• Nem Talált Eredményt

Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation"

Copied!
9
0
0

Teljes szövegt

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied Catalysis B: Environmental

j ourna l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Comparison of the photocatalytic efficiencies of bare and doped rutile and

anatase TiO 2 photocatalysts under visible light for phenol degradation and E. coli inactivation

G. Veréb

a

, L. Manczinger

b

, G. Bozsó

c

, A. Sienkiewicz

d

, L. Forró

d

, K. Mogyorósi

a,∗

, K. Hernádi

a

, A. Dombi

a

aResearchGroupofEnvironmentalChemistry,InstituteofChemistry,FacultyofSciencesandInformatics,UniversityofSzeged,H-6720,Szeged,TiszaLajoskrt.103,Hungary

bDepartmentofMicrobiology,FacultyofSciencesandInformatics,UniversityofSzeged,H-6701,P.O.Box533,Szeged,Hungary

cDepartmentofMineralogy,Geochemistry,andPetrology,FacultyofSciencesandInformatics,UniversityofSzeged,H-6701,P.O.Box651,Szeged,Hungary

dFSB,IPMC,LPMC,Station3,EcolePolytechniqueFédéraledeLausanne,CH-1015Lausanne,Switzerland

a r t i c l e i n f o

Articlehistory:

Received15June2012 Receivedinrevisedform 22September2012 Accepted26September2012 Available online 8 October 2012

Keywords:

Photocatalysis Visiblelight Disinfection Hydroxylradical Dopedtitania ESR Singletoxygen

a b s t r a c t

ThisstudyaimedatcomparingthephotocatalyticefficienciesofvariousTiO2basedphotocatalystsfor phenoldegradationandbacteriainactivationunderilluminationwithvisiblelight.Commercialundoped anataseandrutile(bothfromAldrich),AeroxideP25(EvonikIndustries),nitrogen-dopedanatase(Sumit- omoTP-S201,SumitomoChemicalInc.),nitrogenandsulphurco-dopedanatase(KronosVLP7000,Kronos TitanGmbH),andourcustom-synthesizednitrogen-andiron-dopedTiO2,aswellasnitrogenandsulphur co-dopedAeroxideP25andsilver-andgold-depositedAeroxideP25werestudied.Thephotocatalytic efficiencyofdifferenttypesoftitaniumdioxidebasedphotocatalystswasdeterminedbyinactivationof EscherichiacoliK12bacteriaandbyphenoldecomposition.Electronspinresonance(ESR)incombination withspintrappingwasusedtogetinsightintothereactiveoxygenspecies(ROS)-mediatedphotocatalytic processesinthepresenceofTiO2-basedphotocatalysts.ESRresultsconfirmedthattitaniaswhichgener- atedOHradicalswereefficientinE.colidisinfection,whereastitaniasthatwereunabletoproduceOH radicalsdidnotrevealsignificantbactericidalaction.Threeofourhome-madetitanias(iron-,nitrogen-, nitrogen/sulphur)aswellasthecommercialnitrogen/sulphurcodopedKronosVLP7000TiO2showed higherefficiencyofphenoldegradationthanthewell-establishedreferencephotocatalyst,AeroxideP25, butshowedmuchlower(ifany)activityforbacteriainactivation,includingKronosVLP7000,which revealedextremelyhighefficiencyforphenoldecomposition.InterestinglyundopedAldrichrutile(with largeparticles-100–700nm)hadthehighestefficiencyforinactivationofE.coliandalsohadfairlyhigh activityofphenoldegradation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalysisisanintensivelyinvestigatedalternativewater treatmentmethodnowadayswhich isapromisingtechniqueto decomposeorganicpollutantsinwater.Averyimportantadvan- tageofphotocatalyticpurificationproceduresisthatitisapplicable forawiderangeoforganicpollutants.Themethodissuitablefor deactivationofvariousmicroorganismsaswell.Duetoitshigh efficiency,lowtoxicity,excellentphysico-chemicalstability,and lowrelativecosts,titaniumdioxide(titania,TiO2)isconsideredas themostpromisingphotocatalystforenvironmentalpurification.

ThefirstreportonTiO2basedwaterdisinfectionwaspublishedin 1985byMatsunagaetal.[1].Sincethiswork,inactivationstudies

Correspondingauthor.Tel.:+3662544334;fax:+3662420505.

E-mailaddress:k.mogyorosi@chem.u-szeged.hu(K.Mogyorósi).

ofmanymodelmicroorganismswerecarriedoutinthepresence ofTiO2-basedphotocatalysts.

Inthemajorityofthesestudies,UVirradiationwasappliedto purifywaterandinactivatemicroorganismsinthepresenceofvar- iousformsoftitania[1–14].Howeveritiswellknownthatinthe solarspectrumthereisamuchhigherintensityinthevisiblelight range(∼43%oftotalsolarenergy)thanintheUVrange(∼3%)[8,15], andinanenvironmentallyfriendlyandeconomicalprocess,solar irradiationcouldbeappliedtoactivatethephotocatalyst[16–21].

Thereforeitisimportanttodevelopvisiblelightactivephotocata- lystswhichareabletodecomposeorganicpollutantsandtokill bacteria.Visiblelightactivephotocatalystsarealsoimportantfor indoorapplications,e.g.inair andsurface purificationatwhich naturallyUVlightispracticallyabsent.Inparticular,visiblelight activateddetoxification and/ordisinfectionprocesseshavebeen reportedforTiO2 dopedwithnitrogen[13,22–25],iron[26–28], iodine[8,29–33],sulphur[13,22,34],aswellasformetal-modified TiO2,e.g.withsilver[8,23,35]orgold[36].

0926-3373/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.apcatb.2012.09.045

(2)

Themaingoalofthisstudywastogiveanoverallpictureof theperformanceof differenttypeof bareand modifiedtitanias usingvisiblelightforthedecompositionoforganicpollutantsand killingbacteria.Theefficiencyofseveralbare,doped(N,Fe,S)and noblemetaldeposited(Ag,Au)titaniumdioxideswerecompared byphenoldegradationandbydeactivationofEscherichiacoli.

We also aimed to investigate the correlation between the efficiencyoforganicpollutiondegradationand disinfectionper- formance, as well as to get an insight into the underpinning photocatalyticalmechanisms.Itiswellknownthatexcitationof TiO2 byphotonswithenergiesgreaterthanthebandgapyields formation of electron–hole (ecb)/(h+vb) pairs, which can either recombine or take part in redox reactions. As a result, differ- enttypes of reactiveoxygenspecies (ROS) can beformed that arecapableofdegradingorganicpollutantsor damagingbacte- rialcells[2,8,24].Irelandetal.[2]emphasizedtheimportanceof OH radicalsbecauseincontrastwithothertypeofwatertreat- menttechnologies(e.g.:ozonation,directphotolysisofhydrogen peroxide,andradiolysis)whichinherentlyproduceOHradicalin verysmallquantities(<1012M)[37],inaphotocatalyticsystem 10−9MOHconcentrationwasmeasured[38].Authorspublished thattherewasnoinactivationofE.coliinthepresenceoftheOH radicalscavenger[2].Manyotherauthorsrecognizedtheimpor- tanceofOH generationinphotocatalyticdisinfectionprocesses [2,3,5,6,8,24,34,39–43].Kikuchietal.[40]publishedthatthepho- tocatalyticbactericidal effectof E.colionilluminated TiO2 was confirmedonboth oxidationandreduction sites,corresponding to OH and O2•− production, respectively. However theactual lethalagentisH2O2,subsequentlyproducedfromOHandO2•−, particularlyinthelong-rangebactericidaleffect[40].Inaddition Rengifo-Herreraetal.[13]reportedthatsuperoxideradical(O2•−) anditsoxidationproduct:1O2–singletoxygenwereresponsible forE.coliinactivationbyN,Sco-dopedTiO2nanoparticlesunder visiblelightillumination.Inthisstudy,weusedelectronspinres- onance(ESR)spectroscopytoexplorethepossibledifferencesin efficienciesandthegeneratedROSbyselecteddopedandundoped titania-basedphotocatalysts.

2. Experimental

2.1. Commercialphotocatalysts

Aeroxide P25 (TiO2-P25, Evonik Industries), Aldrich anatase (TiO2-AA),andAldrichrutile(TiO2-AR)wereselectedascommer- ciallyavailableundopedphotocatalysts.

TiO2-TP-S201(SumitomoChemicalInc.)andTiO2-VLP700(Kro- nos Titan GmbH) doped with nitrogen and nitrogen/sulphur, respectively,werechosenascommerciallyavailabledopedTiO2

basedphotocatalysts.

2.2. HomemadeTiO2basedphotocatalysts

Thehome-madetitaniaswerenitrogen(TiO2-N),iron(TiO2-Fe), sulphur and nitrogen (TiO2-P25-NS) doped and silver (TiO2- P25-Ag) and gold (TiO2-P25-Au) deposited titanium dioxide photocatalysts.

Nitrogendopedtitania(TiO2-N)waspreparedbythehydroly- sisoftitanium(IV)chlorideinnitricacidsolutionfollowedbythe additionofaqueoussolutionofammonia.Theprecipitatewasthen driedandcalcinatedinournewlydevelopedcalcinationprocess usingrapidheating(∼60C/min)andshortexposuretothehot environmentat400Cfor10min[25].

Irondopedsample (TiO2-Fe)wasprepared by theoxidative hydrolysisoftitanium(III)chlorideinthepresenceofiron(III)chlo- rideunderair[27,44].Thissamplewasalsocalcinatedapplying

rapidheatingandshortexposuretothehotenvironment(at600C for10min).

SilverandgoldnanoparticleswerephotodepositedunderUV irradiation fromsilver acetate and HAuCl4 solutions on Aerox- ideP25toproduceTiO2-P25-AgandTiO2-P25-Auphotocatalysts [44,45].Thesetwosamplescontained1wt%ofthenoblemetals.

AeroxideP25wasalsoco-dopedwithsulphurandnitrogenby calcinationwiththioureafor1h,at400Cinstaticair(TiO2-P25- NS)similarlylikeinthemethodappliedbyRengifo-Herreraetal.

[22].

Allofthetitanias(includingthecommercialtitaniumdioxides) werewashedthreetimesbycentrifugationin0.1mMNaCl(Spek- trum3D,99.0%)aqueoussolution,resuspendedinMilliQwater, thendriedat80Cfor24handregroundinagatemortarbefore thephotocatalyticexperiments.

2.3. Methodsandinstrumentation 2.3.1. XRD

ARigakudiffractometerwasappliedforX-raydiffraction(XRD) measurements (Cu K␣=0.15406nm, 30kV, and 15mA,in the 20–40(2)regime).Theaveragediametersoftheparticleswere derivedusingtheScherrerequation.Theweightfractionofanatase andrutilewascalculatedfromthepeakareasoftheanataseand rutilepeaksat25.3(2)and27.5(2),respectively.

2.3.2. DRS

TheDRspectraofthesamples(=220–800nm)weremeasured byaJASCO-V650diodearraycomputercontrolled(SpectraManager Software)spectrophotometerwithanintegrationsphere(ILV-724).

2.3.3. TEM

TEMmicrographswererecordedonaPhilipsCM10instrument operatingat100kVusingFormvarcoatedcoppergrids.

2.3.4. BET

Thespecificsurface areaof thecatalystswasdeterminedby nitrogenadsorptionat77KusingaMicromeriticsgasadsorption analyser(GeminiType2375).Thespecificsurfaceareawascalcu- latedusingtheBETmethod.

2.3.5. X-rayphotoelectronspectroscopy(XPS)

X-rayphotoelectronspectraweretakenwithaSPECSinstru- mentequippedwithaPHOIBOS150MCD9hemisphericalelectron energyanalyseroperatedintheFATmode.Furtherdetailsofthe measurementsaredescribedelsewhere[46].

2.3.6. X-rayfluorescencespectroscopy(XRF)

AHoribaJobinYvonXGT-5000X-rayfluorescentspectrometer, equippedwithRhX-raysourcewasusedtomeasuretheelement contentofthesamples.Therecordsweremadeat30kVexcitation voltage,0.5mAanodecurrentand1000smeasuringtime.

2.3.7. ESRspintrappingmeasurements

The ESR measurements were performed at room tempera- ture by using a Bruker ESP300E spectrometer (Bruker BioSpin, Germany),operatingattheX-bandfrequencyandequippedwith astandardrectangularTE102cavity.Aftereachilluminationstep, small aliquots of ∼20␮L were transferred into 0.7mm ID and 0.87mmODglasscapillarytubes(VitroCom,NJ,USA).Tomaximize thesamplevolumeintheactivezone oftheESR cavity,assem- bliesofseventightlypackedcapillarieswerebundledtogetherand insertedintoa wide-bore quartzcapillary (standardESRquartz tubewith2.9mmIDand 4mmOD,Model707-SQ-250M,from Wilmad-LabGlassInc.,Vineland,NJ,USA).Suchsetupresultedin ca.140␮LsamplevolumeintheactivezoneoftheTE102cavity,

(3)

Fig.1. Photographofusedphotoreactorsystemequippedwithconventional24W energysavingcompactfluorescencelamps.

which,togetherwiththedivisionoftheaqueoussampleintoseven physically-separatedvolumes,markedlyimprovedtheoverallsen- sitivityofmeasurements[47,48].Thetypicalinstrumentalsettings were:microwavefrequency9.77GHz,microwavepower10.1mW, sweepwidth100G,modulationfrequency 100kHz,modulation amplitude0.5G,receivergain2×104,timeconstant81.92ms,con- versiontime40.96msandtotalscantime41.9s.

2.4. Measurementsofphotocatalyticactivity 2.4.1. Experimentalconditionsforphenoldegradation

Theexperimentsofphenol(Spektrum3D,99.0%)degradation werecarried out in a special photoreactorwhich was anopen glass vesselwithdouble walls, surroundedby a thermostating jacketat 25.0C. Aroundthereactor fourcompactfluorescence lamps(DÜWI25920/R7S-24Wtype–conventional 24Wenergy savingcompactfluorescencelamps)weremounted(Fig.1).The spectrum of thelamp wasslightly modified bycirculating 1M NaNO2 (MolarChemicals, min.99.13%)aqueoussolution inthe thermostatingjacket. This cut-off solution absorbs UV photons below400nm,providingvisiblelightirradiationforthesamples (Fig. 2).Theradiation intensitywas determinedby ferrioxalate actinometryfortheVISlampswithNaNO2cut-offfiltersolution asIVIS,1=1.07±0.03×105einstein/dm3/sinthephotoreactor.(It shouldbenotedthattheaveragequantumyieldofferrioxalateacti- nometryisabout0.9inthewavelengthrangebetween400and 540nm,anditisnearlyzeroabove540nm[49].)

Theefficiency ofdifferent type ofphotocatalysts was deter- minedbydecomposingphenol(0.1mM)inNaClsolution(0.9wt%) whichcontainedthetitaniapowdersin1.0g/Lconcentration.The suspension(100mL)wassonicatedbeforethephotocatalytictests (for5min) then it was stirredby magnetic stirrerand air was bubbledduringtheexperiments.Changesinphenolconcentration werefollowedusinganAgilent1100seriesHPLCsystemequipped withLichrospherRP18columnapplyingmethanol/watermixture aseluent(thedetectionwascarriedoutat210nm).

2.4.2. ExperimentalconditionsforinactivationofE.coli

Thesamephotoreactorandsimilarconditionswereappliedlike forthephenoldecompositionmeasurements.Anothertypeoflight filtrationwasalsocarriedoutinsomeexperiments.Applying5mM

0 5000 10000 15000 20000 25000 30000

300 400 500 600 700 800

Wavelength (nm)

Intensity (a.u.)

1M NaNO2 filtration

5mM K2Cr2O7 filtration

0 1000 2000 3000 4000 5000

400 402404 406408 410

Fig.2.Spectraoftheappliedconventionalenergysavingcompactfluorescence lamps(24W)with1MNaNO2and5mMK2Cr2O7lightcut-offfiltrationsbythe recirculationofthesesolutionsinthethermostatingjacket.

K2Cr2O7(Reanal,analyticalgrade)aqueoussolutioninthethermo- statingjacket,thelightintensitywasreducedto4%below420nm Fig.2.Theradiationintensitywasdeterminedbyferrioxalateacti- nometryfortheVISlampswiththeK2Cr2O7cut-offfiltersolution asIVIS,2=1.75±0.01×106einstein/dm3/sinthephotoreactor.

TheE.colisuspensionswerepreparedusingthefollowingpro- cedure.Firstly,E.coliculturesweregrownfor24hin0.9%NaCl solutionsupplementedwithnutrients:1%Tripton (Reanal,ana- lyticalgrade)and0.5%yeastextract(Scharlau,analyticalgrade).

Thenthecultureswerewashedtwotimeswitha0.9%salinesolu- tionbycentrifugationat4000rpmfor2minandthesedimentwas re-suspendedin0.9%NaClsolution.Priortothedisinfectionexper- iments,theTiO2-basedphotocatalystswereaddedtoa0.9%NaCl solutionsandsonicatedtoformhomogeneoussuspensions,which werethensupplementedwiththepreviouslypreparedE.colisus- pensions.

Alowvalueofinitialcolonyformingunit(104CFU/mL)wasset inthetitaniumdioxidesuspensionsinordertodetermineverylow disinfectionefficienciesaswell.Sampleswereplatedonagargels duringtheexperimentsandthecolonieswerecountedafter24hof incubationat37Cindark.Allofthesampleswereplatedon2–3 agargelsforgettingreliabledata.Allofthepresentedresultswere takenfromtheaverageoftwoparallelexperiments(resultswere fairlyreproducible).

2.4.3. ExperimentalconditionsforESRmeasurements

IntheESRmeasurementsweusedtwo(ROS) scavengers,i.e.

10mMconcentrationof2,2,6,6-tetramethyl-4-piperidinol(TMP- OH)and50mMconcentrationof5,5-dimethyl-1-pyrrolineN-oxide (DMPO).ThesolutionsofROSscavengerswerepreparedeitherin H2Oordeuteratedwater(D2O).TMP-OH,andD2O(isotopicpurity of99.9at%D)werepurchasedfromSigma–Aldrich(Switzerland) andusedasreceived.DMPOwasalsoobtainedfromSigma–Aldrich (Switzerland).BeforetheESRmeasurementsthesuspensionswere sonicatedfor5minandthen,duringthesubsequentphotocatalytic experimentsunderexposuretovisiblelight,theywerevigorously stirredbymagneticstirrerandairwasbubbledthrough.Theaque- oussuspensionscontainingthetitaniumdioxidenanoparticlesand ROS scavengers were exposed to the visible light in the same photoreactor in which phenol decomposition and disinfection experimentswerecarried out.Similarly,thesame conventional (24W)energysavingcompactfluorescencelampsand1MNaNO2 solutioninthethermostatingjacketforlightcut-offfiltrationwere

(4)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

200 300 400 500 600 700 800

Absorbance

TiO2-N TiO2-TP-S201

TiO2-Fe

TiO2-VLP7000 0.0

0.2 0.4 0.6 0.8 1.0 1.2

200 300 400 600 700 800

(nm)

(nm)

Absorbance

TiO2-P25-Au TiO2-P25-Ag TiO2-P25-NS TiO2-P25

0.0 0.2 0.4 0.6 0.8 1.0

300 350 400 450 500

TiO2-AA TiO2-AR TiO2-P25

TiO2-P25

TiO2-P25-NS TiO2-P25-Ag

TiO2-P25-Au

a

b

Fig.3.Diffusereflectancespectraofinvestigatedphotocatalysts:(a)non-doped commercialandP25basedmodifiedhome-madetitaniumdioxides;(b)dopedcom- mercialandhome-madetitanias.

used.Theconcentrationofthetitaniumdioxidesuspensionswas of1.0g/L,andthetotalvolumewasof20mL.

3. Resultsanddiscussion

3.1. Characterizationofthephotocatalysts

The photocatalysts were characterized by several methods, including: XRD,transmission electron microscopy (TEM),X-ray fluorescencespectroscopy(XRF),diffusereflectancespectroscopy (DRS),X-rayphotoelectronspectroscopy(XPS)and nitrogengas adsorptionanalysis(BET)method.Themostimportantphysico- chemical parameters of the studied photocatalysts, i.e. anatase andrutilecontent,theparticlesize,thedopantcontent(derived fromXRF,and/orXPS)aswellastheBETspecificsurfacearea,are showninTable1.Thereareinvestigatedtitaniaswhichcontain onlyanatasephase(suchasTiO2-AAand TiO2-VLP7000),inthe P25basedtitaniasmorethan90%oftheparticlesareinanatase phase,inthenitrogendopedtitania5%brookitecontentwasdeter- minedbyXRD,whileAldrichrutilecontains96%rutile.Theparticle sizesareverydifferent:TiO2-VLP7000hasthesmallestparticles (DXRD=7.8nm)withthelargestspecificsurfacearea(297m2/g), whileAldrichrutilecontainslargeparticles(100–700nm),which resultsinverylowspecificsurfacearea(2.7m2/g).Thelightabsorp- tionwasmeasuredbydiffusereflectancespectroscopyforallof thephotocatalysts(Fig.3aandb).Thesefiguresshowthatdoped

Fig.4. TEMimagesof(a)Aldrichrutile,(b)SumitomoTP-S201and(c)Kronos VLP7000titanias.TEMimagesofotherinvestigatedphotocatalystsarepublished elsewhere[44].

titaniasabsorbvisiblelight.Aldrichanatasedoesnotabsorbany photonsbeyond400nm,howeverAldrichrutilehasabandgap at about420nm. These titaniaswere allexamined withtrans- missionelectronmicroscopytoobservethesizedistributionand themorphologyoftheparticles.TheTEMimagesofTiO2-TP-S201, TiO2-VLP7000and TiO2-ARareillustratedin Fig.4,while other imagesofthephotocatalystsarepublishedelsewhere[44].Aldrich rutilesamplecontainsrelativelylargeparticleswhicharelarger than100nm(DTEM≈315nm)whichresultsinverylowspecific surfacearea.Theparticlediametervaluescalculatedfromtheline

(5)

Table1

Structuralparametersoftheinvestigatedphotocatalysts(phasecontent,particlesize,theconcentrationofdopantsandspecificsurfacearea),theinitialdegradationratesof phenol,irradiationtimefortotalsterilizationandtheresultsofESRmeasurementsareshown.Thesamplesarelistedintheorderofdecreasingactivityforphenoldegradation formthetoptothebottom.Greyrowsindicatethehome-madetitaniumdioxides,thewhiterowsareforcommercialtitanias.

Sample Anatase

(wt%) Rutile (wt%)

DA(nm) DR(nm) Dopantcontent (at%)f

aSBET(m2/g) r0,phenol

(×10−8M/s)

tsterilization

(min)g

ESRMeasurements

WithTMP-OH scavenger

WithDMPO scavenger

WithDMPO scavenger

1O2 O2- OH

TiO2-VLP7000 100 7.8 S:0.33c/N:1.21d 297 29.9 High No No

TiO2-AR 4 96 ∼315b 2.7 4.2 20 No No High

TiO2-P25-NS 94 6 25.4 ∼40 S:0.13c/N:n.d. 55 3.7 Notmeasured

TiO2-N 95a 6.5 1.32d 139 2.4 No No No

TiO2-Fe 29 71 ∼35 ∼31 0.37c 28 1.7 Notmeasured

TiO2-TP-S201 100 17.3 N:0.82d 80 1.5 60 Notmeasured

TiO2-P25 90 10 25.4 ∼40 49 1.4 60 No No Yes

TiO2-P25-Ag 90 10 24.5 ∼42 0.24c,e 51 1.3 60 Notmeasured

TiO2-P25-Au 90 10 24.1 ∼37 0.13c,e 51 0.4 Notmeasured

TiO2-AA 100 >85 9.9 0.4 Notmeasured

aCalculatedcontentofbrookiteis5wt%,DB=14.4nm.

b AverageparticlediameterwascalculatedfromTEMpictures.

c MeasuredbyXRF.

d EstimatedbyXPS.

eNominal(added)metalcontentis1.0wt%asmD/mcatalyst×100;measuredvaluesforAgandAucontentsare0.94wt%and0.96wt%,respectively.

f ExpressedasnD/ntotal×100.

gCFU=104;1MNaNO2lightcut-offfiltration(>400nm).

broadeningoftheanatasepeakforTiO2-TP-S201(DXRD=17.3nm) andTiO2-VLP7000(DXRD=7.8nm)samplesareingoodagreement withthenanoparticlesizesobservedontheirTEMimages(Table1, Fig.4bandc).

3.2. Phenoldegradation

ThedecompositionofphenolwasfollowedbyHPLC.Thedecay curvesarepresentedinFig.5aandb.Therewasnotanydecrease intheconcentrationunderirradiationwithoutphotocatalyst,and only very slow degradations were observed applying Aldrich anataseorTiO2-P25-Au.Itmeansthatinthelatercasedepositing Aunanoparticlesontitaniumdioxidereducesthephenoldegrada- tionefficiencyinthevisiblelightrange.TheTiO2-TP-S201andthe TiO2-P25-Agsamplesshowedsimilarperformancethanthewell knownreferenceAeroxideP25(TiO2-P25),whichdecomposed17%

ofthephenolfromthe0.1mMsolutionafter4hofirradiation.Three home-madetitaniasshowedhigherefficiencythanTiO2-P25.Only commerciallyavailableKronosVLP7000(co-dopedbynitrogenand sulphur)hadbetterperformancethanthenon-dopedAldrichrutile (TiO2-AR).Itshouldbenotedthatrutileabsorbslightbetween400 and420nm(incontrastwiththeanatase),inwhichwavelength rangetherearetwopeaksinthespectrumofthelamp(Fig.2).

Nevertheless,themostactivephotocatalyst(TiO2-VLP7000)con- tains100% anatasephase. The highperformance of this titania wasresultedbytheefficientdopingprovidingtheabilitytoacti- vatetheparticlesbyvisiblelight.Thedecaycurves,andalsothe initialdegradationratesofphenoldemonstrateaswell,thatTiO2- VLP7000hasextremelyhighefficiencyforphenoldegradation,94%

ofphenolwasdecomposedin4h.KRONOSVLP7000isanitrogen andsulphurco-dopedtitaniumdioxidelikeourhome-madeTiO2- N,S,but thecommercialtitaniaownsvery highspecificsurface areawhichcanresultinthishighperformancebesidestheefficient doping(KimandChoi[50]publishedthathighspecificsurfacearea isbeneficialforthedegradationofphenol).

3.3. Disinfectionperformance

Investigating Aldrich anatase, TiO2-P25-Au, TiO2-Fe, TiO2-N;

TiO2-P25-NSandTiO2-VLP7000titaniumdioxides,therewasnot anydisinfectioneffectobservedafter2hofirradiation.Theresults

0.0 0.2 0.4 0.6 0.8 1.0

0 60 120 180 240

Irradiation time (min) cphenol (10-4 M)

Light - without TiO2 TiO2-P25 TiO2-Fe TiO2-P25-NS TiO2-N TiO2-AR TiO2-VLP7000 0.80

0.85 0.90 0.95 1.00

0 60 120 180 240

Irradiation time (min) cphenol (10-4 M)

Light - without TiO2 TiO2-AA TiO2-P25-Au TiO2-TP-S201 TiO2-P25-Ag TiO2-P25

a

b

Fig.5.(aandb)DecaycurvesofphenolunderVISirradiation(conventional24W energysavingcompactfluorescencelampswith1MNaNO2lightcut-offfiltration (>400nm).

(6)

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

0 20 40 60 80 100 120

Irradiation time (min)

CFU (1/mL)

Light without photocatalyst TiO2-P25 in dark TiO2-TP-S201 in dark TiO2-AR in dark TiO2-P25-Ag in dark TiO2-TP-S201 + light TiO2-P25 + light TiO2-P25-Ag + light TiO2-AR + light

> 400 nm λ

Fig.6. Disinfectionexperimentswith1MNaNO2filteredvisiblelightirradiation (initialcolonyformingunitwas104).

ofthefiveotherphotocatalystsactivitiesarepresentedinFig.6.All oftheexperimentswererepeatedtwotimes,andtheaveragesare showed.ApplyingTiO2-TP-S201,TiO2-P25andTiO2-P25-Agtita- nias,thecolonyformingunitwasreducedtozeroin1h.Fromthe shapeofthemortalitycurve,itseemsthatthesilvercontaining samplehasalittlebithigherdisinfectionabilitythanthesilverfree P25.Itismostlikelyduetothewellknowndisinfectioneffectof silverions[51–57]whichcanbereleasedfromthesilvernanopar- ticlestothesolutionin lowquantity(inthedarkexperiment a slowdisinfectioneffectwasalsodeterminedonthisphotocatalyst).

TiO2-ARsamplehadmuchhigheractivityforinactivationofE.coli.

Thewaterwassterilizedtotallybythistitaniain20min(Fig.6).

A seriesof experimentswasalso carried outtoexcludethe possibilitythatthedetermineddisinfectioneffectswereresulted bytoxiccompoundsdissolvedfromtheirradiatedphotocatalysts.

Suspensionsofthetitanias(withoutbacteriaaddition)wereirra- diatedforthesametimeatwhichtheydisinfectedpreviouslythe solution,andthenthenanoparticleswereseparatedbycentrifuga- tionandfiltration.Aftertheseparation,104CFU/mLwasadjusted tothissolution,anditwaspouredbackintothephotoreactorand thechangesincolonyformingunitwasfollowedfor2hofirradia- tion.InthecaseofTiO2-P25,TiO2-TP-S201,TiO2-ARtitanias,there wasnotseenanynotableCFUreduction.Onlyinthecaseofsilver containingTiO2wasnoticedasimilarCFUreductionlikeinTiO2-Ag suspensionindark.

Investigationofdisinfectionperformancewascarriedoutalso at higher initial CFU (105CFU/mL) for the most active titania (TiO2-AR).Thistitaniatotallysterilizedthewaterafter30minof irradiationinthiscase.

Disinfectionexperimentswerealsocarriedout withanother type oflight cut-off filtration.Applying5mMK2Cr2O7 aqueous solutioninthethermostatingjacketthelightintensitywasreduced to4%below420nm(Fig.2).Resultsofdisinfectionexperimentsare presentedinFig.7.Fig.8representsaphotographwhichdemon- stratestheE.colicoloniesofthephotocatalytictestwithAldrich rutile(after24hofthermostatingin37C,indark).ApplyingAerox- ideP25orTiO2-TP-S201therewasnotseenanydisinfectioneffect after2h.ThesilvercontainingTiO2 sampleshowedalowactiv- ityforkillingbacterialikeindarkcondition(duetothepresence ofAg+ ions).Non-dopedAldrichrutileshowedanotableactivity consideringtheverylowlightintensitybelow420nm(onlylight <420nmcanexcitethisphaseoftitaniumdioxide).WithK2Cr2O7 filtrationthreetitaniumdioxides(TiO2-P25,TiO2-P25-Ag,TiO2-TP- S201)losttheirphotocatalyticdisinfectionproperty,howeverwith

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

0 20 40 60 80 100 120

Irradiation time (min)

CFU (1/mL)

TiO2-TP-S201 + light TiO2-P25 + light TiO2-P25-Ag + light TiO2-AR + light

λ > 420 nm

Fig.7.Disinfectionexperimentswith5mMK2Cr2O7filteredvisiblelightirradiation (initialcolonyformingunitwas104).

NaNO2cut-offfiltration,thesetitaniasdisinfectedcompletelythe water in1h. Thismeansthat theintensityof thecommercially availablelightsources inthewavelengthrangefrom400nmto 420nmiscrucialforefficientindoorair/surfacecleaning.

3.4. Comparisonofphenoldegradationandthedisinfection performance

Theresultsofphenoldecompositionanddisinfectionexperi- mentsaresummarizedinTable1.Thevaluesofinitialdegradation ratesofphenolforthedifferenttitaniasaredecreasingfromthetop tothebottom.TiO2-VLP7000showedextremelyhighefficiencyfor phenoldecomposition,butithadnotanynotabledisinfectionprop- erty.Aldrichrutilehadhighefficiencytokillbacteriaandalsohad highefficiencyforphenoldegradation.Therewerethreetitanias whichdegradedphenolwithhighefficiencybutdidnotshowany antibacterialproperty.Moreover,therewerethreeothertitanias whichkilledE.coliafter1hofirradiation,howeverthesetitanium dioxideshadrelativelylowperformanceforphenoldegradation.It seemsfromTable1,thereisnocorrelationbetweenthebacteria killingabilityofcatalystandtheircrystallinestructure.Interpre- tationfortheseinterestingobservationsbasedontheparticlesize oronthespecificsurfaceareacannotbeprovided.Togetsome

Fig.8. PhotographofE.colicoloniesofthephotocatalytictest(>420nminitial CFU=105)withAldrichrutile(after24hthermostatingin37C,indark).

(7)

-1.0E-03 -5.0E-04 0.0E+00 5.0E-04 1.0E-03

3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 Magnetic Field (G)

ESR signal (a.u.)

TiO2-VLP7000 - TMP-OH - D2O - 30 min Irradiation TiO2-VLP7000 - TMP-OH - D2O - NaN3 - 0 min Irradiation TiO2-VLP7000 - TMP-OH - D2O - NaN3 - 30 min Irradiation

-1.0E-03 -5.0E-04 0.0E+00 5.0E-04 1.0E-03

3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 Magnetic Field (G)

ESR signal (a.u.)

TiO2-VLP7000 - TMP-OH - H2O - 60 min Irradiation TiO2-VLP7000 - TMP-OH - D2O - 60 min Irradiation

-1.5E-04 -5.0E-05 5.0E-05 1.5E-04

3440 3450 3460 3470 3480 3490 3500 3510 3520 3530

Magnetic Field (G)

ESR signal (a.u.)

TiO2-AR - DMPO - H2O - 3 min Irradiation TiO2-VLP7000 - DMPO - H2O - 0 min Irradiation TiO2-VLP7000 - DMPO - H2O - 3 min Irradiation

-1.0E-03 -5.0E-04 0.0E+00 5.0E-04 1.0E-03

3440 3450 3460 3470 3480 3490 3500 3510 3520 3530

Magnetic Field (G)

ESR signal (a.u.)

TiO2-AR - TMP-OH - H2O - 60 min Irradiation TiO2-AR - TMP-OH - D2O - 60 min Irradiation

a b

d c

Fig.9. ResultsofESRmeasurements:(a)visiblelightilluminatedaqueous(H2OandD2O)suspensionsofTiO2-ARcontaining10mMconcentrationofTMP-OH;(b)visiblelight illuminatedaqueoussuspensionsofTiO2-ARandTiO2-VLP7000containing50mMconcentrationofDMPO;(c)visiblelightilluminatedaqueous(H2OandD2O)TiO2-VLP7000 suspensionscontaining10mMconcentrationofTMP-OH;(d)visiblelightilluminatedD2OsuspensionofTiO2-VLP7000containing10mMTMP-OH(inthepresenceand absenceofNaN3singletoxygenquencher).

insightintoROS-mediatedbacteriainactivationmechanisms,ESR spin-trappingmeasurementswerecarriedoutforselectedphoto- catalysts.

3.4.1. ESRmeasurements

Four selected titanium dioxides were investigated. TiO2- VLP7000and TiO2-N showed rapidphenol degradation,but no E.colideactivation.TiO2-ARhadhighefficiencyforphenoldegrada- tionandfordisinfectionaswell,whileTiO2-P25hadantibacterial propertybutithadrelativelylowperformanceforphenoldegra- dation.TheresultsoftheESRmeasurementsaresummarizedin Table1.

3.4.1.1. TiO2-AR. InthepresenceofTMP-OHscavengerintheVIS irradiatedTiO2-ARsuspensionastrongESRsignalofTEMPOLwas observedafter1hofillumination(Fig.9a).TEMPOLmightbepro- ducedbyanattackofsingletoxygen(1O2)orhydroxylradical(OH) onTMP-OH[58].

TheESRsignalofTEMPOLisslightlydistorted.Asitisseenin Fig.9athecentralESRfeatureismarkedlyhigherthanthelow-and high-fieldfeatures.Thisdistortionoriginatesfromtheformationof anothernitroxideradical,TEMPONE.OHradicalscanreactwith TEMPOLbyattackingontheOH-groupswhichyieldthegeneration ofTEMPONE[59].

InD2O,asitcanbeseeninFig.9a,thesignalamplitudeofthe ESRsignalofTEMPOLwasreducedca.7.3timesascomparedtoH2O (forthesameilluminationtime).ItisknownthatD2Osuppresses theformationofODradicalsattheTiO2/D2Ointerface[60,61].

InthepresenceofDMPOanintenseDMPO-OHsignal(inH2O) wasobservedundervisiblelightirradiationwhichprovedtheOH radicalgenerationinthecaseofAR(Fig.9b).Thisresultcorrobo- rateswiththemarkeddiminishmentoftheTEMPOLsignalinD2O, andsuggeststhatthephotocatalyticactivityofthissamplemightbe relatedtothephotocatalyticgenerationofhydroxylradicals(OH).

ItshouldbenotedthatTiO2-ARprobablyproducessome1O2via theclassicalmechanismsuggestedbyNosakaetal.[62]butsince applying DMPO scavenger no DMPO-OOHsignal was detected, TiO2-ARdonotproduceO2•−radicalinmeasurablequantity.

3.4.1.2. TiO2-VLP7000.Under VISlight illumination in H2O,the TiO2-VLP7000samplegaveastrongTEMPOLsignal.Thissignalis evenstronger(byca.10%)thanthesignaloftheTiO2-AR(Fig.9c).

InD2O,theESRsignalamplitudeofTEMPOLincreasedca.1.4 times as compared to H2O (Fig. 9c) which suggested that the detectedsignalcanbeduetothegenerationofsingletoxygen(1O2) onthesurfaceofTiO2-VLP7000.Togetmoreevidenceofthegen- erationof1O2 anexperimentwithsingletoxygenquencherwas alsocarriedout.InD2OaverystrongsuppressionoftheTEMPOL signalwasobserved(itwasreducedca.19times)inthepresence of100mMNaN3(whichisa1O2quencher)(seeFig.9d).

SoboththeESRsignalenhancementinD2Oandsignalquench- ingbyNaN3suggestedthatthestrongsignalofTEMPOLisdueto theformationof1O2.Howevertheseresultsdonotexcludethepos- sibilitythatthescavengerwasdirectlyoxidizedonthesurfaceof thephotocatalyst,assuggestedbyNosaka(in2006)forothertita- niaphotocatalysts[63],consideringthatthistitaniahasextremely highspecificsurfacearea.

(8)

InthepresenceofDMPO scavengernoDMPO-OHor DMPO- OOHsignalwasdeterminedforVISlightirradiatedTiO2-VLP7000 (Fig.9b)whichprovedthatthereisnoOHradicalgenerationon thistitania.Thisobservationcorroborateswiththeresultsofthe experimentswithTMP-OHscavenger.

3.4.1.3. TiO2-P25. AtthecaseofTMP-OHscavengerinthevisible lightilluminatedTiO2-P25suspensionawellmeasurablesignalof TEMPOLwasobserved,whichwasabout30%ofthesignalofTiO2- AR.ThissignalwasstronglydecreasedinD2Olikeinthecaseof TiO2-AR,andtheexperimentswithDMPOscavengeralsoproved againthegenerationofOHradical(butinsmalleramountsthan inthecaseofTiO2-AR)andtheabsenceofO2•−.

3.4.1.4. TiO2-N.NomarkedformationofOH,O2•−orsingletoxy- gen(1O2)wasobservedforthenitrogendopedhome-madetitania (TiO2-N).

4. Conclusions

Undervisiblelightillumination,threeofourhome-madetita- nias(TiO2-Fe,TiO2-N,S,TiO2-N,)andcommercialnitrogen/sulphur- dopedKronosVLP7000titaniumdioxideshowedhigherefficiency forphenoldegradationthanthewellknownreferenceAeroxide P25, however onlyVLP7000 had betterperformance than non- dopedAldrichrutile.

AldrichrutilehadhighefficiencyofE.coliinactivationandalso hadsignificantactivityforphenoldegradation;howeverfourdoped titaniashadhigherefficiencyforphenoldegradationthanTiO2-P25 buthadnotanyactivityforinactivationofbacteria.

ESR measurements pointed out that titanias that generated OHradicalswereactiveforkillingE.coli,andthose,whichwere unabletoproduceOHradicalsdidnotshowanydisinfectionprop- erty.Thisisconsistentwiththestatementsofmanyauthorswho described that OH radicals play a majorrole in photocatalytic disinfectionexperiments[2,5,6,24,34,39,42,43],andrecentstudy provedthatthispersistinthecaseofvisiblelightirradiationas well.ThisisingoodagreementwiththeresultsofthestudyofYu etal.[34]whodemonstratedthedeactivationofMicrococcuslylae byvisiblelightirradiatedTiO2duetothegenerationofhydroxyl radical.

KronosVLP7000showedextremelyhighefficiencyforphenol decompositionduetoitshighspecificsurfacearea,butthistitania didnotshowanydisinfectionpropertyunderourcircumstances whichmightbeduetoabsenceofOHradicalgeneration.

TiO2-N titania showedhighperformance for phenol decom- position,howeverneitherOHradicalnorsuperoxideradicalion (O2•−)orsingletoxygen(1O2)wasdetected.Thismeansthatphe- noldegradationoccurredviathereactionbytheholeonthesurface, andthehighefficiencyismostlikelyduetothehighspecificsurface area(thistitaniumdioxidehasthesecondhighestspecificsurface areaamongtheinvestigatedsamples).

The experiments with K2Cr2O7 cut-off filtered light source pointed outthat therutile couldhave high-performanceappli- cability forutilizing visible light in self-cleaningor disinfecting processes.Rutilehadanotableefficiencyalsowiththisverylow intensitybelow420nm.Thisstudyfirstlyinvestigatedthedisin- fectionperformanceofrutileparticleswithrelativelylargeparticle size(d∼315nm)usingsolelyvisiblelightforactivatingthephoto- catalyst.

PureandsilverdopedP25andSumitomotitaniasterilizedwater in1hwhen>400nmconditionwasused,butthesephotocata- lystslosttheirdisinfectionpropertywhenK2Cr2O7 light cut-off filtrationwasapplied(>420nm).Theseresultshighlightedthat theintensityofthecommerciallyavailablelampsinthewavelength

range from400nmto420nm iscrucialtoapplyeffectively the photocatalystsforindoorair/surfacecleaning.

Acknowledgements

This work was partially financed by the European Union throughtheHungary-SerbiaIPACross-borderCo-operationPro- gram,HU-SRB/0901/121/116.Itwasalsoco-financedbythegrant from the Hungarian National Office of Research and Technol- ogy (OTKACK 80193), by theEuropean Regional Development Fund(TÁMOP-4.2.1/B-09/1/KONV-2010-0005andTÁMOP-4.2.2/B- 10/1-2010-0012)andtheSwissContribution(SH/7/2/20).

KM thanksthe financial supportof the Hungarian Research Foundation(OTKAPD78378)andtheJánosBolyaiResearchSchol- arshipoftheHungarianAcademyofSciences.

A.Sand L.F. acknowledgethe financialsupport of theSwiss NationalScienceFoundationthroughtheNano-TeraNTFproject

“Core-shellsuperparamagneticandupconvertingnano-engineered materialsforbiomedicalapplications–NanoUp”.

TheauthorsareindebtedtoEvonikIndustries,toKronosGmbh., toSumitomoChemicalsInc.forsupportingourworkbysupplying freeTiO2samplesforthesestudies.

References

[1] T.Matsunaga,R.Tomoda,T.Nakajima,H.Wake,FEMSMicrobiologyLetters29 (1985)211–214.

[2]J.C.Ireland,P.Klostermann,E.W.Rive,R.M.Clark,AppliedandEnvironmental Microbiology59(1993)1668–1670.

[3] J.A.Herrera-Melian,J.M.D.Rodriguez,A.V.Suarez,E.T.Rendon,C.V.D.Campo,J.

Arana,J.P.Pena,Chemosphere41(2000)323–327.

[4]K.Kühn,Chemosphere53(2003)71–77.

[5]M.Cho,H.Chung,W.Choi,J.Yoon,WaterResearch38(2004)1069–1077.

[6] A.Vohra,D.Y.Goswami,D.A.Deshpande,S.S.Block,AppliedCatalysisB64 (2006)57–65.

[7]A.K.Benabbou,Z.Derriche,C.Felix,P.Lejeune,C.Guillard,AppliedCatalysisB 76(2007)257–263.

[8] C.Hu,J.Guo,J.Qu,X.Hu,Langmuir23(2007)4982–4987.

[9] C.Guillard,T.Bui,C.Felix,V.Moules,B.Lina,P.Lejeune,ComptesRendusChimie 11(2008)107–113.

[10]D.M.A.Alrousan,P.S.M.Dunlop,T.A.McMurray,J.A.Byrne,WaterResearch43 (2009)47–54.

[11] L.Caballero,K.A.Whitehead,N.S.Allen,J.Verran,JournalofPhotochemistry andPhotobiologyA:Chemistry202(2009)92–98.

[12]F.Chen,X.Yang,Q. Wu,EnvironmentalScience &Technology43(2009) 4606–4611.

[13]J.A.Rengifo-Herrera,K.Pierzchała,A.Sienkiewicz,L.Forró,J.Kiwi,C.Pulgarin, AppliedCatalysisB88(2009)398–406.

[14]E.A.Kozlova,A.S. Safatov,S.A.Kiselev,V.Y.Marchenko,A.A.Sergeev,M.O.

Skarnovich,E.K.Emelyanova,M.A.Smetannikova,G.A.Buryak,A.V.Vorontsov, EnvironmentalScience&Technology44(2010)5121–5126.

[15]S.Malato,P.Fernández-Ibá ˜nez,M.I.Maldonado,J.Blanco,W.Gernjak,Catalysis Today147(2009)1–59.

[16]A.Vidal,A.I.Dıaz,A.E.Hraiki,M.Romero,I.Muguruza,F.Senhaji,J.González, CatalysisToday54(1999)283–290.

[17]E.Duffy,SolarEnergy77(2004)649–655.

[18]C.Sichel,J.Blanco,S.Malato,P.Fernández-Ibá ˜nez,JournalofPhotochemistry andPhotobiologyA:Chemistry189(2007)239–246.

[19]C.Sichel,J.Tello,M.deCara,P.Fernández-Ibá ˜nez,CatalysisToday129(2007) 152–160.

[20]A.I.Gomes,J.C.Santos,V.J.P.Vilar,R.A.R.Boaventura,AppliedCatalysisB88 (2009)283–291.

[21]C.Karunakaran, G.Abiramasundari,P.Gomathisankar, G. Manikandan,V.

Anandi,JournalofColloidandInterfaceScience352(2010)68–74.

[22]J.A.Rengifo-Herrera,J.Kiwi,C.Pulgarin,JournalofPhotochemistryandPhoto- biologyA:Chemistry205(2009)109–115.

[23] P.Wu,J.A.Imlay,J.K.Shang,Biomaterials31(2010)7526–7533.

[24]P.Wu,R.Xie,J.A.Imlay,J.K.Shang,AppliedCatalysisB88(2009)576–581.

[25]Z.Pap,L.Baia,K.Mogyorosi,A.Dombi,A.Oszko,V.Danciu,CatalysisCommu- nications17(2011)1–7.

[26]K.Nagaveni,G.Sivalingam,M.S.Hegde,G.Madras,EnvironmentalScience&

Technology38(2004)1600–1604.

[27]Z.Ambrus,N.Balazs,T.Alapi,G.Wittmann,P.Sipos,A.Dombi,K.Mogyorosi, AppliedCatalysisB81(2008)27–37.

[28] E.G.Bajnoczi,N.Balazs,K.Mogyorosi,D.F.Sranko,Z.Pap,Z.Ambrus,S.E.Canton, K.Noren,E.Kuzmann,A.Vertes,Z.Homonnay,A.Oszko,I.Palinko,P.Sipos, AppliedCatalysisB103(2011)232–239.

Ábra

Fig. 1. Photograph of used photoreactor system equipped with conventional 24 W energy saving compact fluorescence lamps.
Fig. 3. Diffuse reflectance spectra of investigated photocatalysts: (a) non-doped commercial and P25 based modified home-made titanium dioxides; (b) doped  com-mercial and home-made titanias.
Fig. 7. Disinfection experiments with 5 mM K 2 Cr 2 O 7 filtered visible light irradiation (initial colony forming unit was 10 4 ).
Fig. 9. Results of ESR measurements: (a) visible light illuminated aqueous (H 2 O and D 2 O) suspensions of TiO 2 -AR containing 10 mM concentration of TMP-OH; (b) visible light illuminated aqueous suspensions of TiO 2 -AR and TiO 2 -VLP7000 containing 50

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

As a result, in case of nitrogen gas root protection higher austenite content could be measured on weld root and the corrosion resistance improves.. For root protection three

Here we present a microwave assisted synthesis of nitrogen doped carbon quantum dots with high efficiency in degradation of Rose Bengal organic dye from water under

degradation efficiency for both the pollutants (phenol and RhB) under visible light. 9, it is clear that as the band gap energy of the composites is increased, the

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

The organisms within this major group can be considered as autotrophs and chemoautotrophs in relation to their participation in the carbon cycle, the nitrogen cycle, the sulphur

T h e metal has since been firmly established as indispensable for nitrogen fixation as well as an essential trace element for fungi and higher plants in the process of

Whether catabolism or anabolism predominates in the adult animal following caloric restriction depends on the degree to which the energy value of the diet has been reduced,