• Nem Talált Eredményt

and activity photocatalytic templates Carbon sphere for TiO hollow structures: Preparation,characterization Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Ossza meg "and activity photocatalytic templates Carbon sphere for TiO hollow structures: Preparation,characterization Catalysis Today"

Copied!
9
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Carbon sphere templates for TiO 2 hollow structures: Preparation, characterization and photocatalytic activity

Balázs Réti

a

, Gabriella Ilona Kiss

a

, Tamás Gyulavári

a

, Kornelia Baan

b

, Klara Magyari

c

, Klara Hernadi

a,d,∗

aDepartmentofAppliedandEnvironmentalChemistry,FacultyofSciencesandInformatics,UniversityofSzeged,Rerrichtér1,H-6720Szeged,Hungary

bDepartmentofPhysicalChemistryandMaterialScience,UniversityofSzeged,TiszaLajoskrt.84,H-6720Szeged,Hungary

cInterdisciplinaryResearchInstituteonBio-Nano-Sciences,Babes-BolyaiUniversity,M.Kogalniceanu1,400084Cluj-Napoca,Romania

dResearchGroupofEnvironmentalChemistry,InstituteofChemistry,FacultyofSciencesandInformatics,UniversityofSzeged,Dómtér7,H-6720Szeged, Hungary

a r t i c l e i n f o

Articlehistory:

Received21June2016

Receivedinrevisedform22October2016 Accepted21November2016

Availableonline28November2016

Keywords:

Carbonspheres Titaniumdioxide Hollowstructure Photocatalysis Phenol

a b s t r a c t

TiO2 hollowstructures(HS)weresynthesizedbycarbonspheretemplateremovalmethod.Nanome- tersizedcarbonspheres(CS)werepreparedbymildhydrothermaltreatmentofordinarytablesugar (sucrose).Thesizeofthesespherescanbecontrolledbytheparametersofthehydrothermaltreatment (e.g.timeandpH).TheobtainedCSswerecharacterizedbyscanningelectronmicroscopy(SEM),Raman spectroscopy,infraredspectroscopy(IR),X-raydiffraction(XRD)andthermogravimetry(TG).CSswere successfullycoatedwithTiO2viasol–gelmethod.ThephasecompositionoftheTiO2hollowsphereswere controlledbytheannealingtemperatureduringcrystallizationandCSstemplateremoval.TiO2hollow structures(HSs)werecharacterizedbySEM,XRD,Ramanspectroscopy,TGandenergy-dispersiveX-ray spectroscopy(EDX).PhotocatalyticperformanceoftheTiO2HSswasevaluatedbyphenoldegradationin abatch-typefoamreactorunderlowpoweredUV-Airradiation.Thedegradationreactionwasfollowed byhigh-performanceliquidchromatography(HPLC)andtotalorganiccarbon(TOC)measurementtech- niques.Photocatalyticactivitytestresultspointedoutthatincreasedrutilecontentuptoacertainextent (resultingmixedphaseanatase-rutileTiO2)effectsadvantageouslythephotocatalyticperformanceof TiO2HSsandtheuniquemorphologyprovedtoenhancethephotocatalyticactivity(sixtimes)aswellas TOCremovalefficiency(twelvetimes)comparedtothesamplewhichwaspreparedbythesamemethod withouttheCSs.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Sincetheindustrial revolutionthewaterpollution gradually becamemoreandmoresignificant,andnowadaysitisaburning environmentalissue[1,2].Amongthemanyhazardouswaterpol- lutants[3,4],phenolisoneofthemoststudiedbecauseitcanbe originatedfrombothanthropogenicandnaturalsources[5–7].The purificationofthisessentialmediaisimperative.Fortunately,there arealready manyeffectivetechnologicalandtechnicalsolutions toachievetheeliminationofvariouswatercontaminants.How- ever,there arechemicals which arenot removablefrom water by conventional methods due to their stability and/or toxicity

Correspondingauthorat:DepartmentofAppliedandEnvironmentalChemistry, FacultyofSciencesandInformatics,UniversityofSzeged,Rerrichtér1,SzegedH- 6720,Hungary.

E-mailaddress:hernadi@chem.u-szeged.hu(K.Hernadi).

towardsmicroorganisms(e.g.pesticides,antibiotics,pharmaceu- ticalmetabolites,etc.).Advancedoxidationprocesses(AOPs)are effectivemethodsfortheneutralizationofthesepersistentcon- taminants[8].Heterogeneousphotocatalysisisapromisingbranch ofAOPtechnologies.

Titaniumdioxide(TiO2)isann-typesemiconductortransition metaloxidepossessingmanyadvantageouspropertiestobecon- sideredoneofthemostpromisingphotocatalystmaterials[9,10].It ischeap,photostable,non-toxicandbiocompatible.Heterogeneous photocatalysisis a very complex photoinduced process onthe surfaceofsemiconductorparticles[11–14].Duringthephotoexci- tationofasemiconductorparticlewithenergyequalorgreaterthan itsbandgap(Eg)anelectronisexcitedtotheconductionband(CB) fromthevalenceband(VB)leavingavacancy(hole;h+)behind.

TiO2 polymorphspossessinherentlydifferentbandgapenergies (Eg∼3.2eV=388nm;Eg∼3.0eV=413nmforanataseandrutile, respectively)[15].Thephotogeneratedchargecarriers(eandh+)

http://dx.doi.org/10.1016/j.cattod.2016.11.038 0920-5861/©2016ElsevierB.V.Allrightsreserved.

(2)

arecapabletomigratetothesurfaceoftheparticleorbeingtrapped atvarioussites[13].Ifthechargecarriersareabletoreachthe surfacetheymaytakepartinredoxreactionswithappropriate donorandacceptorspecies.Inaqueousmedia,importantdonorand acceptormoleculesareOH(H2O)anddissolvedO2,respectively, andtheyformhighlyreactiveandoxidativeOHandO2•−radicals [16].Theoverallphotocatalyticactivityofamaterialisdependent ofmanyfactors[17].Inmostcases,crystalphasecompositionis determinativeregardingthephotocatalyticperformance.However, mixedphase(particularlyanatase-rutile)TiO2photocatalystsmay possesselevatedactivitiesmostpresumablyduetotheirinterfacial interactions[18–24].

There is a tremendous effort in the investigation of carbon (nano)materialssincethediscoveryoffullerenes[25].Researchers preparedcarbonmaterialswithvarioussizesandshapes(e.g.fibers, onions, horns, (nano)tubes, etc.) [26]. Carbon spheres (CS) are recentlyregainedscientificinterestduetotheirpromisingappli- cationinbatterycathodes[27],fuelcells[28]andcatalystsupports [29,30].CSscanbepreparedbynumeroussynthesistechniques:

arc-discharge,CVD,hydrothermalmethodetc.[31].Aconvenient routeto produce micro- or nanosized CSsis the hydrothermal dehydrationand carbonizationofdifferentcarbohydrates(most commonlyglucose)[32,33].

Titaniumdioxidehollowspherescanbepreparedbyusingthe abovementionedCSsasremovabletemplates.Thus,thediameterof theTiO2hollowstructuresisfinelytunable.Theseobjectsareinter- estingnotjustbecausetherelowapparentdensity[34]buttheir uniqueopticalproperties[35–37].Theseattributescanbeexploited in either photocatalyticapplications orin DSSCs [38]. Asmen- tioned,themostcommonlyusedroutetoprepareTiO2(andother metaloxide)hollowspheresistemplateremovalmethod[39].Lv etal.studiedtheefficiencyofsurfacefluorinatedTiO2HSprepared viahydrolysis–precipitatemethod(usingsulfonatedpolystyrene beadsastemplates)inbrilliantredX3Bphotocatalyticdegradation reaction[40].Aoetal.preparedTiO2HSsbyprecipataionofTiO2 ontothesurfaceofhydrothermallypreparedCSsanddemonstrated enhancedphotocatalyticactivityinphotocatalyticdecomposition ofmethyleneblue[41].

Herein,wedescribethepreparationofcarbonspheretemplates fromordinarytablesugarviafacilehydrothermalmethodandtheir useastemplatesforTiO2hollowstructuresynthesis.Weintended toinvestigatetheeffectofvarioussynthesisparameters(time,pH) ontheyieldandsizeoftheCSs.TheCSsamplewithappropriatesize distributionwasselectedasremovabletemplatefortheprepara- tionofTiO2hollowstructures.Wehavestudiedthecrystalphase compositionofthehollowspheresformedduringheattreatment atdifferenttemperaturesandtheeffectofthisparameterontheir photocatalyticactivityinphenoldecompositionreaction.

2. Experimental

2.1. Materials

Allchemicalswereusedasreceivedwithoutfurtherpurification.

Duringtheexperiments,Milli-Qwater(Millipore,18.2Mcm)and absoluteethanolwasused(VWRProlabo).Carbonspheresynthe- sis:Ordinarytablesugar(sucrose,MagyarCukorZrt.,KoronásTM) wasused as carbon source.The desired pHwas adjusted with hydrochloricacid(37wt%,a.r.,Molar)orwithsodiumhydroxide (50wt%, a.r., Molar). TiO2 hollow structure synthesis: The tita- niumprecursor wastitanium(VI)butoxide (Fluka,≥97%purum, [Ti(O-CH2CH2CH2CH3)4]).Photocatalytictestreactions:Themodel pollutantwasphenol(VWR, extrapure) and duringthe exper- iments oxygen gas (Messer, 2.5) was used. Methanol (VWR

HiperSolvChromanorm)wasusedduringtheeluentpreparation fortheHPLCanalysis.

2.2. Samplepreparation

First, CSs were synthesized via hydrothermal treatment. All hydrothermalexperimentswerecarriedoutinapreheateddrying ovenat180CusingaTeflon-linedstainlesssteelautoclavewith totalvolumeof275cm3.DuringeachCSpreparations,80cm3of 50g/dm3sucrosesolutionwastreated(Vfill/Vtot=29%).Theeffect ofhydrothermal treatmenttime (3,6, 12,18h)wasstudiedon theresultedproduct.ToinvestigatetheeffectofpH,thesucrose solutionwasadjustedby HClor NaOHsolutionstoachieve the desiredvalues(3,7,12;forthesakeofnotation,theunmodified sucrose solutionwillbeconsideredas pH7 sincesucrose does notinherentlychangethepHwhendissolvedinwater,thusthe pHofthissolutionis∼7).Afterthehydrothermaltreatment,the autoclave wasleftto cooltoroomtemperature naturally,then thebrownish-blackproductwascollected.Thesampleswerecen- trifuged(4000rpm,20min)andredispersedinwaterthreetimes.

Then,theywerefilteredwithamembranefilterapparatus(Milli- pore,DuraporePVDFmembrane,47mm,0.1␮m)andwashedwith hotwater,thanwiththreealiquot5,15,45V/V%ethanol/water mixturestoremoveresidualorganiccontaminants.Thesolidprod- uctwasdriedinairat70Cfor18h.SamplelabelingfortheCSs willbethefollowing:CS-t-pH,where‘t’isthetimeofhydrothermal treatment,‘pH’isthepHofthestartingsucrosesolution.

TheCSsamplewiththepreferredpropertieswasusedasatem- plateforthesynthesisofTiO2hollowstructures.2goftheCSswas suspended in130cm3 ethanol viaultrasonicationand0.64cm3 waterwasaddedtothesuspension(namedasmixture“A”).4cm3 titanium(IV)butoxidewasaddedto70cm3absoluteethanolunder vigorousstirring(namedasmixture“B”).Mixture“B”wasadded dropbydrop(∼2cm3/min)tomixture“A”undervigorousstirring.

Themolarratiowasn(Ti):n(H2O)=1:3.Afterthefulladditionof thetwomixtures,itwaslefttobestirredfor1handthenitwas filteredandwashedwith10cm3ethanolthreetimes.Theproduct wasdriedinairat70Cfor18h.Theabovedescribedprocesswas repeatedthreetimesandtheportionswereunited.Thewholecoat- ingprocesswasrepeatedunderthesameconditionsexpectthatfor startingmaterialwasthepreviouslycoatedcarbonspheres(instead ofpristineCSs)andallprecursor,ethanolandwaterquantitieswere tripled.Aliquotamountofsampleswereannealedinastaticfur- naceinairwithaheatingrateof5C/minfor4hat400,500,600, 700CtoremovetheCScoreandsimultaneouslyconverttheamor- phoustitaniaphasetocrystallineTiO2.TiO2referencesamplewas preparedviaexactlythesamemethodasTiO2HSswere,except thatduringthesynthesisprocedureCSswerenotadded.Refer- encesamplewascalcinatedwithheatingrateof5C/minfor4hat 500Cinair.(CharacterizationofthereferenceTiO2canbefound inSupplementarymaterial.)

2.3. Characterizationtechniques

Thestructure and morphologyof theprepared sampleswas investigatedwithscanningelectronmicroscopy(HitachiS-4700 TypeIIFE-SEM).Crystalstructureandphasecompositionwasmea- suredwithX-raydiffractometry(RigakuMiniFlexIIDiffractometer) usingCuK␣radiation.Thermogravimetricanalysis(NetzschSTA 409PCconnectedtoaPfeifferQMS200massspectrometersystem) wasperformedinoxygenflow(40cm3/min)with5C/minheating rateusing∼100mgsample.Ramanspectrumwastaken(Thermo ScientificDXRRamanMicroscope)utilizing532nmlaserirradia- tion.FT-IRspectrumwastakenusingaBioradFTS-60AFT-IRdevice usinganATRmoduleonanair-drysample.Theconcentrationof phenolwasmeasuredwithaHPLCtechnique(MerchHitachisys-

(3)

Fig.1.Theeffectofsynthesistimeontheyieldofthecarbonspheres.

tem).LiChrospherRP-18ecolumn andV(methanol):V(H2O)=1:1 eluentwasusedduringtheHPLCanalysis.Totalorganiccarboncon- tentofphenolsolutionwasdeterminedbeforeandafter(samples werecentrifugedfirst)thephotocatalytictestreactions(Analytik JenaMultiN/C3100).

2.4. Evaluationofphotocatalyticefficiencies

Photocatalyticdegradationofthephenolmodelpollutantwas carried out in a cylindrical shape batch-type suspension foam reactorequippedwiththermostatingjacketmadefromglass.The diameter of the inner tube was 45mm (V=250cm3). To pro- vide sufficient mixing and dissolved oxygen level, oxygen gas was bubbled though a fritted glass to the solution with flow rate of 430–450cm3/min. The UV-A lamp (Sylvania Blacklight F6W/T5/BL350) was immersed in the center in a quartz tube (25mmin diameter). All photocatalytic experimentswere per- formedat 25±0.5C. The initialphenol concentration and the photocatalyst load was 1×104mol/dm3 and 0.5g/L, respec- tively. The photocatalyst sample was added to the 200cm3 1×10−4mol/dm3 phenolsolutionand sonicated for5min then transferredtothephotoreactor.Thephotocatalystsuspensionwas lefttobestirredindarkfor30mintoreachadsorption/desorption equilibrium.Atthatpoint,theUVlampwasswitchedonandsam- plesweretakeninregulartimeintervals.Totalirradiationtimewas 90min.Eachphotocatalyticexperimentsweredoneinduplicateto checkreproducibility.

Aftertheexperiment,theacquiredsampleswerecentrifugedat 16000RCF.Eachsamplewasfilteredbyasyringefilter(Whatman, Anotop25+,0.02␮m)toremoveeventhefinesparticlespriorthe HPLCanalysis(0.9cm3/minflowrate,UV–visdetectionat210nm).

TOCcontentwasdeterminedtoevaluatetheoverallmineralization potentialofthephotocatalysts.

3. Resultsanddiscussion

3.1. Carbonspheres

3.1.1. Theeffectofsynthesistime

First,asanimportantaspectofanysyntheticprocedure,the effectofthedurationofhydrothermaltreatmentwasstudiedon theyieldandthesizedistributionoftheCSs.Afterthepreparation ofCSs,theyield(definedasmCS/msucrose)wascalculatedandits dependenceonthesynthesistimeisshowninFig.1.Bytheendof thethreehourreactiontheyieldwasverylow(1.4%),whichcan beexplainedbythelownucleationrateoftheCSseeds.Increased reactiontimeleadstoincreasedyield,butaftertwelvehoursthe changeinyieldislesseningandmostprobablyleadingtosaturation

duetotheconsumptionofthesucrose(accordingtoourdatathe estimatedmaximumyieldisaround30%).Basedonthesefinding, sufficientyieldsareachievablebyapplyingatleast12hreaction time.Themorphologyandsize(diameter)oftheCSswereinvesti- gatedbySEMtechnique(Fig.2).Afterjustthreehoursofreaction time(CS-3-7),well-definedspherestructureswereobserved.The particlesizedistributionwasrathernarrow;mostofthespheres hadadiameteraround350nm.Sixhoursofhydrothermaltreat- mentresultedsimilarproduct(CS-6-7)comparedtothesample CS-3-7.Therathernarrowsizedistributionisshiftedtowardsbig- gerparticlesizes;theaverageparticlesizewasaround590nm.

ThesizedistributionoftheCS-12-7samplewaswidercompared tothepreviouslymentionedone;aswellastheaveragesizeof thesphereswasincreasedto∼660nm.Inthissamplejointspheres wereformedbuttheycouldbeobservedinarelativelylowamount.

OntheSEMpictureofCS-18-7,CSswithgreatersize werealso detectable,andjointstructuresweremoreprominent.Theaver- agesizeofthespheres isincreasedto∼700nmand widersize distributioncouldbeobserved.Overall,atshortersynthesistimes thenucleationofCSswasmoresignificant,andlateronthenucle- ationsloweddownand thegrowthofCSbecamethedominant process.Combiningtheexperienceswiththeonesregardingthe yields,furtherexperimentsweredonewith12hofsynthesistime.

3.1.2. TheeffectofpH

Afterfinding themostconvenient but satisfactory synthesis time,theeffectofpHwasinvestigatedonthemorphologyofthe CSs.ThepHvaluesofthesucrosesolutionsweresetto3and12 beforethe hydrothermal treatment (samplewith pH 7, CS-12- 7,hasalready beendemonstrated intheprevioussection).The yieldofthesesynthesizeswere23%,26%and28%fortheCS-12-3, CS-12-7,CS-12-12,respectively.Onlyaslightincreasewasnotice- ablewithincreasingpH.Fig.3showsconspicuouslythedifference betweentheCS-12-3synthesizedunderacidic,andtheCS-12-12 underbasicconditions.CS-12-3samplepreparedinacidicmedia showedquitewideparticlesizedistributionandhaveanaverage particlesizearound810nm.Larger,jointparticlesarealsopresent inthesample.CS-12-7sampleownsimilarparticlesizedistribu- tiontoCS-12-3,however,theaverageparticlesizewasdecreased toaround660nm.CS-12-12sampleshowednarrowersizedistri- butioncomparedtothepreviouslydiscussedsamples.Theaverage particlesizewasaround400nmandthepresenceofjointparticles wasnotprominent.Accordingtotheseresultsitcanbeconcluded thatthepHofthesucrosesolutionhassignificantimpactonthesize ofthepreparedCSs.Aplausibleexplanationofthephenomenon canbethefollowing:Sucrosefirstundergoesdehydrationreaction resulting HMF (5-(hydroxymethyl)-2-furaldehyde) which then take part in polymerization and aldol condensation reactions [32,33,42].Itisreportedthataldolreactionofcyclicandaromatic ketones/aldehydesaremorefavorableunderalkalineconditions [43].Thus, thismayleadtofasteraccumulationofpolymerized specieswhicheventuallyresultsrapidnucleation.Subsequently, particlegrowthismoredecisiveinthelaterperiodofthehydrother- malprocess resultingincreased numberof smallerparticles. In acidicmedia,thenucleationissomewhatelongated,followedby particlegrowthresultinglargerparticles and wideparticlesize distribution.SinceCS-12-12sampleshowedgoodyieldandquite uniformCSsithasbeenstudiedfurtherandusedastemplatefor thepreparationofTiO2hollowstructures.

3.1.3. CharacterizationofCSs

CS-12-12samplewasstudiedwithvarioustechniques(Fig.4).

XRDwasusedtoinvestigatethepossiblecrystallinityoftheCSs (Fig.4,A).Onlyonebroaddiffractionat∼22dominatesthediffrac- togram which belongs toamorphous carbon [44].Reflection at

(4)

Fig.2.Morphologyofcarbonspherespreparedviahydrothermaltreatmentatdifferentsynthesistimes(indicatedintheupperleftcorneroftheSEMpictures).Particlesize distributionsofCSsareshownonthehistogramsrighttothecorrespondingSEMpictures.PleasenotethattheSEMmicrographsandthehistogramsaredirectlycomparable duetotheirsamescaleandformatting.

∼26.5 wasnot detectedwhich would indicate well-structured graphiticsegments.Nocrystallineimpuritiesweredetected.

RamanspectroscopywasusedtoanalyzetheCSs(Fig.4B).Inthe Ramanspectra,typicalRamanfeaturesofcarbonmaterialswere present,namelytheD(∼1350cm−1)andG(∼1580cm−1)bands.

WhiletheDbandcanbeattributedtothepresenceofsp3hybridized carbonatoms,theGbandisanindicatorofconjugatedsp2carbon atoms.Inhighlygraphiticcarbonmaterials2Dband(∼2700cm−1) isalsopresent,howeveritismissingfromtheRamanspectraof theCSs.BothDandGbandsarebroad,meaningaratheramor- phousstructure.ThehighintensityGbandcomparedtotheDband indicatesthatmostofthematerialconsistsofconjugatedcarbon framework.

FT-IRtechniquewasusedtofurtherinvestigatethechemical characteristicsoftheCSs(Fig.4C).Thespectrum isfeature-rich and quitecomplex. Broad bandappear inthe 1800–3800cm1 whichindicatesthestretchingvibrationsofstructuralOHgroups

andphysisorbedwater.Lowintensitybandsataround2922and 2970cm−1canbeassignedtoC Hstretchingvibrations.Thevery intensebandsituated at1701cm1 belongstheC Ostretching vibrations.Anotherintensebandat1611cm1 ismostprobably thesignof the C C vibration in aromaticring; however, some oxygencontaininggroups(e.g.cyclicethers)couldappearinthe sameregion[45].Intenseandbroadbandispresentbetween1100 and1400cm−1whichindicatesC Ovibrationinhighlyconjugated, aromaticorinvariousotherchemicalenvironments[46].

Thethermal behavior ofCSswasalso investigated(Fig.4D).

HeatingtheCSsinoxygenatmospherestwointenseweightloss can be seen. The first is between 220 and 250C, the second is 410–440C and thetwo regions arelinked witha moderate mass-reducingperiod. The former is most probablydue to the decomposition of various oxygen containing functional groups whilethelatterisduetothecombustionofthecarbonitself[47,48].

(5)

Fig.3. TheeffectofpHonthemorphologyofthepreparedcarbonspheres.PleasenotethattheSEMmicrographsandthehistogramsaredirectlycomparableduetotheir samescaleandformatting.

Thelowdecompositionandcombustiontemperatureisconvenient incaseoftheremovalofthesetemplatematerials.

Accordingtoourresults,CSswereconsistofamorphouscarbon withnographiticdomains.However,RamanandFT-IRresultsindi- catedsignificantconjugated/aromaticsegmentsaswellasvarious oxygencontainingfunctionalgroups.

3.2. Titaniumdioxidehollowstructures

CS-12-12carbonspheresamplewerecoatedwithTiO2layervia sol-gelmethod.Thismaterialwasthencalcinatedinairtoremove theCStemplateandtoconverttheamorphoustitaniaintocrys- tallinetitaniumdioxide.ElaborationofTiO2HSsfromas-prepared, non-heat-treated(nht)CS-titaniawasstudiedbyTG-MStechnique (Fig.5).The TG-DTG showedsimilarfeatures totheTG-DTG of uncoatedCSs(Fig.4D).Thefirstmajor,welldefinedweightlos- ingperiodwasat around∼220–250C whilethesecond wasa moreelongated,broadregionwhichwasstartedrightafterthe firstoneandwasbetween∼250–480C.Theelongatedcombus- tionofCStemplatescomparedtouncoatedCSscanbeattributed tothepresenceofTiO2 shell.Above∼480C, noweight-change canbedetected.Theremaining27.4%massiscontributedtothe incombustiblecrystallineTiO2.Theweightlosswasapproximately 73%independentlyfromthecalcinationtemperatureincaseofall TiO2HSs.Consequently,ifat700CCSsandallcombustiblecom- poundsareburnedaway;andthereisnovariationintheweight lossbetweenthecalcinationtemperaturesthennoorganicresidue fromtheprecursor/solventorCSsisleftinTiO2HS,notevenatthe lowesttemperature.ThiswasfurtherconfirmedbytheMSresults (Fig.5,rightpanel).COandCO2wereidentifiedasmaingaseous products.Thetemperaturerangeoftheevolutionofthetwogases isidenticaltothemainmassreductionregionsmentionedinTG- DTGresults.Thus,consideringtheweightlosingrateandtheMS resultsitcanbededucedthatevenat400C4hofcalcinationtime isenoughtocompletelyeliminateallcarbon,nottomentionhigher temperatures.

Fig. 6 shows the morphology of the TiO2 hollow structures annealedatdifferenttemperatures.Roundforms,wholeanddam- agedstructurescanbeseeninthepictures.Smaller,fragmented shellparticlesarescatteredbetweenlargerhollowspheres.Shell thicknessisbetween20and40nmregardlessoftheannealingtem- perature.Thisthicknessisthickenoughtopreservetheshapeof thetemplateandthinenoughtobepermeableforthephotonsto exploitthespecialshapeoftheobject.

Crystallinity of the TiO2 samples was investigated by XRD technique(Fig.7).Diffractionintensitiesoftheindividualdiffrac- tograms were normalized to the intensity of anatase (101) reflection.Allsamplesshowcharacteristic,rathersharpreflections markedwiththeappropriateMillerindices.Incaseofthesamples annealedat400Cand500ConlyanatasephaseTiO2ispresent.As expected,athighertemperaturesrutilephasewasformed.Rutile contentofsamplescalcinatedat600Cand700Cwerecalculated accordingtothewell-knownequationdeterminedbySpurretal.

[49]andtheycontained37w/w%and65w/w%rutile,respectively.

Fullwidthathalfmaximum(FWHM)ofanatase(101)reflectionis decreasingproportionallywiththeincreasingheattreatmenttem- peraturefrom0.47 to0.26,from400Cto700Crespectively.

Itcanbededucedthatamoreordered,well-crystallizedstructure provideslessrecombinationcentersforthephotogeneratede/h+ pairs.At600C,rutilephaseTiO2appears.FWHMofrutile(110) reflectionwasdecreasedfrom0.28to0.22,from600Cto700C respectively.BasedontheX-raydiffractograms,thecrystallitesizes weredeterminedusingtheScherrerequation(seeSupplementary materialTableS01).Asanticipated,thecrystallitesizesincreased graduallywithincreasingannealingtemperature.

SpecificsurfaceareaofTiO2 HSsampleswasdeterminedby BETmethod(seeSupplementarymaterialTableS01).Also,detailed measurementwasexecutedona representativesampleofTiO2 HS(annealedat600C)inordertoinvestigatenotjustthespe- cificsurfaceareabutalsotheporestructure(Fig.8).Thespecific surfaceareaandthetotalporevolumewerefoundtobe26m2/g and0.14cm3/g,respectively.Theobtainedspecificsurfaceareaval- uesofTiO2HSsarerathersmallcomparedtoporousmetaloxide

(6)

Fig.4.X-raydiffractionpattern,RamanandFT-IRspectraandTGcurveofCS-12-12 areshownfromtoptobottom,labeledA–D,respectively.

materials[50].Thespecificsurfaceareacanberoughlyapproxi- matedtogaininformationonthemagnitudeofthespecificsurface areaofsphericalhollowobjects.Assumingnon-porous,perfectly sphericalshellofanatasewhichcanbeelaboratedonthesurface ofD=400nmCSswiththicknessof30nm,thespecificsurfacearea iscalculated17m2/gwhichisinreasonableagreementwiththe obtainedspecificsurfaceareavaluesofTiO2HSs(seeTableS01).

TheN2 adsorptionmeasurementrevealedthepresenceofmeso- andmacropores;however,theorderofmagnitudeofthesepore volumesisrathersmall(104cm3nm1g1).Thus,theyhaveonly smallcontributiontospecificsurfacearea.Thereisadecreasing trendinthespecificsurfaceareaoftheTiO2HSswithincreasing annealingtemperature.Thisisduetotheconsolidation,densifica- tionandsinteringoftheTiO2particles/crystallitesandTiO2HSsas well.

Briefly, crystallineTiO2 hollowstructures werepreparedvia completeremovalofCStemplatesatdifferenttemperatures.Inde- pendentlyfromtheannealingtemperature,thehollowspheroid shapewaspreserved;however,insomeextentthesphereswere fragmented.TheTiO2HSsdoesnotshowwell-definedporestruc- tureanditcanbeconsideredasrathersolid/denseshellofTiO2

withahollowinside.

3.3. Photocatalyticactivity

PhotocatalyticperformanceofthepreparedTiO2HSswasinves- tigatedwiththephotocatalyticdecompositionreactionofphenol underlowpoweredUV-Airradiation.Thephotocatalyticactivity wasrepresentedbytheapparentrateconstant (kapp).Thiswas calculatedfromthefirst40minirradiationperiodbylinearfitting ofthe−ln(c/c0)vstrelationassumingpseudofirstorderreaction kinetic.Phenolphotocatalyticdegradationcurvesaswellthepho- tocatalyticactivitiesaresummarizedinFig.9.AllpreparedTiO2 HS sampleshave shown considerable photocatalytic activityin phenoldegradationreaction.Sincenocarboncontaminationorig- inatedfromtheusedtitaniumprecursor,solventsandCSswere detectedtheeffectofsuchimpurityonthephotocatalyticactivity isimprobable.N2 adsorptionmeasurementsshowedthespecific surfaceareaoftheTiO2 HSsisdecreasingwithincreasingcalci- nationtemperaturewhichindicatesthatTiO2HS700Chashigh photocatalyticactivitydespiteofitsratherlowspecificsurfacearea.

Photocatalyticactivity wasincreasedparallel tothe calcination temperaturewhichcanbeexplainedbythecrystallizationofthe samples.Withtheappearanceofrutilephasethephotocatalytic activityhasincreasedfurthertoacertainlimit.Lightabsorption propertiesoftheTiO2 HSsampleswereinvestigatedbydiffused reflectancespectroscopy(seeSupplementarymaterialFig.S08).In caseoftitaniumdioxidehollowstructures,theresultsindicated increasedlightharvestingfeatureinthemostoftheUVregioncom- paredtothedensereferencesample.Thishigherlightabsorption (appearaslowerreflectanceinFig.S08)cancontributetotheele- vatedphotocatalyticefficiencyofTiO2HScontrarytodenseTiO2 referencesample.

Itiswell-knownthatthecoexistenceofanataseandrutilephase canenhancethephotocatalyticactivity.Theincreasedphotocat- alytic activityof mixed anatase/rutile phase TiO2 is due to the differencein thebandposition ofanataseand rutileaswellas tothesolid-solidinterfacecangreatlyinfluencethephotogener- atedchargecarrierseparation.Thisinterfaceisresponsibleforfast chargecarrierdiffusiontothesurfaceoftheparticlethusinflu- encingthechargetransferandrecombinationprocesses[51,52].

Also,itisbelievedthatrutilephaseisabletoacceptelectronsfrom anatasephase,thusactingasan“electronsink”sincethisprocess isthermodynamicallyfavorabletotheirbandpositions[53].

Totalorganiccarbonremovalcapabilitywasalsostudied.The changeofTOCremovalefficiencyandthephotocatalyticactivity

(7)

Fig.5.TG-DTGcurve(left)andMSresults(right)ofnon-heat-treatedtitaniacoatedCSs.

Fig.6.MorphologyoftheTiO2hollowstructuresannealedatdifferenttemperatures.

Fig.7.X-raydiffractionpatternofTiO2hollowstructuresannealedatdifferent temperatures.

wasingoodagreement.HighpercentageofTOCremovalindicates notjustefficientphenoldegradationbutalsopotentmineralization properties.AsmalldropofTOCremovalefficiencywasnoticedin caseoftheTiO2HSannealedat700Cwhichcanbeexplainedbythe differentphotodegradationpathwayofmineralizationofphenol

onanataseandrutilephaseTiO2[54].Thus,forapplicationswhere efficientmineralizationoforganiccontaminantsisdesiredmixed phaseTiO2canbeusedadvantageously.

Asa reference, a TiO2 sample wasprepared with thesame methodastheTiO2 HSsbutwithoutCStemplate.Thephotocat- alyticactivityofthissample couldbecomparedtotheTiO2 HS calcinatedatthesametemperature(500C).Asaresult,TiO2HS showed6timeshigherphotocatalyticactivityand12timeshigher TOCremovalefficiencyduring90minUV-Airradiationcompared toitscounterpartpreparedwithoutCStemplate.Thus,addition ofCStemplatetoanexistingTiO2preparationmethodmakeshuge differenceinphotocatalyticactivitythatisdefinitelyworthexploit- ingastheresultsindicated.

4. Conclusion

Inthiswork,wereportthesuccessfulpreparationoftitanium dioxidehollowstructuresbyremovalofcarbonspheretemplates synthetizedviahydrothermaltreatmentofsucrosesolutionusing ordinarytablesugar.Firstly,hydrothermalsynthesisparameters ofCSpreparationwereinvestigatedemphasizingonthereaction timeandthepHofthesucrosesolution.Bothfactorshavedetermi- nativeeffectonthesizedistributionoftheCSproduct.Increasing reactiontimeresultedincreasedyieldandparticlesizeaswell.The

(8)

Fig.8. N2adsorptionmeasurement(left)andporesizedistribution(right)ofrepresentativeTiO2HSsample(calcinatedat600C).

Fig.9.PhenolphotocatalyticdegradationcurvesofthedifferentTiO2hollowstruc- turesamples(top).Photocatalyticactivity[striatecolumn]andtotalorganiccarbon contentremovalefficiency[densecolumn]oftheTiO2hollowstructuresamples (bottom).

studyontheeffectofinitialpHofthesucrosesolutionrevealedthat underacidicconditionslargerCSsareformed;however,inalkaline mediasmaller,morehomogeneousparticlesizewasachievedand theaverageparticlesizewasaround400nmwithacceptableyield.

CharacterizationsoftheCSsrevealedthatthesespheresconsist ofamorphouscarbon.However,theycontainsignificantamount ofconjugated/aromaticsegmentsandvariousoxygencontaining functiongroupswhichisadvantageousforthepreparationofTiO2 shellsontheirsurface.CSswerecoatedwithTiO2viasol-gelmethod andcalcinatedatdifferenttemperaturestoremovetheinnercar- bonspherecoreandtoconverttheamorphoustitanialayerinto crystallineTiO2.TiO2 hollowstructureswereobtainedandtheir morphologywasinvestigated.Afterannealing,thesphericalchar- acteristicwaspreservedandTiO2shellswith20–40nmthickness wereformed.Asexpected,someimperfectandfragmentedshell structureswerealsopresent.PhotocatalyticactivityoftheTiO2HS wasstudiedbyphenoldegradationreactionunderlow-powered UV-Airradiation.AllTiO2HSsamplesshowedsignificantphotocat-

alyticactivityaswellasgoodmineralizationefficiencymeasured byTOCtechnique.TiO2 HSscontainingrutilephase (alongwith anatase)showedevenhigherphotocatalyticactivitycomparedto onlyanatasecontainingonesmostprobablyduetosynergiceffect betweenthetwopolymorphs. TiO2 hollowstructurephotocata- lystprovedtohavesixtimeshigherphotocatalyticactivity(and twelvetimeshigherTOCremovalefficiency)thanitscounterpart preparedbythesamemethodwithouttheapplicationofCStem- plate.Detailedinvestigationoftheopticalproperties(measured andsimulated)oftheTiO2HSwillbethetopicofournextreport.

Hopefully,ourworkcontributestotheapplicationofrenew- able,biomassbasedmaterialsaswellastheirutilizationineffective photocatalyticorenergyharvestingprocesses.

Acknowledgments

Theauthorswishtoexpresstheirdeepestandsincerestrecogni- tionofProf.AndrásDombi,akeyfigureinthetopicofphotocatalytic materialsforthedegradationofcontaminantsofenvironmental concern.TheresearchandBRweresupportedbyNKFIunderthe NN114463grantandtheSwissContribution(SH/7/2/20).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2016.11.

038.

References

[1]WHO/UNICEF,ProgressonSanitationandDrinkingWater2015Updateand MDGAssessment,WHOPress,Geneva,2015.

[2]WEF,GlobalRisks2015,10thed.,WorldEconomicForum,Geneva,2015.

[3]L.H.Keith,W.A.Telliard,Environ.Sci.Technol.13(1979)416–423.

[4]J.T.Yu,E.J.Bouwer,M.Coelhan,Agr.Water.Manage.86(2006)72–80.

[5]J.Michalowicz,W.Duda,Pol.J.Environ.Stud.16(2007)347–362.

[6]S.Ahmed,M.G.Rasul,W.N.Martens,R.Brown,M.A.Hashib,Desalination261 (2010)3–18.

[7]S.Ahmed,M.G.Rasul,W.N.Martens,R.Brown,M.A.Hashib,WaterAirSoil Pollut.215(2011)3–29.

[8]R.Andreozzi,V.Caprio,A.Insola,R.Marotta,Catal.Today53(1999)51–59.

[9]O.Carp,C.L.Huisman,A.Reller,Prog.SolidStateChem.32(2004)33–177.

[10]A.Fujishima,X.T.Zhang,C.R.Chim.9(2006)750–760.

[11]A.Mills,S.LeHunte,J.Photochem.Photobiol.A108(1997)1–35.

[12]P.V.Kamat,Chem.Rev.93(1993)267–300.

[13]M.A.Henderson,Surf.Sci.Rep.66(2011)185–297.

[14]J.M.Herrmann,Catal.Today53(1999)115–129.

[15]X.Yong,M.A.A.Schoonen,Am.Mineral.85(2000)543–556.

[16]P.Salvador,J.Phys.Chem.C111(2007)17038–17043.

[17]K.Rajeshwar,A.Thomas,C.Janaky,J.Phys.Chem.Lett.6(2015)139–147.

[18]D.C.Hurum,A.G.Agrios,K.A.Gray,T.Rajh,M.C.Thurnauer,J.Phys.Chem.B 107(2003)4545–4549.

[19]T.Lopez,R.Gomez,E.Sanchez,F.Tzompantzi,L.Vera,J.Sol-GelSci.Technol.

22(2001)99–107.

[20]A.DiPaola,M.Bellardita,R.Ceccato,L.Palmisano,F.Parrino,J.Phys.Chem.C 113(2009)15166–15174.

[21]G.H.Li,L.Chen,M.E.Graham,K.A.Gray,J.Mol.Catal.A:Chem.275(2007) 30–35.

[22]R.G.Nair,S.Paul,S.K.Samdarshi,Sol.EnergyMater.Sol.Cells95(2011) 1901–1907.

(9)

[23]B.Reti,Z.Major,D.Szarka,T.Boldizsar,E.Horvath,A.Magrez,L.Forro,A.

Dombi,K.Hernadi,J.Mol.Catal.A:Chem.414(2016)140–147.

[24]Z.Pap,V.Danciu,Z.Cegled,A.Kukovecz,A.Oszko,A.Dombi,K.Mogyorosi, Appl.Catal.B-Environ.101(2011)461–470.

[25]H.W.Kroto,J.R.Heath,S.C.Obrien,R.F.Curl,R.E.Smalley,Nature318(1985) 162–163.

[26]M.M.Titirici,R.J.White,N.Brun,V.L.Budarin,D.S.Su,F.delMonte,J.H.Clark, M.J.MacLachlan,Chem.Soc.Rev.44(2015)250–290.

[27]X.J.He,F.H.Wu,M.D.Zheng,Diam.Relat.Mater.16(2007)311–315.

[28]J.H.Kim,B.Fang,M.Kim,J.S.Yu,Catal.Today146(2009)25–30.

[29]J.Liu,N.P.Wickramaratne,S.Z.Qiao,M.Jaroniec,Nat.Mater.14(2015) 763–774.

[30]P.Serp,J.L.s.Figueiredo,CarbonMaterialsforCatalysis,JohnWiley&Sons, Hoboken,N.J,2009.

[31]A.A.Deshmukh,S.D.Mhlanga,N.J.Coville,Mater.Sci.Eng.R-Rep.70(2010) 1–28.

[32]M.M.Titirici,M.Antonietti,N.Baccile,GreenChem.10(2008)1204–1212.

[33]M.M.Titirici,M.Antonietti,SolarEnergyMaterialsandSolarCells,Chem.Soc.

Rev.39(2010)103–116.

[34]M.Iida,T.Sasaki,M.Watanabe,Chem.Mater.10(1998)3780.

[35]R.Rengarajan,P.Jiang,V.Colvin,D.Mittleman,Appl.Phys.Lett.77(2000) 3517–3519.

[36]S.H.Hwang,J.Yun,J.Jang,Adv.Funct.Mater.24(2014)7619–7626.

[37]M.Retsch,M.Schmelzeisen,H.J.Butt,E.L.Thomas,NanoLett.11(2011) 1389–1394.

[38]Y.Kondo,H.Yoshikawa,K.Awaga,M.Murayama,T.Mori,K.Sunada,S.

Bandow,S.Iijima,Langmuir24(2008)547–550.

[39]M.B.Zheng,J.M.Cao,X.Chang,J.Wang,J.S.Liu,X.J.Ma,Mater.Lett.60(2006) 2991–2993.

[40]K.L.Lv,J.G.Yu,K.J.Deng,J.Sun,Y.X.Zhao,D.Y.Du,M.Li,J.Hazard.Mater.173 (2010)539–543.

[41]Y.Ao,J.Xu,D.Fu,C.Yuan,Catal.Commun.9(2008)2574–2577.

[42]N.Baccile,G.Laurent,F.Babonneau,F.Fayon,M.M.Titirici,M.Antonietti,J.

Phys.Chem.C113(2009)9644–9654.

[43]V.Vashchenko,L.Kutulya,A.Krivoshey,Synthesis-Stuttgart14(2007) 2125–2134.

[44]B.Manoj,A.G.Kunjomana,Int.J.Electrochem.Sci.7(2012)3127–3134.

[45]T.Szabo,O.Berkesi,P.Forgo,K.Josepovits,Y.Sanakis,D.Petridis,I.Dekany, Chem.Mater.18(2006)2740–2749.

[46]E.Fuente,J.A.Menendez,M.A.Diez,D.Suarez,M.A.Montes-Moran,J.Phys.

Chem.B107(2003)6350–6359.

[47]S.L.Iconaru,F.Ungureanu,A.Costescu,M.Costache,A.Dinischiotu,D.Predoi, J.Nanomater.(2011).

[48]C.Wang,B.L.Dou,Y.C.Song,H.S.Chen,M.J.Yang,Y.J.Xu,EnergyFuel28 (2014)3793–3801.

[49]R.A.Spurr,H.Myers,Anal.Chem.29(1957)760–762.

[50]R.Takahashi,S.Sato,T.Sodesawa,M.Kawakita,K.Ogura,J.Phys.Chem.B104 (2000)12184–12191.

[51]G.Li,K.A.Gray,Chem.Phys.339(2007)173–187.

[52]D.C.Hurum,K.A.Gray,T.Rajh,M.C.Thurnauer,J.Phys.ChemB109(2005) 977–980.

[53]R.I.Bickley,T.Gonzalez-Carreno,J.S.Lees,L.Palmisano,R.J.D.Tilley,J.Solid StateChem.92(1991)178–190.

[54]M.Andersson,L.Osterlund,S.Ljungstrom,A.Palmqvist,J.Phys.Chem.B106 (2002)10674–10679.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Various weight percentage composites based on the syn- thesized WO 3 and commercial TiO 2 (Evonik Aeroxide P25) were prepared by mechanical mixing method, and the

3.2 Model Experiments for Identifying the Processes Leading to Structural Transformation of the GO/TiO 2 Composite During Photocatalytic Methanol Reforming Comparison of fresh

In this work, the photocatalytic properties of amorphous and crystalline TiO 2 deposited on oxide and polymer nanoparticles by atomic layer deposition (ALD) were studied..

The TiO 2 -montmorillonite composites show higher equivalent specific surface area at low TiO 2 content than the BET surface area, because it is possible to build up a second

The car- bon nanospheres, the carbon-metal oxide composites and the hollow metal oxide nanospheres were charac- terized by thermogravimetry/differential thermal analysis coupled

Based on the results the surface free energy is in relation with the photocatalytic activity of the catalyst coating; the TiO 2 NR coated membranes have lower surface free

The Mn 2 Cr-LDH displayed significant photocatalytic activity in the degradation of methylene blue under illumination with UV–vis light.. The photocatalytic performance of the

Three of our home-made titanias (iron-, nitrogen-, nitrogen/sulphur) as well as the commercial nitrogen/sulphur codoped Kronos VLP7000 TiO 2 showed higher efficiency of