthe alterationwasinrelationtotheAXmousemodel.Boxplotsand columndiagramswithstandarderrors(SEM)wereusedtoillus- tratethedataandthedifferencesbetweenthenAXandAXmice.

Thesewereassessedwitht-testusingGraphPadPrism5statistical software(GraphPadSoftware,Inc.,LaJolla,CA,USA).

3. Resultsanddiscussion

3.1. CouplingofHILICandRP-LCin2D/LC

Severalchromatographicparameters,suchascolumnlength, mobile phase composition, types and concentration of mobile phaseadditives,columntemperature,gradientsteepnessandflow ratewereinvestigatedbothinthefirstHILICandthesecondRP-LC dimensions.

During optimization of HILIC, 100mm and 150mm length narrow-borecolumns(2.1mm)withporousshellparticleswere compared, and the latterwas selectedfor further optimization to obtain betterseparation of PL classes. To achieve this goal, methanol,acetonitrileandacetoneweretestedastheorganiccom- ponentofthemobilephase. Theapplicationofacetoneresulted in thehighest retentionand improvedchromatographic resolu- tion,in particular,for PCsand SMs,thusit wasselectedin the final method.In HILICmode, theconcentrationofwater in the mobilephasehasasignificantinfluenceontheretentionmech- anismandthereproducibilityofretentiontimebyestablishingof awater-enrichedlayerofsemi-stagnanteluentonthestationary phase[40,41].Theminimumwatercontentofthemobilephase wasdeterminedtobe3%(v/v)forthereproducibleretentionof lipids.Thechromatographicbehavioroftheanalytesisinfluenced bythetypeandconcentrationofthemobilephasemodifiers.The volatileandMS-compatibleammoniumformatewasselectedand addedat50mMconcentrationtowaterforpreparationofeluent A.Inordertoimprovethetrappingefficiency,theflowrateinfirst dimensionalseparationandthediluterpumphadtobeharmo- nized.Usually,theapplicationoflowflowrateinthefirstdimension promotestrappingefficiencyoftheanalytes.However,itresultedin seriouspeakbroadeninginourcase,thusasanoptimumflowrate of0.4mL/minwasselected.Lipidprofilingofmousebrainextract withoptimizedHILICchromatographyisshowninFig.2(A).11PL classes,specifically,PG,PI,LPG,LPI,PE,PS,LPE,PC,PA,SMandLPC,

(5)

Table1

Thedetailedgradientprogramandvalveeventsoffinal2D-LC/MSmethod.

Firstdimension(HILIC) Valveposition Seconddimension(RP-LC)

Lipidclasses Retentiontime[min] SolventB[%] Method1 Method2 Lipidspecies Retentiontime[min] SolventB[%]

nonpolarlipids 0.0 97 1 2 0.0 30

FA 2.0 95

LPG 5.0 95

PG 5.1 30

8.0 30

LPI 2 1 nonpolarlipids 8.0 30

PI FA 10.0 95

PE LPG 13.0 95

PG 13.1 30

16.0 30

LPE 1 2 LPI 16.0 30

PC PI 18.0 95

PS PE 21.0 95

21.1 30

24.0 30

PC 2 1 LPE 24.0 30

PS PC 26.0 95

SM PS 29.0 95

LPC 30.0 82 29.1 30

PA 31.0 50 32.0 30

1 2 PC 32.0 30

35.0 50 PS 34.0 95

35.5 97 SM 37.0 95

LPC 37.1 30

40.0 97 PA 40.0 30

weredistinguishedwithin40min.Identificationoftheseclasses wasperformedina separate1D experimentby theapplication ofthemethoddetailedabove.Foranalysisoflipidspeciesinthe seconddimension,theeluate oftheHILICchromatographywas dividedintofivefractionswith8minofretentiontimewindows, asdemonstratedinFig.2(A).

Bytheuseofreversed-phaseC18stationaryphase,theretention andseparationmechanismoflipidsarebasedonthelengthsoffatty acyl(oralkyl)chainsandthenumberandthepositionofdouble bonds[4],whichallowthediscriminationoflipidspecieswithin thesameclass.Fortheseparationoflipidspeciesinseconddimen- sion,anAcquityUPLCBEHC18micro-borecolumnwithaparticle sizeof1.7␮mwasselected.Inordertoachieveappropriatesepara- tionoflipidspecieswithinlipidclassesatpropersystempressure, flowrateandtogethighionizationefficiency,acarefulselectionof themobilephasewasalsoneeded.Theuseofwater/acetonitrile (50:50,v/v) asAeluent andwater/acetone (5:95,v/v) asBelu- ent(bothcontaining5mMammoniumformate)provedtobea goodcompromiseinpointofviewofsystempressure,retention, selectivityandionizationefficiencyoftheanalytes.Forobtaining appropriateretentionandchromatographicresolutionwithinthe 8-minruntimeincludingwashingandre-equilibrationofthecol- umn,thetemperatureofC18column,theflowrateandthegradient steepnesswereadjusted.Incaseofalllipidfractions,sameRPgra- dientprogramwasusedinordertoproducesameretentiontime forthoselipidspecieswhichwerepresentintwoHILICfractions (e.g.PCs).Inthisway,thesamechromatographicandmassspec- trometricconditionswereguaranteedforthesespecies,whichisa requirementforappropriatequantitativeanalysiscombiningpeak specieselutingintwoconsecutivefractions.

The collection/trap of analytes from the eluate of the first- dimensionalcolumnina2D-LCsystemisusuallyperformedbythe applicationofloop(s)ortrapcolumn(s)[13–21].Fortheenrichment oftheanalytesinaloop,themobilephaseshouldbeevaporated bytheuseofvacuumand temperaturemodulation.In thecase of trapcolumn, especially in highly orthogonalseparation (e.g.

NP×RPorHILIC×RP),thesolventstrengthoftheeffluentoffirst- dimensionalcolumnshouldbeadjustedtoretainanalytesonthe enrichmentcolumn.UsingHILIC×RP-LCcombination,wedidnot havetoreckononthesolventincompatibilityproblem,whichis knowninNP-LC×RP-LCmethods.Acetone,appliedaseluentBin HILICmode,isastrongeluentinRPmode;therefore,ithadtobe dilutedwithasolventwithaverylowelutingpowerinRPmode.An aqueoussolutionofammoniumformate(5mM)waschosenforthis purpose.TheflowrateratiooftheHILICmobilephaseandthedilut- ingsolventwascriticalfortheappropriateretentionoflipidspecies onthetrapcolumns,especiallyatthebeginningofanalysis,when theeffluentofHILICcolumnhadhighorganicconcentration.The effectofflowrateofthedilutingeluentontheretentionwasinves- tigatedintherange0.2–1mL/min.Aflowrateof0.6mL/minfor thedilutingeluentwasthebestcompromiseconsideringsufficient trappingoflipidspeciesandpropersystempressure.

3.2. Evaluationofextractionrecoveryandmatrixeffect

Priortoanalysis,theenrichmentofPLsthroughremovalofthe polarmatrixisacrucialsteptoobtainreliableresults.Thedetermi- nationofextractionrecovery(RE)andmatrixeffect(ME)couldhelp todecidewhetherananalyticalmethodisfeasibleforquantitative analysis.TheREandMEofthedevelopedmethodweredetermined byusing10lipidclassstandardsinaccordancewiththeprocedure ofMatuszewskietal.andCappielloetal.[42,43].Accordingtodata onFig.S1,theREandMEofstandardlipidspecieswererepro- ducibleandcomparable.ThehighmeanvaluesofRE(above85%) andrepeatabilitiesforalllipidstandardssuggestthatourextraction methodiswellestablished.

The matrix effect values ranged from63.0 to 88.0%, which, becauseofthecomplexityofbraintissue,isanacceptablerange.

MEwasbelow100%forallstandardsexaminedindicatingthelack ofionizationenhancementduringMSdetection.

(6)

Fig.2.BasepeakchromatogramofPLsinVHPCofnAXmousewasdetectedbynegativemodewith1D-HILICmethod(A)and2D-LC/MSmethod(B).Orangelinesindicatethe gradientLCprofilein1Dand2Dmeasurements.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

3.3. IdentificationandquantificationofPLsinmousebrain regions

As shown in Fig. 2, HILIC wasemployed to differentiate PL classesinthefirst-dimensionalrun.Theeffluentobtainedinthe firstdimension wasdividedinto fivefractions in orderto sep- arateindividualPLspecies withinclassesaccordingtothefatty acyl chain lengths and the number of double bonds using RP mode.Theenhancedchromatographicresolutionandhigherpeak capacitiesobtainedbythe2Dmethodisillustratedthroughthe exampleof PE36:1,PE36:2,PE 36:3,PE 34:4andPE 35:5on Fig.3,bypresentingextractedionchromatograms(negativeions) ofHILIC/MS(A)and2D-LC/MS(B).Theadvantageof2D-LC/MSis demonstratedonFig.3(B)showingbaselineseparationoftrapped phosphatidylethanolamine species. In lysophospholipids (LPLs), thefattyacylchainsareattachedateitherthesn-1orsn-2position oftheglycerolbackbone[4].Inseveralcases,separationofthese isomersinLPI,LPEandLPCclassescanbeobserved(TableS1).

TableS1lists151endogenousPLsandSMs(3LPG,7PG,5LPI, 13PI,35PE,14LPE,37PC,11PS,8SM,14LPCand4PA),which

wereidentifiedbyusingourmethodinmousebrainregions.For quantitativeanalysis oftheidentified lipid molecules,thepeak areaofeachindividuallipidspecieswascorrectedbythecorre- spondinginternalstandard.RelevantchromatographicandMSdata alongwiththerelativeabundanceofparticularlipidspecieswithin classesdeterminedindifferentbrainregions(DHPC,VHPCandPFC) arepresentedinTableS1.Ourresultssupportthefindingthatner- voustissuescontainhighamountsofplasmanylandplasmenylPLs [44].Fig.4illustratesthedistributionofbrainPLspeciescontain- ingacyl,alkyletherandvinylethersidechainswithinlipidclasses.

PlasmalogensandetheranalogsweredecisivelypresentinPEand PCclasses.

3.4. ComparinglipidprofilesinthebrainofnAXandAXmice

Seventeen micefromtwo strainswereinvolved in thepilot study,9withlowanxiety-relatedbehaviorand8withhighanxiety- related behavior. Normalized peak areas of all identified lipid speciesinDHPC,VHPCandPFCofnAXandAXmicewerestatis- ticallyevaluatedusingtheSIMCA(multivariatedataanalysis)and

(7)

Fig.3. ExtractedionchromatogramsofselectedPEspeciesdetectedbynegativemodewith1D-HILICmethod(A)and2D-LC/MSmethodwithobtainedchromatographic resolutions(RS)(B)inVHPC.RS=2×(tR2-tR1)/(w1+w2).

Fig.4. IdentifiedPLspeciesinmousebrain.

GraphPadPrism5(t-test)software.Atfirst,byusingt-test,statis- ticalsignificanceswerecalculatedforthenormalizedpeakareas oflipidclasses(sumofnormalizedpeakareasoflipidspeciesin agivenclass)innAXandAXbrainregions.Significantalterations wereobservedinfourlipidclassesandtwobrainregions.Asshown inFig.S2(A),thenormalizedpeakareaofthePEclasssignificantly decreasedinVHPCoftheAXgroup.Asimilartrendwasobserved forthePSclassinPFC;however,inthecaseofLPGandPA,therewas anincreaseinthenormalizedpeakareasintheAXgroupcompared tothoseofthenAXgroup(Fig.S2(B)).

Thecomparisonofnormalizedpeakareasof151individuallipid moleculesinthreebrainregionsbetweennAXandAXgroupswas

carriedoutusingmultivariatedataanalysis.DataonFig.S3(A,C,E) clearlydemonstrate theproperseparationof nAXand AXmice throughtheobtainedsupervisedOPLS-DAscoreplots.

TherelatedS-plots(Fig.S3(B,D,F))helpedtoselectlipidspecies, whicharepresent insignificantlydifferentconcentrationinthe twogroups.Lipidspecies,whichdidnotdiffersignificantly(dys- regulated)innAXandAXmice,arelabeledwithgreen.Lipidspecies downregulatedsignificantlyarelocatedonthelowerleftsectionof S-plot,whiletheupregulatedonesareontheupperrightsection (reddots).S-plotsofOPLS-DAmethodsunveil37lipidspecieswith significantdifferences(P<0.05)betweenthenAXandAXgroups (Fig.S3(B,D,F)).

(8)

Table2

IdentifiedPLspecieshavingsignificantlydifferentconcentrationinnAXandAX mice.

Mousebrainregion Phospholipidspecies Probability Foldchange

DHPC PE40:5 <0.001 0.27

DHPC PEO-36:3, 0.011 0.60

P-36:2

DHPC PEO-38:3, 0.017 0.62

P-38:2

DHPC PE34:1 0.020 0.84

DHPC PEO-40:7, 0.023 0.75

P-40:6

DHPC SM36:1 0.041 1.23

VHPC PE40:5 0.001 0.16

VHPC PC38:2 0.002 0.56

VHPC PCO-34:1, 0.004 0.58

P-34:0

VHPC PC40:2 0.007 0.34

VHPC PC40:4 0.009 0.65

VHPC PCO-36:2, 0.010 0.16

P-36:1

VHPC PEO-40:7, 0.013 0.77

P-40:6

VHPC PE34:1 0.015 0.78

VHPC PC36:3 0.015 0.30

VHPC PEO-40:8, 0.016 0.80

P-40:7

VHPC PC38:1 0.020 0.61

VHPC PE38:4 0.021 0.79

VHPC PI36:5 0.029 0.59

VHPC PC40:6 0.030 0.73

VHPC PE40:6 0.032 0.84

VHPC PG32:0 0.037 0.76

VHPC PC38:7, 0.037 0.50

O-38:0

VHPC PC34:2 0.040 0.76

VHPC PEO-38:5, 0.040 0.79

P-38:4

VHPC PCO-32:1, 0.040 0.65

P-32:0

PFC PE40:5 <0.001 3.84

PFC PE38:0 0.003 0.24

PFC PA40:6 0.006 1.59

PFC PS36:1 0.007 0.40

PFC PA36:2 0.019 2.21

PFC PC42:9 0.019 2.56

PFC PS40:6 0.026 0.71

PFC PEO-38:3, 0.031 0.61

P-38:2

PFC LPE20:1 0.031 0.34

(sn-2)

PFC PG34:2 0.039 1.79

PFC LPG18:0 0.042 1.74

PLsandSMscompositionofDHPCwerecomparedinnAXand AXgroups,too.TheresultsshowedthatonlySM36:1wasupreg- ulated,while5PEswerefoundtobedownregulated.Inparticular, PE40:5withthelowestPvalueshadaconcentrationinAXmice almost4timeslower(Table2).Interestingly,SM36:1wasthemost abundantlipidspeciescomparedwithotherSMsinDHPC,whilePE 40:5waspresentinarelativelylowconcentration(TableS1).

SignificantlyalteratedlipidprofileswereobservedinVHPCof AXmice:20lipidspeciesfromPE,PC,PIandPGclasseswerefound tobedownregulated(inrangeof0.16-0.84foldchange)(Table2).

Fig.5(A,B)showthemeanvalueswithSEMofnormalizedpeak areasofsignificantly alteredpolarlipidspecies fromDHPCand VHPCinthenAXandAXgroups.IncontrastwithDHPC,onlysig- nificantdownregulationof VHPC lipid species wasobserved in micehavingelevatedanxiety.Again,PE40:5showedthehigh- estconcentrationdifferences inthetwogroups.Similarly, large downregulationswerefoundforPCO-36:2;P-36:1(6.25×),PC36:3 (3.33×)andPC40:2(2.9×)species(Table2).

ThecomparisonofnormalizedpeakareasofpolarlipidsinPFC ofnAXandAXmicerevealed11statisticallysignificantdifferences

Fig.5.NormalizedpeakareaofthesignificantlydifferentPLsofnAX(bluecolumns) andAXgroups(orangecolumns)inthethreebrainregions:(A)DHPC,(B)VHPCand (C)PFC.*P0.05;**P0.01;***P0.001.(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(9)

Fig.6.DistributionofPLsthatfoundtobeup-ordownregulatedinDHPC,VHPC andPFCofAXmice.

inLPE,PE,PC,PS,PG,LPGandPAclasses(Table2,Fig.5(C)).PE38:0, PS36:1,PS40:6,LPE20:1andPEO-38-3;PEP-38:2lipidspecies weredownregulatedinPFCoftheAXgroup(Fig.S3(F)).Incontrast toDHPCandVHPC,PE40:5washighlyupregulatedinPCFofthe AXmice.Concerningthevaluesofup-anddownregulationoflipid speciesintheAXgroup,higherthantwo-foldincreaseswerefound forPE40:5,PA36:2andPC42:9.ForPE38:0,LPE20:1(sn-2)and PS36:1,incontrast,higherthantwo-folddecreaseswereobserved.

Table2 revealsthatthemajorityofPLspecies havingstatis- ticallydifferentconcentrationsinthenAXandAXgroupscontain unsaturatedfattyacids.Furthermore,plasmanylandplasmenylPLs exhibitingsignificantalterationwerealsopresentinhighpercent- age.

Finally,Fig.6illustratesthedistributionofsignificantlyaltered PLspeciesinDHPC,VHPCandPFCbrainregionsoftheAXmice.Only PE40:5showedsignificantalterationinalloftheinvestigatedbrain regions.

4. Conclusion

This paper describes the development of a comprehensive online2D-LC/MSmethodfortheanalysisofPLandSMspeciesin mousebrainregions.Inournovelsystem,thecouplingofHILICand RP-LCwasdesignedbyusingtwoRPtrapcolumns,thusenabledthe enrichmentofHILICeffluentonthetrapcolumnandtheseparation ofthetrappedlipidsintheseconddimensionsynchronously.Inthe firstdimension,theHILICseparationoflipidclasseswasdivided intofivefractionsand theanalysisoftheindividualPLand SM specieswithinfractionswasperformedbyfourRPruns.Thefinal methodprovidedthequantificationofmorethan150PLandSM speciesintheDHPC,VHPCandPFCbrainregionswithin40min run-time.Withtheestablishedmethod,thedifferencesofPLcom- positioninbrainregionsofnAXandAXmicewerecompared.To ourbestknowledge,thisisthefirsttimethatPLandSMalterationof differentbrainregionsinmousemodelofanxietywasreported.Our studyrevealedthat37PLandSMspecieshadsignificantlyaltered concentrationintheAXgroup:20werefoundinVHPC,6inDHPC and11inPFC.Itisworthnotingthatsignificantunidirectionalalter- ationoftheconcentrationofPLspecieswasfoundinVHPCofthe AXgroup.Overall,thedevelopedfullyautomated2Dmethodwas successfullyappliedinprofilingbrainPLsandSMsinmousemodel ofanxietydisorder.

Acknowledgement

RóbertBerkecz thanksforthefinancial supportof theJános BolyaiResearchScholarshipoftheHungarianAcademyofSciences.

ThisresearchwassupportedbytheEU-fundedHungariangrant EFOP-3.6.1-16-2016-00008.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttps://doi.org/10.1016/j.jpba.2017.10.043.

References

[1]J.VanderGreef,S.Martin,P.Juhasz,A.Adourian,T.Plasterer,E.R.Verheij,R.N.

McBurney,Theartandpracticeofsystemsbiologyinmedicine:mapping patternsofrelationships,J.ProteomeRes.6(2007)1540–1559.

[2]S.Hanash,Diseaseproteomics,Nature422(2003)226.

[3]E.A.Dennis,Lipidomicsjoinstheomicsevolution,Proc.Natl.Acad.Sci.U.S.A.

106(2009)2089–2090.

[4]K.Sandra,A.dosSantosPereira,G.Vanhoenacker,F.David,P.Sandra, Comprehensivebloodplasmalipidomicsbyliquid

chromatography/quadrupoletime-of-flightmassspectrometry,J.

Chromatogr.A1217(2010)4087–4099.

[5]E.Fahy,S.Subramaniam,R.C.Murphy,M.Nishijima,C.R.Raetz,T.Shimizu,F.

Spener,G.vanMeer,M.J.O.Wakelam,E.A.Dennis,UpdateoftheLIPIDMAPS comprehensiveclassificationsystemforlipids,J.LipidRes.50(Suppl)(2009) S9–S14.

[6]E.Fahy,M.Sud,D.Cotter,S.Subramaniam,LIPIDMAPSonlinetoolsforlipid research,NucleicAcidsRes.35(Supplement2)(2007)W606–W612.

[7]X.Han,R.W.Gross,Shotgunlipidomics:electrosprayionizationmass spectrometricanalysisandquantitationofcellularlipidomesdirectlyfrom crudeextractsofbiologicalsamples,MassSpectrom.Rev.24(2005)367–412.

[8]P.T.Ivanova,S.B.Milne,D.S.Myers,H.A.Brown,Lipidomics:amass spectrometrybasedsystemslevelanalysisofcellularlipids,Curr.Opin.Chem.

Biol.13(2009)526–531.

[9]S.Pati,B.Nie,R.D.Arnold,B.S.Cummings,Extraction,chromatographicand massspectrometricmethodsforlipidanalysis,Biomed.Chromatogr.30 (2016)695–709.

[10]E.Sokol,E.Almeida,H.K.Hannibal-Bach,D.Kotowska,J.Vogt,J.Baumgart,K.

Kristiansen,R.Nitsch,J.Knudsen,C.S.Ejsing,Profilingoflipidspeciesby normal-phaseliquidchromatography,nanoelectrosprayionization,andion trap–orbitrapmassspectrometry,Anal.Biochem.443(2013)88–96.

[11]E.Cífková,M.Holˇcapek,M.Lísa,M.Ovˇcaˇci´ıkova´ı,F.Lyˇcka,P.Sandra, Nontargetedquantitationoflipidclassesusinghydrophilicinteractionliquid chromatography–electrosprayionizationmassspectrometrywithsingle internalstandardandresponsefactorapproach,Anal.Chem.84(2012) 10064–10070.

[12]H.P.Nguyen,K.A.Schug,TheadvantagesofESI–MSdetectioninconjunction withHILICmodeseparations:fundamentalsandapplications,J.Sep.Sci.31 (2008)1465–1480.

[13]M.Li,B.Feng,Y.Liang,W.Zhang,Y.Bai,W.Tang,T.Wang,H.Liu,Lipid profilingofhumanplasmafromperitonealdialysispatientsusingan improved2D(NP/RP)LC-QToFMSmethod,Anal.Bioanal.Chem.405(2013) 6629–6638.

[14]Y.S.Ling,H.J.Liang,M.H.Lin,C.H.Tang,K.Y.Wu,M.L.Kuo,C.Y.Lin, Two-dimensionalLC–MS/MStoenhanceceramideandphosphatidylcholine speciesprofilinginmouseliver,Biomed.Chromatogr.28(2014)1284–1293.

[15]J.F.Li,X.Yan,Y.L.Wu,M.J.Fang,Z.Wu,Y.K.Qiu,Comprehensive two-dimensionalnormal-phaseliquidchromatography×reversed-phase liquidchromatographyforanalysisoftoadskin,Anal.Chim.Acta962(2017) 114–120.

[16]M.Holˇcapek,M.Ovˇcaˇcíková,M.Lísa,E.Cífková,T.Hájek,Continuous comprehensivetwo-dimensionalliquidchromatography–electrospray ionizationmassspectrometryofcomplexlipidomicsamples,Anal.Bioanal.

Chem.407(2015)5033–5043.

[17]Y.Shan,Y.Liu,L.Yang,H.Nie,S.Shen,C.Dong,Y.Bai,Q.Sun,J.Zhao,H.Liu, LipidprofilingofcyanobacteriaSynechococcussp.PCC7002using two-dimensionalliquidchromatographywithquadrupoletime-of-flight massspectrometry,J.Sep.Sci.39(2016)3745–3753.

[18]S.Wang,X.Shi,G.Xu,Onlinethreedimensionalliquidchromatography/mass spectrometrymethodfortheseparationofcomplexsamples,Anal.Chem.89 (2017)1433–1438.

[19]M.Lísa,E.Cífková,M.Holˇcapek,Lipidomicprofilingofbiologicaltissuesusing off-linetwo-dimensionalhigh-performanceliquidchromatography?mass spectrometry,J.Chromatogr.A1218(2011)5146–5156.

[20]M.Li,X.Tong,P.Lv,B.Feng,L.Yang,Z.Wu,X.Cui,Y.Bai,Y.Huang,H.Liu,A not-stop-flowonlinenormal-/reversed-phasetwo-dimensionalliquid chromatography–quadrupoletime-of-flightmassspectrometrymethodfor comprehensivelipidprofilingofhumanplasmafromatherosclerosispatients, J.Chromatogr.A1372(2014)110–119.

(10)

[21]D.R.Stoll,Recentadvancesin2D-LCforbioanalysis,Bioanalysis7(2015) 3125–3142.

[22]M.A.Parent,L.Wang,J.Su,T.Netoff,L.L.Yuan,Identificationofthe hippocampalinputtomedialprefrontalcortexinvitro,Cereb.Cortex20 (2009)393–403.

[23]R.W.H.Verwer,R.J.Meijer,H.F.M.VanUum,M.P.Witter,Collateral projectionsfromtherathippocampalformationtothelateralandmedial prefrontalcortex,Hippocampus7(1997)397–402.

[24]S.Adhikari,M.A.Topiwala,J.A.Gordon,Singleunitsinthemedialprefrontal cortexwithanxiety-relatedfiringpatternsarepreferentiallyinfluencedby ventralhippocampalactivity,Neuron71(2011)898–910.

[25]A.Adhikari,M.A.Topiwala,J.A.Gordon,Synchronizedactivitybetweenthe ventralhippocampusandthemedialprefrontalcortexduringanxiety, Neuron65(2010)257–269.

[26]L.Jacobson,R.Sapolsky,Theroleofthehippocampusinfeedbackregulation ofthehypothalamic-pituitary-adrenocorticalaxis,Endocr.Rev.12(1991) 118–134.

[27]N.Maggio,M.Segal,Differentialcorticosteroidmodulationofinhibitory synapticcurrentsinthedorsalandventralhippocampus,J.Neurosci.29 (2009)2857–2866.

[28]A.Pitkänen,M.Pikkarainen,N.Nurminen,A.Ylinen,Reciprocalconnections betweentheamygdalaandthehippocampalformation,perirhinalcortex,and postrhinalcortexinrat:areview,Ann.N.Y.Acad.Sci.911(2000)369–391.

[29]A.Albrecht,G.alıs¸kan,M.S.Oitzl,U.Heinemann,O.Stork,Long-lasting increaseofcorticosteroneafterfearmemoryreactivation:anxiolyticeffects andnetworkactivitymodulationintheventralhippocampus,

Neuropsychopharmacology38(2013)386.

[30]É.M.Szeg"o,T.Janáky,Z.Szabó,A.Csorba,H.Kompagne,G.Müller,G.Lévay,A.

Simor,G.Juhász,K.A.Kékesi,Amousemodelofanxietymolecularly characterizedbyalteredproteinnetworksinthebrainproteome,Eur.

Neuropsychopharmacol.20(2010)96–111.

[31]J.Horváth,T.Szögi,G.Müller,V.Szegedi,Theanxiolyticbuspironeshifts copingstrategyinnovelenvironmentalcontextofmicewithdifferent anxiousphenotype,Behav.BrainRes.250(2013)32–38.

[32]J.Folch,M.Lees,G.H.Sloane-Stanley,Asimplemethodfortheisolationand purificationoftotallipidsfromanimaltissues,J.Biol.Chem.226(1957) 497–509.

[33]T.Kind,K.H.Liu,D.Y.Lee,B.DeFelice,J.K.Meissen,O.Fiehn,LipidBlastinsilico tandemmassspectrometrydatabaseforlipididentification,Nat.Methods10 (2013)755–758.

[34]L.Abdullah,J.E.Evans,S.Ferguson,B.Mouzon,H.Montague,J.Reed,G.

Crynen,T.Emmerich,M.Crocker,R.Pelot,M.Mullan,F.Crawford,Lipidomic analysesidentifyinjury-specificphospholipidchanges3moaftertraumatic braininjury,FASEBJ.28(2014)5311–5321.

[35]C.Bascoul-Colombo,I.A.Guschina,B.H.Maskrey,M.Good,V.B.O’Donnell,J.L.

Harwood,DietaryDHAsupplementationcausesselectivechangesin phospholipidsfromdifferentbrainregionsinbothwildtypemiceandthe Tg2576mousemodelofAlzheimer’sdisease,Biochim.Biophys.ActaMol.Cell.

Biol.Lipids1861(2016)524–537.

[36]S.M.vanLiempd,D.Cabrera,F.Y.Lee,E.González,E.C.Dell’Angelica,C.A.

Ghiani,J.M.Falcon-Perez,BLOC-1deficiencycausesalterationsinaminoacid profileandinphospholipidandadenosinemetabolisminthepostnatal mousehippocampus,Sci.Rep.7(2017)1–11.

[37]T.G.Oliveira,R.B.Chan,F.V.Bravo,A.Miranda,R.R.Silva,B.Zhou,F.Marques, V.Pinto,J.J.Cerqueira,G.DiPaolo,N.Sousa,Theimpactofchronicstresson theratbrainlipidome,Mol.Psychiatry.21(2016)80.

[38]C.H.Cortie,A.J.Hulbert,S.E.Hancock,T.W.Mitchell,D.McAndrew,P.L.Else,Of mice,pigsandhumans:ananalysisofmitochondrialphospholipidsfrom mammalswithverydifferentmaximallifespans,Exp.Gerontol.70(2015) 135–143.

[39]T.Zhang,S.Chen,X.Liang,H.Zhang,Developmentofa mass-spectrometry-basedlipidomicsplatformfortheprofilingof phospholipidsandsphingolipidsinbraintissues,Anal.Bioanal.Chem.407 (2015)6543–6555.

[40]A.J.Alpert,Hydrophilic-interactionchromatographyfortheseparationof peptides,nucleicacidsandotherpolarcompounds,J.Chromatogr.A499 (1990)177–196.

[41]P.Hemström,K.Irgum,Hydrophilicinteractionchromatography,J.Sep.Sci.

29(2006)1784–1821.

[42]B.K.Matuszewski,M.L.Constanzer,C.M.Chavez-Eng,Strategiesforthe assessmentofmatrixeffectinquantitativebioanalyticalmethodsbasedon HPLC-MS/MS,Anal.Chem.75(2003)3019–3030.

[43]H.Trufelli,P.Palma,G.Famiglini,A.Cappiello,Anoverviewofmatrixeffects inliquidchromatography–massspectrometry,MassSpectrom.Rev.30(2011) 491–509.

[44]N.E.Braverman,A.B.Moser,Functionsofplasmalogenlipidsinhealthand disease,Biochim.Biophys.ActaMol.BasisDis.1822(2012)1442–1452.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Plasma phospholipid profiling of a mouse model of anxi- ety disorder by hydrophilic interaction liquid chromatography coupled to high ‐ resolution

It can be observed not only on the pre- viously reported amylose tris(3,5-dimethylphenylcarbamate)-based column, but also on the Am2 column containing amylose tris(5-..

In this study, we performed an analysis of rare single nucleotide and small INDEL variants in a Hungarian ASD cohort, detected by NGS panel testing, in order to identify

Due to the large number of samples and compounds to be analyzed, authentic analyte in surrogate matrix approach was adopted by using artificial plasma as a surrogate matrix for

Then the possible effects of substituting the present personal taxes were quantified by a family taxation system since the position of different social strata is

The method discussed is for a standard diver, gas volume 0-5 μ,Ι, liquid charge 0· 6 μ,Ι. I t is easy to charge divers with less than 0· 6 μΐ of liquid, and indeed in most of

The mononuclear phagocytes isolated from carrageenan- induced granulomas in mice by the technique described herein exhibit many of the characteristics of elicited populations of

magnetic materials can retain some magnetization in zero field and this distinguishes t h e m fundamentally from paramagnetic substances.. Typical magnetization curves for t h