• Nem Talált Eredményt

kynurenine amino acids, and of serotonin in humanplasma Development, application validation and of LC–MS/MS method forquantification Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "kynurenine amino acids, and of serotonin in humanplasma Development, application validation and of LC–MS/MS method forquantification Journal of Pharmaceutical and Biomedical Analysis"

Copied!
8
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Development, validation and application of LC–MS/MS method for quantification of amino acids, kynurenine and serotonin in human plasma

Dávid Virág

a

, Márton Király

a

, László Drahos

b

, Andrea Edit Édes

c,d

, Kinga Gecse

c,d

, György Bagdy

d,e

, Gabriella Juhász

c,d

, István Antal

a

, Imre Klebovich

a

,

Borbála Dalmadi Kiss

a

, Krisztina Ludányi

a,∗

aDepartmentofPharmaceutics,SemmelweisUniversity,H ˝ogyesEndreutca7,BudapestH-1092,Hungary

bMSProteomicsResearchGroup,InstituteofOrganicChemistry,ResearchCentreforNaturalSciencesoftheHungarianAcademyofSciences,Magyar tudósokkörútja2,BudapestH-1117,Hungary

cSE-NAP2GeneticBrainImagingMigraineResearchGroup,SemmelweisUniversity,Nagyváradtér4,BudapestH-1089,Hungary

dDepartmentofPharmacodynamics,FacultyofPharmacy,SemmelweisUniversity,Nagyváradtér4,BudapestH-1089,Hungary

eMTA-SENeuropsychopharmacologyandNeurochemistryResearchGroup,HungarianAcademyofSciences,SemmelweisUniversity,Nagyváradtér4, BudapestH-1089,Hungary

a r t i c l e i n f o

Articlehistory:

Received16August2019

Receivedinrevisedform6November2019 Accepted27November2019

Availableonline28November2019

Keywords:

LC–MS/MS Aminoacid Serotonin Kynurenine

Fit-for-purposevalidation Surrogatematrix

a b s t r a c t

Alteredserotonergicneurotransmissionisakeyfactorinseveralneurologicandpsychiatricdisorders suchasmigraine.Humanandanimalstudiessuggestthatchronicallylowinterictalserotoninlevels ofplasmaandbrainmayfacilitateincreasedactivityofthetrigeminovascularpathway,andmaycon- tributetodevelopmentofrepeatedmigraineattacks.However,brainserotoninsynthesisisaffectedby theconcentrationoftryptophan,itsmetabolitesandanumberofaminoacids.Inthisworkasimpleand robustLC–MS/MSmethodforthequantitativedeterminationofvaline,leucine,isoleucine,phenylala- nine,tyrosine,tryptophan,serotoninandkynurenineinhumanplasmahasbeendevelopedandvalidated.

Samplepreparationwasachievedbyproteinprecipitation,usingtrifluoroaceticacid.Chromatographic separationwascarriedoutonaSupelcoAscentis®ExpressC18column(3.0mmi.d.×150mm,2.7␮m) equippedwithanAgilentZorbaxEclipseXDBC8guard-columnunderisocraticconditionsataflowrate of0.4mL/min,overa6.5minruntime.Mobilephasewas0.2%trifluoroaceticacid–acetonitrile(85:15, v/v).Theeightanalytesandtwointernalstandardswereionizedbypositiveelectrosprayionizationand detectedinmultiplereactionmonitoringmode.

A“fit-for-purpose”validationapproachwasadoptedusingsurrogatematrixforthepreparationof calibrationsamples.Thecalibrationcurvesofallanalytesshowedexcellentlinearitieswithacorrelation coefficient(r2)of0.998orbetter.Spikedsurrogatematrixsamplesandpooledhumanplasmawere usedasqualitycontrolsamples.Intra-dayandinter-dayprecisionswerelessthan11.8%and14.3%, andaccuracieswerewithintherangesof87.4–114.3%and87.7–113.3%,respectively.Stabilityofthe componentsinstandardsolutions,surrogatematrix,pooledplasmaandprocessedsampleswerefound tobeacceptableunderallrelevantconditions.Nosignificantcarryovereffectwasobserved.Thesurrogate matrixbehavedparalleltohumanplasmawhenassessedbystandardadditionmethodanddilutingthe authenticmatrixwithsurrogatematrix.Themethodwassuccessfullyappliedforanalysisof800human plasmasamplestosupportaclinicalstudy.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Correspondingauthor.

E-mailaddress:ludanyi.krisztina@pharma.semmelweis-univ.hu(K.Ludányi).

1. Introduction

Alteredserotonergicneurotransmissionisakeyfindinginsev- eralneurologicandpsychiatricdisordersincludingmigraine[1].

Migraineisacommondisablingprimaryheadachedisorderwith a globalprevalenceof 15–18%[2]. It is characterizedby throb- https://doi.org/10.1016/j.jpba.2019.113018

0731-7085/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

2 D.Virág,M.Király,L.Drahosetal./JournalofPharmaceuticalandBiomedicalAnalysis180(2020)113018

bingandusuallyunilateralmoderateorseverepainaccompanied byphono-andphotophobia,nauseaorvomiting,andworsening byroutinephysicalactivity[3].Humanandanimalstudiessug- gestthatchronicallylowinterictalserotoninlevelofplasmaand brainpredisposetoincreasedsensitivityofthetrigeminovascu- larpathwaythatmaycontributetothedevelopmentofrepeated migraineattacks[1,2,4,5].Inlinewiththeserotonergicdysfunc- tionhypothesis,the5-HT1B/1D(5-hydroxytryptaminereceptor1B and1Dsubtypes)agonisttriptansalleviatemigrainepain,while tryptophan depletion, which acutely decreases the brain sero- tonin concentration, increasesthe excitability of the brain and symptoms of the migraine attacks [1,5,6]. However, the brain serotoninconcentrationisaffectednotonlybytryptophanintake butalsobytheratiooftheplasmaconcentrationsoftryptophan andotherlargeneutralamino acids(LNAA)that arecompeting tooccupyatransporterattheblood brainbarrier,calledL-type amino acid transporter 1 (LAT1). Fernstrom defined a ratio of plasmatryptophanand LNAAs, namelytyrosine, phenylalanine, leucine,isoleucineand valine,which influenced thebraintryp- tophanconcentrations and serotoninsynthesis in experimental studies. We selected these LNAAs for this measurement based onhisstudy[7].Investigationoftheseaminoacidsisimportant becausedietarymanipulationoftryptophan/LNAAratiopromptly abletoelicitbehavioralalterations,althoughtheexactmechanism isnotfullyunderstood.Forexample,tryptophandepletionwith ingestionofatryptophanfreeaminoacidmixtureisacutelyable toincrease anxiety,lowermoodand contributetomoresevere courseofmigraineattacksinvulnerablesubjects[6–8].Thusour aimwastodevelop a methodtosimultaneouslymeasure tryp- tophan, LNAAs and the peripheral concentrations of serotonin and kynurenine (another compound synthesized from trypto- phanand have been implicatedin migraine) in humanplasma [9].

During a typical bioanalytical validation procedure, calibra- tion and quality control (QC) samplesare prepared by spiking the same sort of biological matrix as the study samples with knownamountsofanalyte.Thisensuresthattheanalyteofinterest facessameconditionswithrespecttomatrixeffectsandextrac- tion recoveries in the validation samples as well as the study samples.In thecase of endogenouscompounds, preparation of validationsamplesarehamperedbytheabsenceofanalyte-free (blank)matrix[10].Asaccuratequantitativeanalysisofendoge- nousanalytesiscrucial foranumber ofclinicalandnonclinical applications,increasinginterestisarisingforalternative,so-called

“fit-for-purpose” quantitation/validation approaches. There are fourcommonlyusedapproaches:standardaddition,background subtraction, surrogateanalyte in authentic matrix and authen- ticanalyteinsurrogatematrix[11–16].Applicability,advantages and drawbacksof these methods have recently been reviewed [17].

In the present article, we report a quick, accurate and reliable liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for quantitative determination of valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, sero- toninandkynureninein800humanplasmasamples.Twostable isotope-labeledinternalstandards(SIL-ISs)wereusedtoreduce assayvariation:leucine-5,5,5-d3(Leu-d3)foraliphaticaminoacids and tyrosine-(phenyl-3,5-d2) (Tyr-d2) for aromatic compounds, respectively.Duetothelargenumberofsamplesandcompounds tobeanalyzed,authentic analyte in surrogatematrix approach wasadoptedbyusingartificialplasmaasasurrogatematrixfor theconstructionofcalibrationstandardsand QCsamples.Some assayvalidationissuesofthemethodofchoicesuchasparallelism andlimitofquantitation(LOQ)arealsodiscussed.Fig.1showsthe eightanalytesandthetwoSIL-ISs.

2. Materialsandmethods

2.1. Chemicals

LC–MS grade acetonitrile waspurchased fromVWR Chemi- cals(Pool,England).LC–MSgradetrifluoroaceticacid(TFA)was purchased from Fisher Chemical (Loughborough, UK). Leucine (99.9%),isoleucine(99.5%),valine(99.3%),phenylalanine(99.0%), tyrosine (99.7%) were purchased from Dr. Ehrenstorfer GmbH (Augsburg,Germany).Tryptophan(≥99%)wasobtainedfromAlfa Aesar (Haverhill, MA, USA). Kynurenine (≥98%) was purchased fromCaymanChemicalCompany(AnnArbor,MI,USA).Serotonin (≥98%),l-leucine-5,5,5-d3 (99%Datom),l-tyrosine-(phenyl-3,5- d2) (98%D atom), phosphate bufferedsaline(PBS) and human serumalbumin(HSA)(≥96%)werepurchasedfromSigmaAldrich Inc.(St.Louis,MO,USA).K3EDTAtubeswereobtainedfromGreiner Bio-OneInternationalGmbH(Kremsmünster,Austria).Ultrapure waterwaspreparedwithanin-houseSimplicity®WaterPurifica- tionSystem(MerckMillipore,Burlington,MA,USA).

2.2. Standardsolutions

Stock solutions of the analytesand internal standards were madeupin0.2%trifluoroaceticacid–acetonitrile(85:15,v/v)and storedat−20C.Onthedayofanalysis,calibrationandQCstan- dardsolutions werepreparedbyserial dilutionoftwo separate primarystocksolutionswithwater.ISworkingsolutionwaspre- paredinwatertogiveaconcentrationof250␮g/mLforLeu-d3and 25␮g/mLforTyr-d2.Surrogatematrixwaspreparedbyadding4g ofHSAto100mLPBSsolution.

2.3. Plasmasamples

Humanbloodsampleswerecollectedinto3mLK3EDTAtubes frommigrainepatientswithoutauraandhealthyvolunteers(total numberofparticipantswas98,totalnumberofbloodsampleswas 800)byintravenouscannulation.Thesampleswereimmediately centrifuged,thenplasmasampleswerefrozenandkeptat−80C untiltheassay.Pooledplasmawaspreparedbymixingequalvol- umesofplasmasobtainedfrom6healthyindividuals.Thestudy protocolwasapprovedbytheScientificandResearchEthicsCom- mitteeoftheMedicalResearchCouncil,Budapest,Hungary.

2.4. Samplepreparation

Samplepreparationwasachievedbysimpleproteinprecipita- tion.ForthepreparationofcalibrationsamplesandQCsamplesin surrogatematrix,100␮Lofspikingstandardsolutionsand20␮Lof ISworkingsolutionweremixedwith900␮Lofsurrogatematrix.

Incaseofstudysamples,100␮Lofwaterand20␮LofISworking solutionweremixedwith900␮Lofhumanplasma.Forproteinpre- cipitation,200␮Loftrifluoroaceticacidwasaddedtoeachsample andvortexmixed.Aftercentrifugationat4000gfor10minat4C, aliquots(150␮L)ofthesupernatantweretransferredtoautosam- plervials.5␮Loftheresultingsolutionswereinjectedintothe LC–MS/MSsystem.

2.5. Liquidchromatography-tandemmassspectrometry

ThechromatographicseparationswereperformedonanAgilent 1260InfinityLCsystem(AgilentTechnologies,CA,USA).Theana- lyteswereseparatedonaSupelcoAscentis®ExpressC18column (3.0mmi.d.×150mm,2.7␮m)equippedwithanAgilentZorbax EclipseXDBC8guard-column(4.6mmi.d.×12.5mm,5␮m).The columnandtheautosamplerweremaintainedat25Cand4C, respectively.Thealiquotsofsampleswereelutedunderisocratic

(3)

Fig.1. Chemicalstructureoftheeightanalytesandtwointernalstandards.

conditionsover6.5minataflowrateof0.4mL/min.Themobile phase was composed of 0.2% trifluoroacetic acid– acetonitrile (85:15,v/v).Theneedlewaswashedfor10sintheflushportbefore everyinjectioninordertominimizecarryovereffect.

SampleswereanalyzedbyanAgilent6460triple-quadrupole massspectrometer(AgilentTechnologies, SantaClara, CA,USA) usingpositive electrospray ionization(ESI)and scheduledmul- tiple reaction monitoring (MRM) mode. Agilent MassHunter DataAcquisitionsoftware(versionB.04.01)wasusedtocontrol theequipment,MassHunterQuantitative QQQAnalysis(version B.05.01)andQualitativeAnalysissoftware(versionB.05.00)were appliedforquantitationanddataprocessing.Settingswereasfol- lows:capillaryvoltage,+3.5kV;nozzlevoltage,+400V.Nitrogen wasappliedasanebulizergasof45psi,acarriergasof10L/min at350C,andasheathgasof11L/minat350C.MRMtransitions, collisionenergies(CE)andfragmentorvoltagesforallcompounds wereautooptimizedbyOptimizerofAgilentMassHunterworksta- tion.

2.6. Validation

2.6.1. Calibrationcurves,LOQ

Thespikingstandardsolutions ofcalibrationstandardswere dilutedfromthestocksolutiontoobtaineightcalibrationlevels, andraninduplicateatthebeginningandtheendofeachbatch.The lowestandhighestpointsofthecalibrationcurvecoincidedwith thelowerlimitofquantitation(LLOQ)aswellastheupperlimitof quantitation(ULOQ).Thecalibrationcurvewasderivedbyplotting theconcentrationofthestandardsversustheanalytetoISpeak arearatiosusing1/xweightedleast-squareslinearregressions.

2.6.2. Accuracyandprecision

FourconcentrationlevelsofQCsampleswereusedforamino acids:LLOQ,lowQC,mediumQC,highQC,andthreeconcentra- tionlevelsforserotoninandkynurenine(LLOQ,lowQC,highQC) inordertocoverthecalibrationrange.Concentrationswereset accordingtotheEMAGuidelineonbioanalyticalmethodvalida- tion[18].Furthermore,pooledplasmawasappliedasanadditional levelofQCtoevaluatepotentialerrorscausedbymatrixdiffer-

ences[10].Endogenouslevelsofthesesamplesweredetermined bythemethodofstandardaddition.Calibrationrangesandcon- centrationsoftheQCsamplesaresummarizedinTable1.Intra-day accuracyandprecisionwereassessedbyevaluatingfivereplicates ofeachQCsamplesdescribedabove.Theinter-dayaccuracyand precisionwereestablishedbytherepetitionoftheintra-dayvali- dationprocedureonfiveconsecutivedays.Accuracywasexpressed aspercentageofthenominalconcentrationandprecisionwascal- culatedasthecoefficientvariation(%CV).Theacceptancecriteria forbothparametersweresetat±15%exceptfortheLLOQforwhich itshouldbewithin±20%[18].

2.6.3. Extractionrecovery,parallelism,dilutionintegrity

Extractionrecoverieswereevaluatedbycomparingtheanalyte responsesobservedin pre-spikedandpost-spiked samples.The experimentwasperformedinsixreplicates.Pre-spikedsamples werepreparedbyadding100␮LofhighQCstandardsolutionand 20␮LofISstandardworkingsolutionto900␮Lofsurrogatematrix, thenprecipitatedwithTFAandcentrifuged.Inthecase ofpost- spikedsamples,1000␮Lofsurrogatematrix(blanksample)was processedinthesameway.90␮Loftheresultingsupernatantwere mixedwith10␮LofhighQCstandardsolutionand2␮LofISstan- dardworkingsolution.Extractionrecovery(%)wascalculatedas peakareaofpre-spikedsamples/peakareaofpost-spikedsamples x100.IS-normalizedextractionrecovery(%)wasalsoexpressed fortheanalytesasextractionrecoveryoftheanalyte/extraction recoveryoftheISx100.

Thetermparallelismisgenerallyunderstoodtomeanhowwell asetofcalibrationstandardstracktheresponseoftheanalyteof interestinthebiologicalmatrix[19].Evaluationofparallelismis ofcriticalrelevancewhenusingsurrogatematrix,ashighdegree ofsuchparameterindicatesthatthereisnosignificantdifference betweentheauthenticandthesurrogatematrixwithrespectto extractionrecoveriesandmatrixeffects.Determinationofparal- lelismwascarriedoutbasedupon theexperiment proposedby Houghton etal.[20]. Endogenousconcentrationsof sixindivid- ualplasma samplesweredeterminedin triplicates bystandard addition.ThesamesampleswerespikedwithmediumQCstan- dardsolutionandwereseriallydilutedwithsurrogatematrixtwo,

(4)

4 D.Virág,M.Király,L.Drahosetal./JournalofPharmaceuticalandBiomedicalAnalysis180(2020)113018

Table1

CalibrationrangesandQClevelsoftheanalytes.

QCtype Surrogatematrix Pooledplasma

Analyte Calibrationrange(␮g/ml) QClevel(␮g/ml)

LLOQ Low Medium High

Valine 1–100 1 3 20 80 24.05

Leucine 1–100 1 3 20 80 13.09

Isoleucine 0.5–50 0.5 1.5 10 40 7.82

Phenylalanine 1–100 1 3 20 80 6.98

Tyrosine 0.5–50 0.5 1.5 10 40 11.88

Tryptophan 0.5–50 0.5 1.5 10 40 7.81

Serotonin 0.1–2.5 0.1 0.3 2 0.20

Kynurenine 0.1–2.5 0.1 0.3 2 0.44

fiveandtentimes.Thenthedilutedandundilutedsampleswere measuredagainstsurrogatecalibrators.The%REand%CVofthe back-calculatedconcentrationsweremaximizedin±15%[20].By trackingtheeffectofdilutingtheplasmawithsurrogatematrix,the methodcanalsobeconsideredasadilutionintegritytest.

2.6.4. Stability

Stability of thestock solutions and working solutions were assessed atroom temperature (20C) for 24h and at 10C for tendays.Working solutionsof theeight analyteswerestudied usingbracketingapproach:onlythelowestandthehighestcal- ibrationstandardsweremeasured.Thelatterwasalsothestock solution.Stabilityoftheanalytesinmatrixwereevaluatedusing lowandhighQCsamplespreparedinsurrogateplasmaandpooled humanplasmasamples.Eachlevelswereanalyzedintriplicates after beingexposed to different conditions:room temperature for 24h, −20C for two months and three freeze-thaw cycles.

Stability of processed samples were determined at room tem- perature for 12hand autosampler temperature (4C) for 24h.

Sampleswereconsideredstablewhen the%RE waswithin15%

[18].

2.6.5. Carryover

Carryoverwasanalyzedbyassayingblanksamples(processed surrogatematrixsamples)injectedaftertheanalysisofapooled plasmasamplespikedwiththehighestcalibrationstandard.The acceptancecriteriaweresetat20%analyteresponseoftheLLOQ fortheanalytesofinterestand5%fortheISs[18].

2.7. Applicationofthemethodtoclinicalhumanplasmasamples Thevalidated methodwasappliedto800samplescollected duringtheclinicalstudydescribedearlier.Thesamplesweremea- suredintenseparateanalyticalruns.Surrogatecalibratorswere runatthebeginningandtheendofeachbatch.Low,medium,high QCsandpooledplasma sampleswereanalyzed induplicatesat eachbatchtokeeptrackofaccuracyandprecision.Reproducibil- ityofthedescribedmethodforincurredstudysampleswastested byreanalysisof10%ofthesamples(n=80).Reanalyzedsamples wereconsideredacceptablewhenthedifferencebetweenthepairs oftheresultswerewithin20%foratleast66.7%ofthesamples [18].

3. Resultsanddiscussion

3.1. Liquidchromatography-tandemmassspectrometry

Thereisavastamountofliteratureonthequantitativedeter- minationof amino acids in plants, animal and humansamples [21–23].However,tothebestofourknowledge,nobioanalytical LC–MS/MSmethodhasbeenreportedforthesimultaneousanalysis

Table2

MRMparametersoftheanalytesandinternalstandards.

Compound Transition(m/z) Fragmentorvoltage(V) Collisionenergy(eV)

Valine 11872 10 8

Leucine 13286 2 8

Isoleucine 13286 2 8

Phenylalanine 166120 2 8

Tyrosine 182136 30 12

Tryptophan 205188 40 4

Serotonin 177160 45 4

Kynurenine 209192 45 4

Leu-d3 13589 45 4

Tyr-d2 184138 45 10

ofaminoacids,serotoninandkynurenineinhumanplasma.Amino acidsareveryoftenderivatizedinorder toenhancefluorescent detection selectivity, sensitivity or chromatographic resolution [23,24].However,thederivatizationagentcanbringanadditional sourceofinterferencesand errorsintothesystemcomplicating methodvalidation[24].Itshouldbealsotakenintoaccountthat derivatizationcansignificantlyincreasethelaborintensityofthe method,which can becrucial when thenumber of samplesto beanalyzedislarge. Inthis particularcase,where theaimwas themeasurementof800(withvalidationsamplesfarover1000) plasmasamples,weprimarilyfocusedonspeed,simplicityandhigh throughputduringmethoddevelopment.MSconditionsincluding MRMtransitions,collisionenergies(CE)andfragmentorvoltages wereindividuallyoptimizedforallanalytesandSIL-ISsinpositive ionmodebyOptimizerofAgilentMassHunterworkstationinorder toenhanceselectivityandsensitivityofthemethod.Asshownin Table2,theoptimizationprocedureresultedinsameMRMtransi- tionsforisomericaminoacidsleucineandisoleucine.Becauseof theinsufficientmassspectrometricselectivity,properchromato- graphic resolution wasnecessary to separatesuch compounds withoutcompromisingpeakshape orareasonablyshortanalyt- icalrun time. As representative MRMchromatograms in Fig.2 demonstrates,aSupelcoAscentis® ExpressC18column(3.0mm i.d.×150mm,2.7␮m)providedsatisfactoryseparationoftheana- lyteswithina6.5minrun.Anisocraticconditionconsistingof0.2%

TFA-acetonitrile(85:15,v/v)atflowrateof0.4mL/minwascho- seninordertoavoidtheneedforcolumnreequilibrationbetween consecutiveinjections.AZorbaxEclipseXDBC8guard-columnwas usedtoprotecttheanalyticalcolumn,therefore,performanceof theseparationintermsofpeakshapesandretentiontimeswas consistentthroughoutthestudy.

3.2. Validation

3.2.1. Calibrationcurves,LLOQ

Themeanregressioncoefficients(r2)foralltheanalyteswere over0.998indicatingexcellentlinearities.Thecalibrationranges weresufficienttocoveranalyteconcentrationsinalmostallhuman

(5)

Fig.2.ExtractedMRMchromatogramsoftheanalytesandinternalstandards.

plasmasamples.LLOQ is describedas thelowestconcentration withacceptableaccuracyandprecisionwhichlargelydependson thesensitivityoftheinstrument[18].However,inthisstudy,only theLLOQofserotoninandkynurenineweredeterminedwiththis approach.In thecaseof aminoacids,measurement ofaccuracy andprecisionattheLLOQmaynotbeadequate,consideringthat suchconcentrationsareoutsidethephysiologicallyrelevantrange [25].Thusthelowestcalibrationlevels,followingamorepragmatic approach,weresettobeapproximatelyonetenthoftheconcen- trationsmeasuredinpooledplasma.Thismethodsimplifiesthe preparationand dilutionofcalibrationstandardswhenworking withalargenumberofanalytes,whilecoveringtherelevantcon-

centrationrange,evenifdownregulationoftheanalytesisexpected [20,25].

3.2.2. Accuracyandprecision

Intra-day and inter-day accuracies and precisions for surro- gate matrix andpooled plasma QC samplesaresummarized in Table3.Inthisstudy,theintra-dayandinter-dayprecisionswere lessthan11.8%and14.3%,andaccuracieswerewithintheranges of87.4–114.3%and87.7–113.3%,respectively.Theresultsindicate thatthemethodisaccurateandpreciseenoughforthemeasure- mentofplasmasamples.

(6)

6 D.Virág,M.Király,L.Drahosetal./JournalofPharmaceuticalandBiomedicalAnalysis180(2020)113018

Table3

Intra-dayandinter-dayaccuracyandprecisionoftheQCsamples.

QCtype Surrogatematrix Pooledplasma

QClevel LLOQ Low Medium High

Accuracy(%) CV(%) Accuracy(%) CV(%) Accuracy(%) CV(%) Accuracy(%) CV(%) Accuracy(%) CV(%)

Intra-day

Valine 111.7 7.4 93.0 11.8 100.4 11.3 110.8 8.8 92.4 3.7

Leucine 102.7 5.7 95.3 2.5 93.8 4.9 89.7 3.3 90.9 4.0

Isoleucine 114.3 7.2 104.8 3.3 108 3.2 113.3 7.0 101.3 3.9

Phenylalanine 100.2 5.2 102.1 5.6 99.8 6.4 102.9 2.8 102.3 6.4

Tyrosine 98.6 4.3 87.4 2.5 88.9 10.5 103.7 4.2 107.0 3.3

Tryptophan 106.8 6.8 106.0 6.5 95.8 10.2 108.0 4.6 97.2 6.7

Serotonin 101.0 8.1 92.7 2.9 87.8 4.7 95.1 7.2

Kynurenine 110.7 8.2 114.3 10.1 113.4 9.4 110.9 9.7

Inter-day

Valine 107.6 10.2 96.5 11.9 97.0 9.7 111.7 9.0 91.5 5.3

Leucine 102.5 6.4 95.6 7.8 91.5 5.6 92.4 7.1 95.8 8.2

Isoleucine 114.4 8.2 106.7 9.6 103.0 6.8 112.6 8.3 106.4 8.7

Phenylalanine 102.1 7,4 100.1 7.2 96.5 6.9 104.6 8.8 108.8 5.9

Tyrosine 111.2 14.3 102.3 13.3 102.9 10.7 109.5 7.6 104.5 3.5

Tryptophan 102.9 8.1 96.7 7.6 95.4 6.3 113.3 4.7 109.5 7.0

Serotonin 99.5 14.2 87.7 7.7 91.1 7.4 89.2 9.1

Kynurenine 92.4 13.8 90.7 10.6 95.0 12.8 91.2 11.4

3.2.3. Extractionrecovery,parallelism,dilutionintegrity

Extraction recovery of the method was evaluated by com- paringthemeanpeak areaof pre-extractedand post-extracted surrogatematrix samples. The sample preparation process did not influence considerably the concentrations of the analytes anISs(extraction recoveriesvariedbetween85.2–101.4%).Fur- thermore,theIS-normalizedextractionrecoveryvalueshighlight that the selected SIL-ISs are appropriate references of the analytes (IS-normalized extraction recoveries varied between 93.6–111.8%). Results of extraction efficiency evaluation are detailedinTable4.

Fortheparallelismexperiment,backgroundconcentrationsof theindividualplasmasamplesweredeterminedbystandardaddi- tion.Evaluationofthesamesampleswithsurrogatecalibrators resulted very similar concentrations for all theanalytes (RE is lessthan10%).Fig.3illustrates theuseof standardadditionto assessparallelismwithsurrogatematrix methodin thecase of isoleucine.Moreover,themeasuredanalyteconcentrationsinthe spikedsamples at each dilution levels were within the accep- tancecriteria,whichindicatesthatthesurrogatematrixbehaves similarlytotheauthenticbiologicalmatrix.Fig.4illustratesthe relatively balanced accuracy profile of a representative plasma samplewhendilutedzero-two-,five-,ten-timeswithsurrogate matrix.

3.2.4. Stability

Thestocksolutionsandworkingsolutionsoftheanalytesand internalstandardswerestable foratleast24hat20C and for 10daysat10C,respectively.Humanplasmasamplesfrozento

−20Candthawedtoroomtemperatureforthreecyclesdidnot changeconsiderablytheconcentrationsof theanalytes.Human plasmaandsurrogatematrixspikedwithQCstandardswerestable atroomtemperaturefor24hand−20Cfor2months.Noapparent changewasobservedintheconcentrationsoftheprocessedsam- plesafterbeing24hatautosamplertemperature(4C)and12hat roomtemperature.

3.2.5. Carryover

Carryoverwasanalyzedbyinjectingblanksamplesafterpooled plasmaspikedwiththehighest calibrationstandard.AsTable5 demonstrates, responses of the analytes were 0.7–17.2% and 0.8–1.0%fortheinternalstandards,respectively.

3.3. Applicationofthemethodtoclinicalhumanplasmasamples Thevalidatedmethodwassuccessfullyappliedinsupportof aclinicalstudytomeasuretheplasmaconcentrationoftheeight analytesin 800humanplasmasamplesobtainedfrommigraine patientsand healthyindividuals.Valine,isoleucineandtyrosine concentrationswereabovetheULOQinlessthan1%ofthesam- ples.Insuchcases,anotheraliquotofthesampleweredilutedtwo timeswithsurrogatematrix,thenprocessedandmeasuredagain.

AccuracyandprecisionoftheQCsamplesdidnotchangeconsid- erablycomparedtotheresultsofthemethodvalidation,incurred samplereanalysiswasalsowithintheacceptancecriteria.Table6 summarizestheconcentrationrangesin800studysamples.

3.4. Strategiesforquantitativeanalysisofendogenous compounds

Regulatoryguidancesare designedprimarilytoaddressvali- dationofdrugmoleculesaswellastheirmetabolites.However, reflecting on the challenges of endogenous analytes, the draft version ofthe ICHguideline of bioanalytical methodvalidation dedicatesasectionforthequantitativedeterminationofthesecom- pounds,inwhichtheabove-mentionedquantitationstrategiesare detailed[26].Consideringthatbothmethodshaveadvantagesand limitations,theirapplicabilityisdeterminedbythespecificanalyt- icalchallenge.Inthepresentcase,whenthenumberofsamplesto beanalyzedislargeandtheamountofeachsampleisrelatively low(insomecases1mLorless),theuseofstandardadditionis narrowedbytherequirementformultiplemeasurementsofevery studysamples.Comparedtohealthyindividuals,downregulation ofcertainanalytesisexpectedinmigrainepatients,whichmeans that sampleswithlowerconcentration thanthecontrol matrix shouldbetakenintoaccount.Therefore, theuseofbackground subtractionis not recommendeddue tothepotentialmeasure- menterrors introducedbyextrapolationbeyondthecalibration range[20]. Thesituationisfurthercomplicatedwhen thereare multipleanalyteswithvariableendogenouslevels[17].Surrogate analyteinauthenticmatrixtypicallyrequirestwoversionsofSIL- ISsoftheanalyteofinterest[10].Despitebeingawell-accepted approach,itsapplicationislimitedbytheavailabilityandhighprice ofstableisotope-labeledanalogs,especiallywhentheanalysisof numerousanalytesisneeded.Undersuchcircumstances,surro- gatematrixapproachmaybethemethodofchoice,whichenables reliablequantitationofmultipleanalyteswithrelativelylowlabor

(7)

Table4

Meanextractionrecoveriesoftheanalytesandinternalstandardsinsurrogatematrix.

Valine Leucine Isoleucine Phenylalanine Tyrosine Tryptophan Serotonin Kynurenine Leu-d3 Tyr-d2

Extractionrecovery(%) 87.5 101.3 88.6 101.4 95.0 95.1 85.2 97.2 90.6 91.0

IS-normalizedextractionrecovery(%) 96.6 111.8 97.8 111.3 104.4 104.5 93.6 106.7

Fig.3.Illustrationoftheuseofstandardadditiontoassessparallelism.Endogenousconcentrationsweredeterminedbysurrogatecalibrationandbyextrapolatingtothe negativex-interceptfromthestandardadditioncalibrationcurve.Similarityoftheresultsindicatingparallelismbetweenhumanplasmaandtheartificialmatrix.

Fig.4.Assessmentofparallelismusingdilutionlinearitytest.Spikedhumanplasmasamplesweremeasuredagainstsurrogatecalibratorswhendilutedtwo-,five-,ten-times andnondiluted.Thedatawasthemeanoftriplicates.Theanalyteconcentrationsweremultipliedbythedilutionfactors.

Table5

Carryoveroftheanalytesandinternalstandards.

Valine Leucine Isoleucine Phenylalanine Tyrosine Tryptophan Serotonin Kynurenine Leu-d3 Tyr-d2

Carryover(%) 17.2 4.8 8.3 2.1 8.7 0.7 2.6 2.7 1.0 0.8

intensity,evenwhendownregulationoftheanalytesisexpected [1,7,9].Apotentialdrawbackofthemethodisthesystematicerror thatmay beintroducedbythelack ofparallelismbetweenthe biofluidandthesurrogatematrix[19,20].However,parallelismcan beensuredbythepropercompositionofthesurrogatematrixand monitoredbydilutionlinearitytestingorstandardaddition[19].

Usingstandardadditiontoinvestigateparallelismclearlyindicates thatfit-for-purposestrategiesshouldbeconsideredascomponents ofananalyticaltoolbox,thosecanbeappliedindividuallyandin combinationtomakesurethatnoneofthevalidationcriteriaare compromised.

Table6

Concentrationrangesoftheanalytesin800studysamples.

Analyte Concentrationrange(␮g/ml)

Valine 4.63–115.58

Leucine 6.31–71.42

Isoleucine 1.68–97.66

Phenylalanine 1.65–36.76

Tyrosine 1.16–82.20

Tryptophan 1.17–39.35

Serotonin 0.27–1.70

Kynurenine 0.10–2.04

(8)

8 D.Virág,M.Király,L.Drahosetal./JournalofPharmaceuticalandBiomedicalAnalysis180(2020)113018

4. Conclusion

A simple, fast and reproducible LC–MS/MSbased bioanalyt- icalmethod hasbeen developed for simultaneous quantitation ofvaline,leucine,isoleucine,phenylalanine,tyrosine,tryptophan, serotoninandkynurenineinhumanplasma.Thechromatographic method wascapable to separate isomeric amino acids leucine andisoleucine.Afit-for-purposevalidationapproachwasadopted byemployingsurrogatematrixforcalibration,andpartlyforthe constructionofQC samples.Thesurrogatematrix wasfoundto beparallelwithhumanplasma,when investigatedbystandard additionanddilutionintegritytesting.Somequantitationandval- idationissues of endogenous compounds have been discussed.

Themethodwasabletomeetthecriteriaimposedbytheregu- latoryguidances ofEMAand FDA[18,27],and demonstratedits valueintheanalysisofatotalnumber800humanplasmasam- ples.

Funding

This work wassupported by the Hungarian Brain Research Program–GrantNo.KTIANAP13-2-2015-0001(MTA-SE-NAPB GeneticBrain ImagingMigraine Research Group), by the Hun- garianAcademyofSciences(MTA-SENeuropsychopharmacology and Neurochemistry Research Group), and by the Hungarian Brain Research Program – Grant No. 2017-1.2.1- NKP-2017- 00002. GK was supported by the New National Excellence ProgramoftheMinistryofHuman Capacities(ÚNKP-18-2-I-SE- 86).

ThestudywasalsofinancedbytheHigherEducationInstitu- tionalExcellenceProgrammeoftheMinistryofHumanCapacities inHungary,withintheframeworkofthemolecularbiologythe- maticprogrammeofSemmelweisUniversity.

DeclarationofCompetingInterest Authorsdeclarenoconflictofinterest.

References

[1]M.Deen,C.E.Christensen,A.Hougaard,H.D.Hansen,G.M.Knudsen,M.

Ashina,Serotonergicmechanismsinthemigrainebrain—asystematicreview, Cephalalgia37(2017)251–264,http://dx.doi.org/10.1177/

0333102416640501.

[2]P.J.Goadsby,P.R.Holland,M.Martins-Oliveira,J.Hoffmann,C.Schankin,S.

Akerman,Pathophysiologyofmigraine:adisorderofsensoryprocessing, Physiol.Rev.97(2017)553–622,http://dx.doi.org/10.1152/physrev.00034.

2015.

[3]HeadacheClassificationCommitteeoftheInternationalHeadacheSociety (IHS),Theinternationalclassificationofheadachedisorders,3rdedition, Cephalalgia38(2018)1–211,http://dx.doi.org/10.1177/0333102417738202.

[4]G.Juhasz,T.Zsombok,E.A.Modos,S.Olajos,B.Jakab,J.Nemeth,J.Szolcsanyi,J.

Vitrai,G.Bagdy,NO-inducedmigraineattack:strongincreaseinplasma calcitoningene-relatedpeptide(CGRP)concentrationandnegative correlationwithplateletserotoninrelease,Pain106(2003)461–470.

[5]R.C.A.Guedes,M.dasG.R.deAraújo,T.C.Verc¸osa,F.M.Bion,A.L.deSá,A.

Pereira,R.Abadie-Guedes,Evidenceofaninversecorrelationbetween serotonergicactivityandspreadingdepressionpropagationintheratcortex, BrainRes.1672(2017)29–34,http://dx.doi.org/10.1016/j.brainres.2017.07.

011.

[6]P.D.Drummond,Tryptophandepletionincreasesnausea,headacheand photophobiainmigrainesufferers,Cephalalgia26(2006)1225–1233,http://

dx.doi.org/10.1111/j.1468-2982.2006.01212.x.

[7]J.D.Fernstrom,Largeneutralaminoacids:dietaryeffectsonbrain

neurochemistryandfunction,AminoAcids45(2013)419–430,http://dx.doi.

org/10.1007/s00726-012-1330-y.

[8]S.N.Young,Acutetryptophandepletioninhumans:areviewoftheoretical, practicalandethicalaspects,J.PsychiatryNeurosci.38(2013)294–305, http://dx.doi.org/10.1503/jpn.120209.

[9]L.Vécsei,L.Szalárdy,F.Fülöp,J.Toldi,KynureninesintheCNS:recent advancesandnewquestions,Nat.Rev.DrugDiscov.12(2013)64–82,http://

dx.doi.org/10.1038/nrd3793.

[10]W.Jian,R.W.Edom,N.Weng,Importantconsiderationsforquantitationof small-moleculebiomarkersusingLC–MS,Bioanalysis4(2012)2431–2434, http://dx.doi.org/10.4155/bio.12.247.

[11]Y.Huang,A.Louie,Q.Yang,N.Massenkoff,C.Xu,P.W.Hunt,W.Gee,Asimple LC–MS/MSmethodfordeterminationofkynurenineandtryptophan concentrationsinhumanplasmafromHIV-infectedpatients,Bioanalysis5 (2013)1397–1407,http://dx.doi.org/10.4155/bio.13.74.

[12]J.Jiang,C.A.James,P.Wong,Bioanalyticalmethoddevelopmentand validationforthedeterminationofglycineinhumancerebrospinalfluidby ion-pairreversed-phaseliquidchromatography-tandemmassspectrometry, J.Pharm.Biomed.Anal.128(2016)132–140,http://dx.doi.org/10.1016/j.jpba.

2016.05.019.

[13]X.Lai,J.A.Kline,M.Wang,Development,validation,andcomparisonoffour methodstosimultaneouslyquantifyl-arginine,citrulline,andornithinein humanplasmausinghydrophilicinteractionliquidchromatographyand electrospraytandemmassspectrometry,J.Chromatogr.BAnal.Technol.

Biomed.LifeSci.1005(2015)47–55,http://dx.doi.org/10.1016/j.jchromb.

2015.10.001.

[14]N.C.vandeMerbel,K.J.Bronsema,M.W.J.vanHout,R.Nilsson,H.Sillén,A validatedliquidchromatography-tandemmassspectrometrymethodforthe quantitativedeterminationof4␤-hydroxycholesterolinhumanplasma,J.

Pharm.Biomed.Anal.55(2011)1089–1095,http://dx.doi.org/10.1016/j.jpba.

2011.03.017.

[15]Y.Shi,X.Xu,M.Fang,M.Zhang,Y.Li,B.Gillespie,S.Yorke,N.Yang,J.C.

McKew,W.A.Gahl,M.Huizing,N.Carrillo-Carrasco,A.Q.Wang,Quantitative hydrophilicinteractionchromatography-massspectrometryanalysisof N-acetylneuraminicacidandN-acetylmannosamineinhumanplasma,J.

Chromatogr.BAnal.Technol.Biomed.LifeSci.1000(2015)105–111,http://

dx.doi.org/10.1016/j.jchromb.2015.07.018.

[16]A.Q.Wang,B.P.Wei,Y.Zhang,Y.J.Wang,L.Xu,K.Lan,Anultra-highsensitive bioanalyticalmethodforplasmamelatoninbyliquid

chromatography-tandemmassspectrometryusingwaterascalibration matrix,J.Chromatogr.BAnal.Technol.Biomed.LifeSci.879(2011) 2259–2264,http://dx.doi.org/10.1016/j.jchromb.2011.06.010.

[17]R.Thakare,Y.S.Chhonker,N.Gautam,J.A.Alamoudi,Y.Alnouti,Quantitative analysisofendogenouscompounds,J.Pharm.Biomed.Anal.128(2016) 426–437,http://dx.doi.org/10.1016/j.jpba.2016.06.017.

[18]EuropeanMedicinesAgency,CommitteeforMedicinalProductsforHuman Use,GuidelineonBioanalyticalMethodValidation,2011,July2011https://

www.ema.europa.eu/en/documents/scientific-guideline/guideline- bioanalytical-method-validationen.pdf(Accessed4November2019).

[19]B.R.Jones,G.A.Schultz,J.A.Eckstein,B.L.Ackermann,Surrogatematrixand surrogateanalyteapproachesfordefinitivequantitationofendogenous biomolecules,Bioanalysis4(2012)2343–2356,http://dx.doi.org/10.4155/bio.

12.200.

[20]R.Houghton,C.HorroPita,I.Ward,R.Macarthur,Genericapproachto validationofsmall-moleculeLC–MS/MSbiomarkerassays,Bioanalysis1 (2009)1365–1374,http://dx.doi.org/10.4155/bio.09.139.

[21]N.Zheng,H.Xiao,Z.Zhang,X.Gao,J.Zhao,Rapidandsensitivemethodfor determiningfreeaminoacidsinplanttissuebyhigh-performanceliquid chromatographywithfluorescencedetection,ActaGeochim.36(2017) 680–696,http://dx.doi.org/10.1007/s11631-017-0244-5.

[22]M.K.Dhillon,S.Kumar,G.T.Gujar,AcommonHPLC-PDAmethodforamino acidanalysisininsectsandplants,IndianJ.Exp.Biol.52(2014)73–79.

[23]G.Sharma,S.V.Attri,B.Behra,S.Bhisikar,P.Kumar,M.Tageja,S.Sharda,P.

Singhi,S.Singhi,Analysisof26aminoacidsinhumanplasmabyHPLCusing AQCasderivatizingagentanditsapplicationinmetaboliclaboratory,Amino Acids46(2014)1253–1263,http://dx.doi.org/10.1007/s00726-014-1682-6.

[24]J.Pawliszyn,HandbookofSolidPhaseMicroextraction,Elsevier,Amsterdam, 2012,http://dx.doi.org/10.1016/C2011-0-04297-7.

[25]N.C.vandeMerbel,Quantitativedeterminationofendogenouscompoundsin biologicalsamplesusingchromatographictechniques,TrACTrendsinAnal.

Chem.27(2008)924–933,http://dx.doi.org/10.1016/j.trac.2008.09.002.

[26]EuropeanMedicinesAgency,CommitteeforMedicinalProductforHuman Use,ICHGuidelineM10onBioanalyticalMethodValidation,DraftGuidance, 2019,March2019https://www.ema.europa.eu/en/documents/scientific- guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b en.pdf(Accessed4November2019).

[27]U.S.DepartmentofHealthandHumanServices,FoodandDrug

Administration,GuidanceforIndustry,BioanalyticalMethodValidation,2018, May2018https://www.fda.gov/files/drugs/published/Bioanalytical-Method- Validation-Guidance-for-Industry.pdf(Accessed4November2019).

Ábra

Fig. 1. Chemical structure of the eight analytes and two internal standards.
Fig. 2. Extracted MRM chromatograms of the analytes and internal standards.
Fig. 3. Illustration of the use of standard addition to assess parallelism. Endogenous concentrations were determined by surrogate calibration and by extrapolating to the negative x-intercept from the standard addition calibration curve

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The assay was developed and validated using LC-MS/MS and clinically tested by analyzing ERNDIM Diagnostic Proficiency Testing (DPT) samples and further specimens from patients

Therefore, the aim of this study was to investigate the difference in the effect of full strength and half-strength MS media modified with amino acids L-proline and L-asparagine,

A short ultra high-performance liquid chromatography (UHPLC)–tandem mass spectrometry (MS/MS) method was validated for targeted analysis of TRP and its 11 most important

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

Then, I will discuss how these approaches can be used in research with typically developing children and young people, as well as, with children with special needs.. The rapid

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

The “silence” that is filled in the “moment” as a means for the reader and Candy to form, if you will, a surrogate agapic relationship in the image of George and Lennie in