• Nem Talált Eredményt

determination of N,N-dimethyltryptamine in rat plasma and brain;

N/A
N/A
Protected

Academic year: 2022

Ossza meg "determination of N,N-dimethyltryptamine in rat plasma and brain;"

Copied!
10
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Heart-cutting two-dimensional liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry for

determination of N,N-dimethyltryptamine in rat plasma and brain;

Method development and application

Tímea Körmöczi

a,b

, Írisz Szabó

c

, Eszter Farkas

c

, Botond Penke

b

, Tamás Janáky

b

, István Ilisz

a

, Róbert Berkecz

a,b,∗

aInstituteofPharmaceuticalAnalysis,FacultyofPharmacy,UniversityofSzeged,SomogyiUtca4,H-6720,Szeged,Hungary

bDepartmentofMedicalChemistry,FacultyofMedicine,UniversityofSzeged,Dómtér8,H-6720,Szeged,Hungary

cDepartmentofMedicalPhysicsandInformatics,FacultyofMedicine,UniversityofSzeged,Korányifasor9,H-6720,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received21June2020

Receivedinrevisedform30August2020 Accepted2September2020

Availableonline9September2020

Keywords:

N,N-dimethyltryptamine

␣-methyltryptamine Ratplasma Ratbrain

Heart-cutting2D-LC-HRMS/MS

a b s t r a c t

Theorthogonalheart-cuttingliquidchromatography(LC)modescoupledtohigh-resolutiontandemmass spectrometry(HRMS/MS)provideanumberofpossibilitiestoenhanceselectivityandsensitivityforthe determinationoftargetedcompoundsincomplexbiologicalmatricies.Herewereportthedevelopmentof anewfast2D-LC-(HRMS/MS)methodanditssuccessfulapplicationforquantitativedeterminationofthe levelofplasmaandbrainN,N-dimethyltriptamine(DMT)using␣-methyltryptamine(AMT)asinternal standardinanexperimentalmodelofcerebralischemia/reperfusionusingDMTadministration.The2D- LCseparationwascarriedoutbyacombinationofhydrophilicinteractionliquidchromatography(HILIC) inthefirstdimensionfollowedbysecond-dimensionalreversed-phase(RP)chromatographywithina totalruntimeof10min.TheenrichmentofHILICeffluentofinterestcontainingDMTwasperformed usingaC18trappingcolumn.Duringmethoddevelopmentseveralparametersofsamplepreparation procedures,chromatographicseparationandmassspectrometricdetectionwereoptimisedtoachieve highDMTrecovery(plasma:90%,brain:88%)andsensitivity(plasma:0.108ng/mLofLOD,brain:0.212 ng/gofLOD)applyingtargetedanalyticalmethodwithstrictLCandHRMSMSconfirmatorycriteria.

Concerningratplasmasample,theconcentrationofDMTbeforehypoxia(49.3–114.3ng/mLplasma) wasgenerallyhigherthanthatafterhypoxia(10.6–96.1ng/mLplasma).Aftertreatment,theconcentra- tionofDMTinbrainwaselevateduptotherangeof2–6.1ng/g.

Overall,ouranalyticalapproachissuitabletodetectandconfirmthepresenceofDMTadministeredto experimentalanimalswiththerapeuticpurposeinareliablemanner.

©2020ElsevierB.V.Allrightsreserved.

1. Introduction

DMTis an endogenous hallucinogen and traceamine found invarioustissues suchasthebrain,pineal glandandlung, and bodyfluidssuchasurine,cerebrospinalfluidandbloodplasmain mammals[1–4].DMTisproducedbysomaticcellsunderphysi- ologicalconditions[1,3],anditsconcentrationhasbeenfoundto increaseinresponsetopathophysiologicalhomeostaticchallenges (e.g.hypoxiaoroxidativestress)[1,3].Concurrently,DMTisbest

Correspondingauthor.

E-mailaddress:berkecz.robert@pharm.u-szeged.hu(R.Berkecz).

knownasanindolealkaloidtypicallysynthesised byplants like PsychotriaviridisandDiplopteryscabrerana[5].

AlthoughDMTwastracedwithgas-chromatographyinbody fluidsofpsychiatricpatientsandcontrolsubjects[3,4],itsphysi- ologicalroleisstilltobeunderstood,inparticular,becauseDMT undergoesrapidenzymaticdegradationbymonoamineoxidases (MAO)[3].Ontheotherhand,DMThasbeenimplicatedinneuro- protectionathighconcentration,eithersynthesisedinthenervous tissueinresponsetohypoxiaoroxidativestress,ororiginatingfrom thelungand reachingthebrainviathebloodstream[1,6].The putativeneuroprotectiveactionofDMThasbeenutilisedinexper- imentalmodelsofcerebralorrenalischemia.DMTadministeredat supraphysiologicalconcentrationtoexperimentalrodentsresulted inasmallercerebralinfarctsize[7]andpromotedcellsurvivalina

https://doi.org/10.1016/j.jpba.2020.113615 0731-7085/©2020ElsevierB.V.Allrightsreserved.

(2)

cellcultureofhumancerebrocorticalneuronsexposedtohypoxia [8].

EarlyresearchesofDMTfocusedprimarilyonthepsychological andpharmacologicaleffectsofconsumingayahuasca[5].During the last 60 years, many studies reported finding DMT and its metabolitesin animal tissueand humanurine,blood and cere- brospinalfluidusingliquidchromatography(LC).Nowadaysliquid chromatography–tandemmassspectrometry(LC–MS/MS)isone ofthemostwidelyusedbioanalyticalmethodsforquantificationof smallmoleculesinbiologicalsamples.Itisduetoitshighsensitivity andhighselectivity,thusbeingabletoprovidemorereliabledata thantheLCtechniqueitself,whichisalsotrueoftheanalysisofDMT [9],onlyafewstudiesreportedthepresenceofDMTinmammalian tissue;forinstance,inpinealglandmicrodialysateofrat[2],ratkid- ney,lung,liver,brain,humanlungandrabbitliver[10].According tocertainviewpoints,detectionofendogenousDMTisnotrele- vantwhenit isexogenouslyadministereddue tothedissimilar concentrationrange[11].

The ultimatepurpose of ourupcoming study is toevaluate theneuroprotectiveactionofDMTinanexperimentalmodelof cerebralischemia/reperfusion,aggravatedbytransientanoxiaand recurrentspreadingdepolarisations.Here,wesetouttoestablish anovel,highlysensitiveanalyticaltooltodeterminetheconcen- tration of endogenous DMT in our model and to measure the accumulationof intravenouslyadministered exogenousDMT in bloodplasmaandbraintissue.

In modern pharmaceutical analysis, quantitation of analyte or analytes of interest in complex biological matrices requires highselectivityand sensitivity.Nowadays,two-dimensionalliq- uidchromatography(2D-LC)isoneofthemostpowerfulanalytical toolstoimprovethequalityofobtaineddata,especiallyincom- bination withHRMS/MS. The comprehensiveand heart-cutting analysesareknowntobethemaintechniquesof2D-LC.Theheart- cuttingmodeisatargeted2Dtechnique,becauseonlyaselected eluentfraction(singleheart-cutting)orfractions(multipleheart- cutting)arecollected,trappedforsecond-dimensionalseparation [12–14].

Nowadays, the typical methodutilised for determination of administeredDMTinplasmaandbrainsampleisreversedphase chromatographicseparationcoupledtotandemmassspectrome- tryusingelectrosprayoratmosphericpressurechemicalionization inpositivemode[15–18].However,thehighresolutionaccurate HRMS/MSmethod,incombinationwithorthogonal2D-LCsepara- tionincomparisonwithonedimensionalLC-HRMS/MSmethods, hastheabilitytoprovidemorereliabledata.Furthermore,itgives theopportunitytouseloweramountsofsampleswithsimilaror betterlimitof detectionfor DMT.The requiredamountof bio- logicalsample isa critical issue,especiallyin pharmacokinetics assaysorwhentheavailablesampleis limitedforinstanceata repeatedsamplingofbloodfromratandmouse.Anotherkeyfac- torofmethoddevelopmentisruntime,whichshouldbekeptas lowaspossible.FordeterminationofDMTincomplexbiological samplessuchasbrainandplasma,theapplicationofthegradient elutionisessential,thereforethetotalruntimeofanalysisincreases bythetimeofcolumnwashandequilibration.Intheliterature,the totalruntimeofgradientLC–MS/MSanalysisofDMTcanbefound intherangeof11.5−25mininbrainandplasmasamples[15–18].

Thus,themaingoalsofthisstudywerethedevelopmentofafast heart-cutting2D-LC-HRMS/MSmethodandoptimisationofsam- plepreparationproceduresforthequantitativeanalysisofDMTin ratbrainandplasmausingarelativelylowamountofbiological samples.Themethodthusdevelopedwasappliedforthedeter- minationofDMTlevel inratplasmaand brainofexperimental model of cerebral ischemia/reperfusionusing DMT administra- tion.

2. Materialsandmethods 2.1. Chemicalsandstandards

N,N-Dimethyltryptamine (DMT) standard with purity >98.5

% was obtain from Lipomed AG (Arlesheim, Switzerland). ␣- Methyltryptamine(AMT)withpurity>99%waskindlyprovided bytheDepartmentofForensicMedicine,FacultyofMedicine,Uni- versity of Szeged, Hungary, and used as internal standard (IS).

Acetonitrile,ammoniumformate,formicacid,methanol,water,(all LC–MSgrade),35%ammoniasolution,ethylacetate(HPLCgrade) and reagentgrade perchloric acid(70 %) werepurchased from VWR(Radnor,PA,USA).Isoflurane(MedicusPartnerLtd.,Biator- bágy,Hungary)forinvivopreparations,theanaestheticisoflurane wasproducedbyCP-Pharma(HandelsgesellschaftmbH,Germany);

atropineandlidocainewerepurchasedfromEgisPharmaceuticals Ltd.(Budapest,Hungary);EDTAandpargilinfromSigma-Aldrich, (StLouis,MO, USA);chloralhydrate fromMolarChemicals Ltd.

(Budapest,Hungary),andsterilephysiologicalsalinefromB.Braun AG,(Melsungen,Germany).

2.2. Animalsandtissuesamples

TheexperimentalprocedureswereapprovedbytheNational Food Chain Safety and Animal Health Directorate of Csongrád County,Hungary(licenseNo.XXXII./2015).Theprocedureswere performedaccordingtotheguidelinesoftheScientificCommittee ofAnimalExperimentationoftheHungarianAcademyofSciences (updatedLawandRegulationsonAnimalProtection:40/2013.(II.

14.)Gov.ofHungary),followingtheEUDirective2010/63/EUon theprotection.

Young3monthsold,maleSprague-Dawleyrats(CharlesRiver Laboratories,328±18g)wereusedinthisstudy.Standardrodent chowandtapwaterweresuppliedadlibitum.Theanimalswere housedunderconstanttemperature,humidityandlightingcondi- tions(23C,12:12hlight/darkcycle,lightsonat7a.m.).

Wesetouttodeterminethebloodplasmaandbrainconcentra- tionofDMTsynthesisedbytissuesinresponsetoischemia/hypoxia (i.e.endogenousDMT),andDMTcontentofbloodplasmaandbrain tissueafterDMTadministeredtotheanimalsbyintravenous(i.v.) infusion(i.e.exogenousDMT),withtheultimatepurposetoachieve neuroprotectionagainstcerebralischemia/hypoxia.

2.3. Surgicalproceduresandcollectionofsamples

For endogenous DMT measurements, rats were injected intraperitoneally(i.p.)withpargilin(50mg/bwkg,Sigma-Aldrich, USA),aneffectivemonoamine-oxidase(MAO)inhibitor,adayprior toandonthedayoftheexperiments.Forthesurgicalprocedures, animalswereanaesthetisedwith1.5–2%isofluraneinN2O:O2(3:2) andwereallowedtobreathespontaneouslythroughaheadcone duringtheexperiment.Bodytemperaturewaskeptat37.2Cby afeedback-controlledheatingpad(HarvardApparatus,Holliston, MA,USA).Atropine(0.1%,0.05mL;i.m.)wasadministeredaspre- medicationinordertoavoidtheproductionofairwaymucus.The leftfemoralarterywascannulatedfor blood sampling,andthe adjacentfemoralveinwascannulatedfordrugadministration.For thelaterinitiationofincompleteglobalforebrainischemia(n= 4),a midlineincisionwasmadeintheneck,andeach common carotidarterywascarefullyloopedaroundwithasurgicalthread.

Lidocaine(1%)wasusedforlocalanaesthesia.Controlratswere sham-operated(n=3).Allratswerefixedbytheirheadinaprone positioninastereotaxicapparatus.

After a baseline period (5–10 min), cerebral ischemia was inducedbytheocclusionofbothcommoncarotidarteries.Inhalf

(3)

anhourafterischemiaonset,theinsultwasaggravatedbyhypoxia achievedbythecompletewithdrawal (5min,endogenousDMT measurement)orcontrolledwithdrawal(1min,exogenousDMT measurement)ofO2fromtheanaestheticgasmixture.Thecom- plete withdrawal of O2 terminated the experiments,while the controlledwithdrawalofO2wasfollowedbyreoxygenationandthe promptreleaseofthecarotidarteriestoallowcerebralreperfusion foranotherhour.

InratspreparedforthemeasurementofexogenousDMT,the administrationofDMT(1mg/bwkg/hinphysiologicalsaline)or its vehicle (physiological saline) started upon ischemia induc- tionthrough thefemoralvein, withtheaidof amicroinjection syringepump(CMA/100MicroInjectionPump,CarnegieMedicine, Stockholm,Sweden).Thei.v.infusionofDMTwascontinuousand maintaineduntiltheendoftheexperiment.

ForthedeterminationoftheendogenousDMTcontentofblood plasmaandbraintissue,5mLarterialbloodwascollectedimme- diately after the 5-min withdrawal of O2. The full blood was centrifugedpromptlyinanEppendorftube(5000g,5min,4C, HeraeusFresco17Microcentrifuge,ThermoScientific,Waltham, MA,USA)coatedwithEDTA(ethylenediaminetetraaceticacid),and supernatantplasma(1mL)wasseparatedintoanotherEppendorf tube.Thebrainswereremovedandthen,aftersnap-frozeninliq- uidnitrogen,werestoredtogetherwiththeplasmaat−80Cuntil furtherprocessing.

Forthemeasurementofbloodplasmaandbraintissueconcen- trationofexogenousDMT,bloodsampleswerecollectedthrough thefemoralarteryatbaseline(i.e.priortoischemiaonset),under ischemia,afterhypoxiaandunderreperfusion.Theanimalswere transcardiallyperfused withice-cold physiological salineunder deepchloralhydrate anaesthesia(5%,i.p.,500mg/bwkg)atthe endoftheexperimentalprotocoltoeliminateanybloodfromthe brain.Thebrainswereremovedandsnapfrozeninliquidnitrogen, thenstoredat−80Cuntilfurtherprocessing.Bloodsampleswere processedasdescribedaboveandyielded0.2mLplasma.

2.4. Samplepreparationofratplasmasamples

Priortoextractionofplasma,5␮LIS(200ng/mLinmethanol) and5␮Lmethanolwasaddedto50␮Lofplasmasample.Aftervor- tex,50␮Lof5.3v/v%ammoniasolutionand300␮Lethylacetate wereaddedfollowedby30svortexandshakingfor10minatroom temperature(250rpm,orbital,Dual-ActionShakerKL2,Edmund Bühler,Bodelshausen,Germany).Thenthemixturewasrestedfor 5minonice.Thesamplewascentrifugedat4Cfor12minat 21,000g(Universal320R,Hettich,Tuttlingen,Germany).250␮L ofthe upperphase wascollectedand thelowerphase wasre- extractedwith300␮Lofethylacetate.Aftercentrifugation,300␮L oftheupperphasewascombinedwiththefirstportionofaliquot andwasdriedundernitrogenatroomtemperature.For2D-LC- HRMS/MSmeasurements,thedriedextractsweredissolvedin100

␮Lmethanol.

2.5. Samplepreparationofratbrainsamples

Rat brain tissue was homogenized based on the work by Kärkkäinen[10].Theweighedbrainsample(1gtissue,7mLice- cold0.1MHClO4)wasaddedinto12mLtubes.Thesamplewas sonicatedonicewithBiologicsModel150VTultrasonichomog- enizer(BioLogics,Inc.,Manassas, VA,USA) for3 × 1minusing mediumpowersettingonthemicro-tipprobeandan80%pulse.

Aftercentrifugationat9000gfor12minat4C(Universal320R, Hettich,Tuttlingen,Germany),5␮LIS(200ng/mLinmethanol), 5␮Lmethanolandfinally200␮Lof8%ammoniasolutionwere addedto400␮Lbrain homogenate.Aftervortex,500␮L ethyl acetatewasadded,followedby30svortexandshakingfor10min

atroomtemperature(250RPM,orbital,Dual-ActionShakerKL2, EdmundBühler,Bodelshausen,Germany).Thenthemixturewas restedfor5minonice.Thesamplewascentrifugedat4 Cfor 12minat21,000g(Universal320R,Hettich,Tuttlingen,Germany).

350␮Loftheupperphasewascollectedandthelowerphasewas re-extractedwith500␮Lofethylacetate.Aftercentrifugation,500

␮Loftheupperphasewascombinedwiththefirstportionofthe aliquotfollowedbydryingundernitrogenatroomtemperature.

Forthe2D-LC-HRMS/MSmeasurements,thedriedextractswere dissolvedin100␮Lmethanol.

2.6. Preparationofsamplesforcalibrationandvalidation

1.00mg/mL stocksolutionsofDMTand AMTwereprepared by dissolving approximately1 mg aliquots of each component inmethanol.Thestockswereusedforthepreparation ofwork- ingcalibrationstandards.EightDMTworkingcalibrationstandard solutionswerepreparedinmethanol.Forexternalcalibration,the sample preparation wassimilar tothat of thetreated samples, exceptthatthesamplewasspikedwith5␮Lofthegivenconcen- trationofDMTinsteadof5␮Lmethanol.Thus,thefinalvolumes werethesameinthecalibrationsamplesandthetreatedsamples.

Externalcalibrationcurvesusinginternalstandardwereusedwith thefollowingcalibrationpointsofDMT(0,0.2,2,10,20,40,100 and200ng/mLplasma)inplasmaand(0,0.175,1.75,8.75,17.5,35, 87.5,175and350ng/g)inbrain.Eachcalibrationpointwasinjected inreplicateandrepeatabilitywasevaluatedfortheretentiontimes ofDMT.

Thelimitofdetection(LOD)andlimitofquantification(LOQ) werecalculated,respectively,onthebasisonthestandarddevia- tion(SD)andtheslope(S)ofthecalibrationcurve.

LOD= 3.3×SD S

LOQ= 10×SD S

Accuracyandprecisionwasdeterminedbyanalysingsamples at“Low”(10ng/mLinplasmaand17.5ng/ginbrain),“Mid”(40 ng/mLinplasmaand35ng/ginbrain)and“High”(200ng/mLin plasmaand350ng/ginbrain)concentrationsinthreeanalytical runs.

Carryoverwasassessedbyinjectingablanksampleafterinject- ingahighconcentrationofanalyte(plasma:200ng/mL,brain:350 ng/g).

ToevaluatethestabilityofDMTinplasmaandbrainsamplesin theautosampler(16C),calibrationsolutions(20ng/mLinplasma and35ng/ginbrain)werere-injected24hafterthefirstinjec- tionandcomparedtotheoriginalconcentrations.Theresultsofthe secondrunswereexpressedasthepercentageoftheirrespective valuesinthefirstrun.

2.7. 2D-LC-HRMS/MSconditions

The 2D-LC-HRMS/MS analysis was performed with Thermo Scientific Q Exactive Plus hybrid quadrupole-Orbitrap (Thermo FisherScientific,Waltham,MA,USA)massspectrometercoupled to a Waters Acquity I-Class UPLCTM (Waters, Manchester, UK) apparatus.TheUHPLCsystemequippedwithtwobinarysolvent managers,anauto-samplerandacolumnmanagerwithtwosix- port,two-positionautomaticswitchvalves.Theeluentofthetrap columnwasdilutedusingaKnauerHPLC-pump64(Knauer,Berlin, Germany)andahigh-pressurestainlesssteeltee(IDEX,OakHarbor, WA,USA).Thefirst-andsecond-dimensionalanalyticalcolumns werethermostattedinthecolumnmanageroftheUHPLCsystem,

(4)

whilethetrapcolumnwasinsertedintoanl-7350LaChromcolumn oven(Merck,Darmstadt,Germany).

In the final 2D-LC-HRMS/MS analysis, the first-dimensional chromatographicseparation wascarried outonaKinetexHILIC column(150×2.1mm,2.6␮m,100Å,Phenomenex)protected byaHILICguardcolumn(4×3mm,2.6␮m,100Å,Phenomenex), whilethesecond-dimensionalseparationwasperformedonaLuna Omega Polar C18 column (50 × 2.1 mm, 1.6 ␮m, 100 Å, Phe- nomenex).For theenrichmentof theanalytes,aLunaC18trap column(20×2mm,5␮m,100Å,Phenomenex)wasappliedand connectedthroughtwosix-portvalves(Fig.1).

Duringmethoddevelopment,thefollowing chromatographic columnsweretestedin thefirstdimension:LunaHILIC(150 × 3 mm,3 ␮m, 200Å, Phenomenex), LunaOmega Sugar (100 × 2.1 mm,3 ␮m, 100 Å,Phenomenex), LunaNH2 (150 × 2 mm, 3␮m, 100Å,Phenomenex)andKinetexC18(50× 2.1mm,2.6

␮m,100Å,Phenomenex).Columnstriedintheseconddimension wereLunaOmega PSC18 (50 × 2.1 mm,1.6 ␮m, 100Å, Phe- nomenex),AcquityUPLCBEHC18(50×2.1mm,1.7␮m,130Å, Waters)andCORTECSUPLCC18+(50×2.1 mm,1.6␮m,90 Å, Waters).Bythe scheduledswitching ofthesix-portvalves,the dilutemobilephasefromtheHILICcolumninfirstdimensionwas trappedonLunaC18enrichmentcolumn(Fig.1).Forthepreven- tionoftheelutionoftargetedcompoundsfromtheenrichment columnsduringthetrappingprocess,thediluterpumpdelivered aqueousammoniasolution(pH10.2)at3mL/minflowrateinto thestaticmixingtee,whichwasconnectedtoaHILICcolumnand asix-portvalve.Thetemperatureoftrapcolumnswasmaintained at50C(Fig.1).

Inthefirstdimension,a10␮Lsamplewasinjectedwiththe Partial LoopWith Needle Overfill injection modeon a Kinetex HILICcolumnusingtheprogrammedgradientofeluentA(50mM ammoniumformatesolution)andeluentB(0.1%formicacidin acetonitrile).Thecolumntemperaturewassetat50Cduringthe analysis.Inthesecond dimension,eluent AandB,respectively, were0.1%formicacidsolutionand0.1%formicacidinacetoni- trile.ThemobilephasewashedthesubstancestrappedonaLuna C18enrichmentcolumnontoaLunaOmegaPolarC18column.The second-dimensionalcolumnwasmaintainedat50C.Thegradient programsofbothdimensionalseparationswiththetwosix-port valvepositionsaredetailedinTable1.

The mass spectrometer was operated in positive-ion mode usinga heatedelectrosprayionisation(ESI)sourcewiththefol- lowingconditions:capillarytemperature250C,S-LensRFlevel 50,sprayvoltage3.5kV,sheathgasflow45,sweepgasflow2and auxiliarygasflow10 inarbitraryunit.Inparallelreactionmon- itoring(PRM)withresolutionof17,500(FWHM),theautomatic gaincontrol (AGC)settingwasdefined as1 × 106 charges and themaximuminjectiontimewassetto50msThewidthofthe isolation windowof precursor ion was2 Da. Collisionenergies (CE)wereoptimisedforrespectivetransitionsofDMTandAMT (Fig.2).TheadditionalmainHRMS/MSparametersaresummarized inTable2.

During2D-LC-HRMS/MSmeasurements,theeluatewaspassed intotheESIsourceonlyinthetimerangeof4.5–5.5mininorder todecreasethecontaminationoftheMS.Fortheremainingtime, theESIsourcewasrinsedwithacetonitrile/watersolution(90/10, v/v)ataflowrateof0.1mL/minbyanauxiliary pump(Knauer HPLC-pump64,Knauer,Berlin,Germany).

TheLCsystemwascontrolledbyMassLynx4.1SCN901(Waters, Milford,MA,USA).ThecontroloftheMSsystemandMSdataacqui- sitionwasconductedbyXcaliburTM4.1software(ThermoFisher Scientific,Waltham, MA).GraphPad Prism5statistical software (GraphPadSoftware,SanDiego,CA,USA)wasusedfordrawingcol- umndiagrams,boxplotsandpointgraphs,andthecalculationof pairedt-test.

3. Resultsanddiscussion

3.1. Developmentofheart-cutting2D-LC-HRMS/MS

During analytical method development several parameters weretestedinbothdimensionsandtrappingproceduresuchas mobilephasecomposition,columntemperature,gradientsteep- ness, flow rate, type and length of column. For ESI-HRMS/MS detectionofDMTandAMT,theappropriatetransitions(quantifiers, qualifiersions)wereselectedandtherelatedcollisionenergiesand ESIparameterswereoptimised(Fig.2).

ThemainaimofoptimisationofHILICseparationofDMTand AMT(internalstandard)wastoachieveproperretainand peak shapeofDMTandAMT,whichisfeasibleinvolvingequilibration timewithinmaximum10minasaplannedcompleteruntimeof online2Dmeasurements.FortheoptimisationofHILIC,narrow- borecolumns(3and2.1mm)withlengthof100mmand150mm, packedwithtotallyporousorcore-shellparticleswerecompared withdifferentsolidphases.Thepresenceofwaterataminimum quantityof3%intheinitialmobilephasecompositionisessential inHILIC.Byvaryingitsconcentration,theretentionmechanismand separationcanbeinfluencedinbothisocraticandgradientelutions [19].

TheMS-compatibleammoniumformateasmobilephasemod- ifierwasselectedat50mMconcentrationapplyingacetonitrileas theorganiccontentofthemobilephase.Theflowrateisalsoacrit- icalparameterinthefirstdimension,sinceitmustbekeptaslow aspossible,thusassistingthetrappingoftheinvestigatedanalytes.

Unfortunately,theundesiredeffectoflowflowrateispeakbroad- ening.Inourcase,aflowrateof0.3mL/minprovidedanacceptable compromise.Forappropriatecolumnselection,fourHILICcolumns weretested(LunaHILIC,KinetexHILIC,LunaOmegaSugar,Luna NH2)usinga50mMammoniumformateaqueoussolution/0.1% formicacidinacetonitrile(90/10,v/v)mobilephasecomposition for6min.AcomparisonoftheseparationperformanceofAMTand DMTonthefourHILICcolumnsrevealedthatapplicationofLuna Omegawasdisadvantageousforbothretentionandpeakshapes ofDMT(1.35min)andAMT(1.40min).Similarly,whenLunaNH2

wasused,AMTgaveanextremepeakbroadening,whereasDMT (1.23min)hadarelativelylowretention.InthecaseofLunaHILIC, significantlyhigherretentiontimeswerefoundforbothDMT(3.89 min)andAMT(4.84min)withapeakwidthofapproximately1 min.Interestingly,theelutionorderchangedusingKinetexHILIC column,andtheretentiontimesofbothanalyteswerehigherthan 6 min.Therefore, theeluent strength wasincreased to50 mM ammoniumformateaqueoussolution/0.1%formicacidinacetoni- trile(85/15,v/v)resultingin3.09minand2.72minretentiontime forDMTand AMTand a peakwidthof approximately0.5min.

Consequently,thiscompositionwasselectedinthefinalmethod.

Interestingly,theelutionorderchangedusingtheKintexHILICcol- umnincomparisonwiththoseoftheotherthreecolumns.

Inthecaseofoptimisationofseconddimension,theprimary aimwastoobtainsharp,symmetricchromatographicpeaks(high sensitivity)withcloseretentionsforbothcompoundsusinggra- dientelutionandkeeping 10mintotalruntimeof2Danalysis.

Initially,fiveC18columnswerecompared,usinggradientelution (0–1min10%B,1–4min40%B,whereeluentsAandB,were0.1

%formicacidaqueoussolutionand0.1%formicacidinMeOH), respectively.UsingCORTECSC18,OmegaPSC18,andKinetexC18, relativelyhighpeakwidths(∼0.5and0.3minforDMTandAMT) wereobserved.TheapplicationofBEHC18andOmegaC18pro- videdhigherretentiontimesandlowerpeakwidthscomparedwith thoseoverotherC18columns.Finally,anOmegaC18microbore columnwithaparticlesizeof1.6␮mwasselectedforfurtheropti- misationprocedures.Thenatureoforganicsolventinfluencedboth peakwidthandretention.ForDMTandAMT,itcouldbeconcluded

(5)

Fig.1.Flowschemeoftheestablished2D-LC/MSsysteminbothvalvepositions:Position1(A)andPosition2(B).

Fig.2. ThestructureofDMT(A)andAMT(B)withassumedfragmentationcleavages,theexactmassofquantifierandqualifierionsandtheiroptimisedcollisionenergy.

thatACNinsteadofMeOHgavelowerretention,betterpeakshape andlowerpeakwidth.Forobtainingproperretentionwithin10- minruntimeincludingwashingandre-equilibrationofthecolumn

connectedtotrappingcolumnintheseconddimension,thetem- peratureofthecolumn,theflowrateandthegradientsteepness wereadjustedandsynchronizedwiththeHILICmethod.

(6)

Table1

Thegradientprogramsoffirstandseconddimensionwiththetwosix-portvalvepositionsandanalysismode.

Gradientprogramof1stdimension Gradientprogramof2nddimension Timetableofvalves Mode Time(min) B% Flowrate(mL/min) Time(min) B% Flowrate(mL/min) Time(min) Valve1 Valve2

0.00 85 0.3 0.00 2 0.5 0.00 Position2 Position2

1.80 Position1 Position1

trapping

3.00 2 0.5

3.10 2 0.3

3.50 2 0.3 3.50 Position2 Position2

4.00 85 0.3

analysis

4.50 50 1.0

5.50 100 0.3

6.00 100 0.3

6.10 100 0.5

6.50 50 1.0

7.00 85 1.2

8.00 Position1 Position1 8.01 Position2 Position2

9.00 100 0.5

9.50 2 0.5 9.50 Position1 Position1

9.51 Position2 Position2

9.90 85 1.2

10.00 85 0.3 10.00 2 0.5

Table2

MainHRMS/MSparametersforDMTandAMT(internalstandard)andretentiontimes.

Analyte Chemical formula

[M+H]+ Production1 (quantifierion)m/z

Collisionenergy (eV)

Production2(qualifier ion)m/z

Collisionenergy (eV)

Retentiontime (min)

DMT C12H16N2 189.1386 58.0651 10 144.0808 21 4.99

AMT C11H14N2 175.1230 158.0964 10 143.0730 30 4.99

Theonlinetrappingof DMTand AMTfromtheeluateofthe first-dimensionalHILICcolumnina2D-LCsystemwasperformed byusingC18trapcolumn.Thishighlyorthogonalseparation(HILIC

×RP-LC)requiredtodecreasethesolventstrengthoftheeffluentof thefirst-dimensionalcolumninordertoretainbothanalytesonthe enrichmentcolumn.Fig.1.demonstratestheexperimentalconfig- urationofour2D-LC-HRMS/MSsystem.The2Dinterfacebetween HILICandRPcolumnsconsistsofC18trapcolumnandtwoauto- maticallyoperatedtwo-positionsix-portvalves.Thedilutionofthe first-dimensionalHILICeluatewasperformedbyapplyingadiluter pumpconnectedtothecolumnthroughastaticmixingtee(Fig.1).

Theselectionofanappropriatedilutersolventandflowratewas crucialtoenrichDMTandAMTonthetrappingcolumnwithhigh efficiency.Itcanbeexplainedbythehighelutingpowerofeluate ofHILICseparationinRPmodeand,consequently,itneededtobe dilutedwithaweakRPsolvent.Initially,0.1%formicacidaque- oussolutionwasusedwithaflowrateof1mL/min.However,it resultedinpoorretentionforbothanalytesonthetrappingcolumn (Fig.1).Therefore,theeffectoftheflowrateofthedilutingeluenton retentionwasinvestigatedintherangeof1–3mL/min.Fig.3shows that,byincreasingtheflowrateupto3mL/min,trappingefficien- cieswereonlyslightlyimproved.Thesenegligiblechangescanbe explainedbythepKavaluesofDMT(8.68)[20]andAMT(9.96)[21].

AcomparisonrevealedthatatlowretentionintheRPmodeusing of0.1%formicacidaqueousdilutersolutionwithapHof2.7,the protonatedformsofDMTandAMTwerethedominantspecies.It seemedobviousthattheretentionofAMTandDMTonthetrapping columncanbeenhancedbysuppressingthepolarcationicforms byincreasingthepHofthedilutersolvent.TheincreaseofpHupto 10.2inaqueousammoniasolutionwasanacceptablecompromise consideringthesufficienttrappingofthetwoanalytesandthepH stabilityofboththetrappingandtheOmegaC18columns.Fig.3 demonstratesthedramaticimprovementoftrappingefficiencyof DMTandAMTbytheincreaseofpHofthedilutersolvent.ForDMT, higherenhancementwasfound,whichcouldbeexplainedbyits lowerpKavalueby∼1.3unitscomparedwiththatofAMT.

Fig.3.TheeffectoftheflowrateofdilutingeluenttotrappingefficiencyofDMT andAMTduringtrappingoftheheart-cut1Deluateintherangeof1–3mL/min (0.1%FA),and3mL/min(ammoniasolutionatpH10.2).Thepercentageincreases comparedtoconsecutiveexperimentsareindicatedbycurvedarrows.

Fig. 1 (A) displays the schematic diagram of our 2D-LC- HRMS/MSsystemin ¨Position1status,wherethe ¨C18Trap¨column wasusedtotrapDMTandAMTfromthediluteeffluentoftheHILIC column.Duringthetrappingperiod,thegradientprogramofHILIC methodwasinisocraticsection(Table1).Thesystemwaskept intrappingconfigurationfrom1.8minto3.49min.At3.50min theswitchingvalveswereturnedinto ¨Position2andthus ¨C18 trap¨columnwasconnectedtotheRPanalyticalcolumnasshown inFig.1(B).Theparticulardesignoftheeluentgradientprogram wasappliedtowashouttrappedanalytesfrom ¨C18trap¨column ontoC18analyticalcolumn,wherethechromatographicseparation occurredfollowedbyHRMS/MSdetectionofDMTandAMT.Table1 summarizesthefinalsetupofeventsandgradienttimeprograms inbothdimensions.Tokeeptheshort10min2Druntime,theHILIC columnwaswashedandequilibratedfrom3.5to10min,whilethe

(7)

Fig.4. ExtractedionchromatogramsofquantifieriontransitionofDMTandAMTdetectedbypositivemodewith1D-HILICmethod(A)and2D-LC-HRMS/MSmethod(B)in standardsolution.

trapandC18columnswereintherangesof8–10minandupto3.5 mininthenextrunusingeluentandtheflowrategradientpro- graminbothdimensions.Theobtained10mintotalruntimewas fasterthanvariouspublishedonedimensionalLC–MS/MSmethods forDMTanalysisinbrainandplasma[15–18].Theelutionprofiles ofDMTandAMTinthefinal1Dand2Dchromatogramsofstandard solutionsareshowninFig.4(A,B).

3.2. Determinationofextractionrecovery,matrixeffect,process efficiencyandmainvalidationparameters

Hence,thechallengeofthisworkwastofindarelativelysim- plesamplepreparationprocedure,whichissuitableforenrichment ofDMTfromratplasmaandbrainsamples.Intheliterature,sev- eral sample preparation methods related to DMT are reported [10,15–18,22,23].Unfortunately,inmanycasesthemainparam- eters,suchasextractionrecovery(RE),matrixeffect(ME),process efficiency(PE),characteristicsoftheefficiencyofagivenmethod, werenotpresented.Labour-intensiveandexpensivesolid-phase extraction procedures are widely employed nowadays for the enrichmentofDMTfrommammaliantissues[10,15,16].Theappli- cationof2D-LChasanabilitytodecreasethenegativematrixeffect underanalysistherebyprovidinganopportunitytosimplifythe samplepreparationprocedure.Therefore,theliquid–liquidextrac- tionprocedureseemedtobeanobviouschoiceforthedevelopment ofanewmethod.Withoutdetailingtheprocessoptimisationofthe samplepreparationprocedure,theuseofethylacetateasorganic solventandabasicpHinsamplesolutionhelpedtoenrichDMT properlyinthecaseofplasmaandbrainsamples(Fig.5(A,B)).

TherelevantRE,MEandPEofthenewmethodweredeterminedin accordancewiththeprocedureofMatuszewskietal.andCappiello etal.[24,25]

Fig.5(A,B)illustratesthemainindicators(RE,MEandPE)of thenewanalyticalmethodforDMTandAMTinratplasma(20 ng/mL)andbrain(17.5ng/mL).ForDMT,theobtained90%ofRE ofournewsample preparationprocedureinplasmawasbetter withapproximately20–30%thandatainearlystudies[17,18].The obtainedhighmeanvaluesofREwithreallygoodrepeatability(∼

Table3

Mainvalidationparametersof2D-LC-HRMS/MSmethod.

Plasma Brain

Repeatabilityofretentiontimerange(min) 4.99±0.01 4.99±0.01

LOD 0.108ng/mL 0.212ng/g

LOQ 0.328ng/mL 0.642ng/g

AccuracyLow(%) 111.7 111.6

AccuracyMid(%) 89.6 88.5

AccuracyHigh(%) 102.6 100.9

PrecisionLow(%CV) 2.8 2.7

PrecisionMid(%CV) 1.4 5.1

PrecisionHigh(%CV) 1.4 1.3

Carryover(%) 0.056 0.078

Stability(%) −0.452 −0.500

Limitofdetection(LOD),limitofquantification(LOQ)andpercentcoefficientof variation(%CV).

10%SEM)forDMTandAMTstandardrevealthatournewextrac- tionmethodsarewell-suitedforbothplasmaandbrainsamples.

ThepresenceofstrongionisationenhancementduringHRMS/MS detectionresultedinahighpositiveMEvalueofDMTfromplasma (161%)andbrain(174%).TheobtainedhighMEinplasmawas much favourablethan reportedbyMeyers (46%) in 2014[17].

However,byinvestigatingMEofAMT,moderateionsuppression occurredresultinginavalueof87%inbrain(Fig.5(B)).Overall,the obtainedfavourableMEvaluesforbothcompoundsfromacomplex biologicalmatrixclearlyindicatedthebenefitofapplicationofthis 2D-LC-HRMS/MSmethod.InthecaseofDMT,the145%(plasma) and153%(brain)ofPE,asresultantsofvaluesofREandPE,lend evidencetotheadequacyofthenewmethod(Fig.5(A,B)).

Forbrainandplasmasamples,themainvalidationparameters ofDMTaresummarizedinTable3.Afterfulloptimizationofthe2D method,goodrepeatabilityoftheretentiontimeofDMTwithinthe rangeof4.98–5.00minwasachieved.Duringmethoddevelopment, themainissuewastokeeptherequiredvolumeofplasmaaslow aspossibleinordertodecreasethenegativeeffectofbloodcollec- tionduringsurgicalprocedures[26].ForDMT,our2D-LC-HRMS/MS methodprovided0.108ng/mLofLODusing50␮Lofplasma,which issignificantlybetterthanthosereportedinearlierstudies,suchas

(8)

Fig.5.Extractionrecovery,matrixeffectandprocessefficienciesforDMT(plasma:

20ng/mL,brain:17.5ng/mL)andAMT(plasma:20ng/mL,brain:17.5ng/mL)stan- dardsfromratplasma(A)andratbrainhomogenate(B).Theextractionrecoveryand matrixeffectpercentagewerecalculatedasfollows:Extractionrecovery(%)=C/B

×100,Matrixeffect(%)=B/A×100andProcessefficiency(%)=C/A×100,whereA representstheaveragepeakareaofthestandardsolution,Brepresentstheaverage peakareaoftheplasmaorbrainextractspikedatthesameconcentrationofthe standardandCrepresentstheaveragepeakareaofaplasmaorbrainpre-spikedat thesameconcentrationofthestandard.

100ng/mLusing500␮Lplasma[17]and0.45ng/mLfrom200␮L plasma[18].Interestingly,Oliveiraetal.reported0.1ng/mLofLOD forDMTinplasma[16].However,thesolidphaseextractionpro- cedureoftheiranalyticalmethodrequired1000␮Lofplasma.In brainsampletheachievedLODofDMTinourcasewasalsobetter thanthatreportedbyBarkeretal.(0.5ng/g)[15].

Thecalibrationcurves(Figs.S13–S24)forDMTwerelinear(R2

>99%)intherangeof0.2–200ng/mLplasmaand1.75–350ng/g brain.Accuracyofournewmethodinthreedifferentconcentration levelsweredeterminedwithinanacceptableintervalof12%in plasmaandbrainsamples.Theprecisionswerefoundtobe≤2.8% coefficientofvariation(CV)incaseofplasmaand≤5.1%CV(brain).

TheobtainedcarryoverofDMTwasnegligible(<0.08%)inplasma andbrain.

3.3. QuantificationofDMTinratplasmaandbrain

Inthefirstdimensionofourorthogonal2Dmethod,HILICmode was appliedfor theseparation of DMT and AMT from plasma andbrainmatrix-derivedendogenouscomponents.Inthemethod developmentprocess,animportantconsiderationwastocutthe peaksofinterest from1Dto2Din anarrowtime window(1.8 minfor 3.5min), thus tokeeptheamountof undesirable exo- andendogenousmatrixcompoundsinalowlevelinthesecond dimension.Itisworthtobenotedthatthetrappingprocessatbasic pHalsodecreasedtheamountofcompoundswithacidiccharac- terwithachromatographicbehavioursimilartothoseofDMTand AMTinHILICcondition.Forthesereasons,arelativelyfastgradient methodwasappliedintheseconddimension.TheobtainedMEval- uesconfirmedthevalidityofthesteepRPgradientprogramapplied.

AnotheradvantagewasthatAMTasinternalstandardallottedwith DMTastargetedcompoundatsameretentiontime,butnotindead time,whichisthechromatographicexpectationofthestandard calibrationmethodtowardsaninternalstandard(Figs.S1–S4).

ThedevelopedmethodwasappliedtothequantificationofDMT inratplasmaandbraintissue.Themainaimsoftheapplication ofthisnew2D-LC-HRMS/MSmethodweretofollowtheplasma DMTlevelbeforeischemiaonset, underischemia,afterhypoxia andunderreperfusion,anddeterminationofDMTconcentration inrelatedbraintissueafterreperfusion.Therefore,theplasmaand brainsamplesofpreliminaryexperimentswereusedforoptimi- sationofthesamplepreparationprocedureanddeterminationof theconcentrationrangeofexternalcalibrationusinginternalstan- dards.Awidecalibrationconcentrationrangewasattemptedfor quantificationofendogenousandexogenousDMTlevelsinasingle run.Toourknowledge,thereexistsonlyasinglereportfrom2005 inwhichendogenousDMTwasquantifiedinbothratbrainand plasmausingisoctraticLC–MS/MSmethod[10].Unfortunately,we couldnotconfirmthepresenceofendogenousDMTinratbrainand plasma.Itisimportanttonote,however,thatour2D-LC-HRMS/MS methodprovidedmorereliabledatadueto2D-LCseparationand accuratehighresolutionmassspectrometrydetectionwithrelated strictLCandHRMSMSconfirmatorycriteria:specificretentiontime (4.99min)withtwocharacteristicprecursor–productiontransi- tionsusing50ppmmassaccuracy(quantifierionat58.0651m/z andqualifierionat144.0808m/z)andtheratioofthepeakarea ofthequantifierionandqualifierion(2.1±0.21)(Figs.S5–S12).

Despitethefactthatthequantifierionwasdetected,butonethe above-mentionedotherparameterswasnotcompleted,thecon- centrationofDMTwasfoundtobelowerthanthelimitofdetection.

Inthefinalmethod,thecalibrationcurvewasoptimisedtomea- sureexogenousDMTlevel,andDMTshowedagoodlinearityrange of0.2–200ng/mLplasmaand1.75–350ng/gbrainwithR2values higherthan0.99(Figs.S13,S14).

ThelevelofDMTinplasmasamplesoftreatedratsisillustrated inFig.6(A).Allplasmasamplescollectedbeforeadministrationof DMTshowedlessthanthedetectableamountsofDMT.Thehigh- estconcentrationofDMTintherangeof49.3–114.3ng/mLwas observedinplasmaforeachanimalbeforehypoxia.Foranimals1, 3and4,theconcentrationsofDMTdecreasedsignificantlyafter hypoxiainplasma.Afterhypoxiatotheendofthetreatment,the concentrationofDMTdecreasedtoameanvalueof3.8ng/mL,in linewiththeterminationofDMTapplication.

Another question that remains to be answered is whether DMTaccumulatestoadetectableconcentrationinthebrain.Thus, endogenousandexogenousDMTwereanalysedinbraintissuein boththecontrolandtreatedanimals.Similartoplasmasamples, theendogenousDMTwasnotdetectableinthebrainofcontrolani- mals.However,aftertreatment,theconcentrationofDMTchanged intherangeof2–6.1ng/gbrain(Fig.6(B)).

(9)

Fig.6. TheobtainedconcentrationofDMTinplasma(A)andbrain(B).Three repeatedmeasurementswereusedforstatisticalanalysis(*p0.05;**p0.01;***

p0.001).

Theconcentrationsof exogenousDMTmeasuredareconsid- eredtobeunderestimatedoftheactualconcentrations,because DMTmusthavebeenrapidlydegradedduringcollectingbiological samples[27],inparticular,whenharvestingbraintissue.

4. Conclusion

Thispaperdescribesthedevelopmentandapplicationofafast heart-cutting2D-LC-HRMS/MSmethodand relatedliquid-liquid extractionprocedurefortheanalysisofDMT.Byconnectingorthog- onalHILIC and RPchromatography through theuseof RP trap column and high resolution MS/MS detection, a sensitive and selectiveanalyticalmethodwassuccessfullyutilisedwithintotal run time of 10 min for determination of the concentration of DMTinratplasmaandbrainofexperimentalmodelofcerebral ischemia/reperfusion using DMT administration The developed andoptimisedplasmaandbrainmatrix-relatedsampleprepara- tionprotocolsprovided high extractionrecoveries(∼90 %) and highpositive matrix effect (plasma: +61 %, brain: ∼ +74 %) of DMT.During analysis,DMTwasidentifiedandconfirmedbyits specificretentiontime inthesecond dimension,twocharacter-

isticprecursor–productiontransitionsandtheratioofquantifier toqualifier masstransitions. External calibrationusinginternal standard wasappliedtoobtainaccurateconcentrationsof DMT inplasmaandbrainsamples.Thisheart-cutting2D-LC-HRMS/MS methodwithnewsamplepreparationproceduregaveanopportu- nitytoimprovetheLODwiththedecreaseoftherequiredamount ofbiologicalsamples.

ConcerningexogenousDMT,tothebestofourknowledge,thisis thefirstattempttoconfirm–withananalyticaltool–thepresence ofDMTadministeredwiththerapeuticalpurposeinmammalian tissues.Insummary,ouranalyticalapproachissuitabletodetect andconfirmthepresenceofDMTadministeredtoexperimental animalswiththerapeuticpurpose.Furtherrefinementofbiologi- calsampleharvestingwillprovidemoreaccuratedeterminationof actualDMTconcentrations.

DeclarationofCompetingInterest Authorsdeclarenoconflictofinterest.

Acknowledgement

This research was supported by the EU-funded Hungarian grantEFOP-3.6.1-16-2016-00008 and <GN1>G</GN1>INOP-2.3.2- 15-2016-00060,andtheMinistryofHumanCapacitiesofHungary grantNo.ÚNKP-19-3-SZTE-266.

WewishtothankÉvaSija(InstituteofForensicMedicine,Uni- versityofSzeged),whokindlyprovidedtheAMTstandard.

AppendixA. Supplementarydata

Supplementarymaterial related tothis articlecan befound, in theonline version, at doi:https://doi.org/10.1016/j.jpba.2020.

113615.

References

[1]J.G.Dean,T.Liu,S.Huff,B.Sheler,S.A.Barker,R.J.Strassman,M.M.Wang,J.

Borjigin,Biosynthesisandextracellularconcentrationsof

N,Ndimethyltryptamine(DMT)inmammalianbrain,Sci.Rep.9(1)(2019) 9333,http://dx.doi.org/10.1038/s41598-019-45812-w.

[2]S.A.Barker,J.Borjigin,I.Lomnicka,R.Strassman,LC/MS/MSanalysisofthe endogenousdimethyltryptaminehallucinogens,theirprecursors,andmajor metabolitesinratpinealglandmicrodialysate,Biomed.Chromatogr.27(12) (2013)1690–1700,http://dx.doi.org/10.1002/bmc.2981.

[3]L.Corbett,S.T.Christian,R.D.Morin,F.Benington,J.R.Smythies,

HallucinogenicN-methylatedindolealkylaminesinthecerebrospinalfluidof psychiatricandcontrolpopulations,Br.J.Psychiatry132(2)(1978)139–144, http://dx.doi.org/10.1192/bjp.132.2.139.

[4]F.R.Franzen,H.Gross,N.Tryptamine,N-dimethyltryptamine,

n,n-dimethyl-5-hydroxytryptamineand5-methoxytrytamineinhumanblood andurine,Nature206(1965)1052,http://dx.doi.org/10.1038/2061052a0.

[5]T.J.Wolff,TheTouristicUseofAyahuascainPeru.Sozialwissenschaftliche Gesundheitsforschung,SpringerVS,Wiesbaden,2020,ResearchaboutDMT andayahuasca.

[6]N.V.Cozzi,A.Gopalakrishnan,L.L.Anderson,J.T.Feih,A.T.Shulgin,P.F.Daley, A.E.Ruoho,Dimethyltryptamineandotherhallucinogenictryptamines exhibitsubstratebehaviorattheserotoninuptaketransporterandthevesicle monoaminetransporter,J.NeuralTransm.116(12)(2009)1591–1599,http://

dx.doi.org/10.1007/s00702-009-0308-8.

[7]S.Sato,T.Kawamata,T.Kobayashi,Y.Okada,Antidepressantfluvoxamine reducescerebralinfarctvolumeandamelioratessensorimotordysfunctionin experimentalstroke,NeuroReport25(10)(2014)731–736,http://dx.doi.org/

10.1097/WNR.0000000000000162.

[8]A.Szabo,A.Kovacs,J.Riba,S.Djurovic,E.Rajnavolgyi,E.Frecska,The endogenoushallucinogenandtraceamineN,Ndimethyltryptamine(DMT) displayspotentprotectiveeffectsagainsthypoxiaviasigma-1receptor activationinhumanprimaryiPSC-derivedcorticalneuronsandmicroglia-like immunecells,Front.Neurosci.10(2016)423,http://dx.doi.org/10.3389/fnins.

2016.00423.

[9]S.A.Barker,E.H.McIlhenny,R.Strassman,Acriticalreviewofreportsof endogenouspsychedelicN,N-dimethyltryptaminesinhumans:1955–2010, DrugTest.Anal.4(7–8)(2012)617–635,http://dx.doi.org/10.1002/dta.422.

(10)

[10]J.Kärkkäinen,T.Forsström,J.Tornaeus,K.Wähälä,P.Kiuru,A.Honkanen, U.-H.Turpeinen,A.Hesso,Potentiallyhallucinogenic5-hydroxytryptamine receptorligandsbufotenineanddimethyltryptamineinbloodandtissues, Scand.J.Clin.Lab.Invest.Suppl.65(3)(2005)189–199,http://dx.doi.org/10.

1080/00365510510013604.

[11]D.E.Nichols,N,N-dimethyltryptamineandthepinealgland:separatingfact frommyth,J.Psychopharmacol.32(1)(2018)30–36,http://dx.doi.org/10.

1177/0269881117736919.

[12]S.Bäurer,M.Ferri,A.Carotti,S.Neubauer,R.Sardella,M.Lämmerhofer, Mixed-modechromatographycharacteristicsofchiralpakZWIX(+)andZWIX (−)andelucidationoftheirchromatographicorthogonalityforLC×LC application,Anal.Chim.Acta1093(2020)168–179,http://dx.doi.org/10.

1016/j.aca.2019.09.068.

[13]R.Berkecz,F.Tömösi,T.Körmöczi,V.Szegedi,J.Horváth,T.Janáky, Comprehensivephospholipidandsphingomyelinprofilingofdifferentbrain regionsinmousemodelofanxietydisorderusingonlinetwo-dimensional (HILIC/RP)-LC/MSmethod,J.Pharmaceut.Biomed.149(2018)308–317, http://dx.doi.org/10.1016/j.jpba.2017.10.043.

[14]M.Kula,D.D.Głód,M.Krauze-Baranowska,Applicationofon-lineandoff-line heart-cuttingLCindeterminationofsecondarymetabolitesfromtheflowers ofLoniceracaeruleacultivarvarieties,J.Pharmaceut.Biomed.131(2016) 316–326,http://dx.doi.org/10.1016/j.jpba.2016.09.010.

[15]S.A.Barker,M.A.Littlefield-Chabaud,C.David,Distributionofthe hallucinogensN,N-dimethyltryptamineand5-methoxy-N,

N-dimethyltryptamineinratbrainfollowingintraperitonealinjection:

applicationofanewsolid-phaseextractionLC–APcI–MS–MS–isotopedilution method,J.Chromatogr.BBiomed.Sci.Appl.751(1)(2001)37–47,http://dx.

doi.org/10.1016/S0378-4347(00)00442-4.

[16]C.D.R.Oliveira,G.G.Okai,J.L.daCosta,R.M.deAlmeida,D.Oliveira-Silva,M.

Yonamine,Determinationofdimethyltryptamineand␤-carbolines (ayahuascaalkaloids)inplasmasamplesbyLC–MS/MS,Bioanalysis4(14) (2012)1731–1738,http://dx.doi.org/10.4155/bio.12.124.

[17]M.R.Meyer,A.Caspar,S.D.Brandt,H.H.Maurer,Aqualitative/quantitative approachforthedetectionof37tryptamine-deriveddesignerdrugs,5

␤-carbolines,ibogaine,andyohimbineinhumanurineandplasmausing standardurinescreeningandmulti-analyteapproaches,Anal.Bioanal.Chem.

406(1)(2014)225–237,http://dx.doi.org/10.1007/s00216-013-7425-9.

[18]E.H.McIlhenny,J.Riba,M.J.Barbanoj,R.Strassman,S.A.Barker,Methodology fordeterminingmajorconstituentsofayahuascaandtheirmetabolitesin blood,Biomed.Chromatogr.26(2012)301–313,http://dx.doi.org/10.1002/

bmc.1657.

[19]P.Hemström,K.Irgum,Hydrophilicinteractionchromatography,J.Sep.Sci.

29(12)(2006)1784–1821,http://dx.doi.org/10.1002/jssc.200600199.

[20]DimethyltryptamineBioinformaticsandCheminformaticsData,Drugbank, 2020(Accessed15June2020)https://www.drugbank.ca/drugs/DB01488.

[21]IndopanBioinformaticsandCheminformaticsData,Drugbank,2020 (Accessed15June2020)https://www.drugbank.ca/drugs/DB01446.

[22]R.W.Walker,H.S.Ahn,G.Albers-Schönberg,L.R.Mandel,W.J.A.

Vandenheuvel,Gaschromatographic-massspectrometricisotopedilution assayforN,N-dimethyltryptamineinhumanplasma,Biochem.Med.8(1) (1973)105–113,http://dx.doi.org/10.1016/0006-2944(73)90014-8.

[23]L.J.Riceberg,H.V.Vunakis,DeterminationofN,N-dimethylindolealkylamines inplasma,bloodandurineextractsbyradioimmunoassayandhighpressure liquidchromatography,J.Pharmacol.Exp.Ther.206(1)(1978)158–166.

[24]B.K.Matuszewski,M.L.Constanzer,C.M.Chavez-Eng,Strategiesforthe assessmentofmatrixeffectinquantitativebioanalyticalmethodsbasedon HPLC−MS/MS,Anal.Chem.75(2003)3019–3030,http://dx.doi.org/10.1021/

ac020361s.

[25]H.Trufelli,P.Palma,G.Famiglini,A.Cappiello,Anoverviewofmatrixeffects inliquidchromatography–massspectrometry,MassSpectrom.Rev.30(3) (2011)491–509,http://dx.doi.org/10.1002/mas.20298.

[26]K.H.Diehl,R.Hull,D.Morton,R.Pfister,Y.Rabemampianina,D.Smith,J.-M.

Vidal,C.V.D.Vorstenbosch,Agoodpracticeguidetotheadministrationof substancesandremovalofblood,includingroutesandvolumes,J.Appl.

Toxicol.21(1)(2001)15–23,http://dx.doi.org/10.1002/jat.727.

[27]S.A.Burchett,T.P.Hicks,Themysterioustraceamines:protean neuromodulatorsofsynaptictransmissioninmammalianbrain,Prog.

Neurobiol.79(5–6)(2006)223–246,http://dx.doi.org/10.1016/j.pneurobio.

2006.07.003.

Ábra

Fig. 1. Flow scheme of the established 2D-LC/MS system in both valve positions: Position 1 (A) and Position 2 (B).
Fig. 1 (A) displays the schematic diagram of our 2D-LC- 2D-LC-HRMS/MS system in ¨Position 1  status, where the ¨C18 Trap¨column was used to trap DMT and AMT from the dilute effluent of the HILIC column
Fig. 5 (A, B) illustrates the main indicators (RE, ME and PE) of the new analytical method for DMT and AMT in rat plasma (20 ng/mL) and brain (17.5 ng/mL)
Fig. 5. Extraction recovery, matrix effect and process efficiencies for DMT (plasma:
+2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The newly developed and validated RP-HPLC bioanalytical method is applicable for sensitive determination of K203 from different biological matrices (serum, brain, CSF, eyes)

Qualitative determination of compounds formed in catalytic LPP(DE) of WS was performed by SPME-GC-MS analysis. The products are systematized by retention times and sorted

In the I/R group significant increase of intestinal M4HN concentration was observed during hypoxia that was followed by similar changes in intestinal and RBC TBARS and

The SRY is acting directly on the genital ridge and converts the somatic epithelial of the bi-potential zygote, into a male tactical (Gilbert, 2010) (ncbi, 1998). For the

It has been recently proposed to use metallic nanoparticles for improving the sensitivity and the capabilities of laser ablation analytical techniques, such as LA ICP MS and LIBS

Analysis of the generated aerosol with ICP-MS has been shown to provide the sensitivity required for the determination of sample constituents present in traces only, such as

Out of the studied popcorn samples 41.67% were contaminated with atropine and scopolamine, while in 58.33% of the tested samples tropane alkaloids were not detected,

Comprehensive lipidomics analysis was achieved by separation of lipid classes by HILIC chromatography (first dimension) followed by reversed-phase chromatography (second dimension) on