• Nem Talált Eredményt

hydroxide double Synthesis, characterization photocatalytic and activity of crystallineMn(II)Cr(III)-layered Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Ossza meg "hydroxide double Synthesis, characterization photocatalytic and activity of crystallineMn(II)Cr(III)-layered Catalysis Today"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Synthesis, characterization and photocatalytic activity of crystalline Mn(II)Cr(III)-layered double hydroxide

Zita Timár

a,b

, Gábor Varga

a,b

, Szabolcs Muráth

a,b

, Zoltán Kónya

c,d

, Ákos Kukovecz

c,e

, Viktor Havasi

e

, Albert Oszkó

f

, István Pálinkó

a,b

, Pál Sipos

b,g,∗

aDepartmentofOrganicChemistry,UniversityofSzeged,Dómtér8,Szeged,H-6720,Hungary

bMaterialsandSolutionStructureResearchGroup,InstituteofChemistry,UniversityofSzeged,AradiVértanúktere1,Szeged,H-6720,Hungary

cDepartmentofAppliedandEnvironmentalChemistry,UniversityofSzeged,RerrichBélatér1,Szeged,H-6720,Hungary

dMTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,RerrichBélatér1,Szeged,H-6720,Hungary

eMTA-SZTE“Lendület”PorousNanocompositesResearchGroup,RerrichBélatér1,Szeged,H-6720,Hungary

fDepartmentofPhysicalChemistryandMaterialScience,UniversityofSzeged,AradiVértanúktere1,Szeged,H-6720,Hungary

gDepartmentofInorganicandAnalyticalChemistry,UniversityofSzeged,Dómtér7,Szeged,H-6720,Hungary

a r t i c l e i n f o

Articlehistory:

Received6July2016 Receivedinrevisedform 30November2016 Accepted16December2016 Availableonline23December2016

Keywords:

Layereddoublehydroxide Heterogeneousphotocatalysis Photodegradationofmethyleneblue UV–vislightirradiation

a b s t r a c t

Photocatalyticdecompositionofmethylenebluewasattemptedoveras-preparedMn(II)Cr(III)-layered doublehydroxide(LDH)containingMn(II)andCr(III)in2:1molarratio.TheLDHwaspreparedbythe co-precipitationmethod,andwasfoundtoformatpH=10andat80Cfollowing24hhydrothermaltreat- ment.TheMn2Cr-LDHthusobtainedwasstructurallycharacterizedbyX-raydiffractometry,scanning electronmicroscopyandenergy-dispersiveX-rayspectroscopy.TheMn2Cr-LDHdisplayedsignificant photocatalyticactivityinthedegradationofmethyleneblueunderilluminationwithUV–vislight.The photocatalyticperformanceofthephase-pureanduncalcinedMn2Cr-LDHispracticallyidenticaltothat ofthecommerciallyavailableDegussaP25TiO2,anditwasfoundtoremainunalteredoverfivecon- secutivephotocatalyticruns.ThepresenceoftheLDHstructureinthecompositeistheprerequisiteof thephotocatalyticactivity.Applyingincreasingcalcinationtemperature,theLDHstructuregradually collapses,andtheMn2Cr-LDHtransformstophotocatalyticallyinactivedoubleoxide.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Theuseofheterogeneousphotocatalysisinvariousindustrial processessteadilyincreases,andphotocatalystsareintheprocess ofbecomingmoreandmorepopularinavarietyofpracticalappli- cations.Eventhough traditional(non-photoactive) catalystsare stillpredominateandareproducedinmuchhigheramounts,pho- tocatalystsofferaviableandenvironmentallyfriendlyalternative in,e.g.,cleaningindustrialsewage[1,2].

Certaintypesofcompositematerialsarecapableofcatalysing transformationsofbothorganicandinorganiccompoundsinapho- tocatalyticway[3].Layereddoublehydroxides(LDHs)wereamong those tested. Atthe earlystage ofthese studies,it was shown thatboth thetreatmentofthecompositecompound beforethe reactionandthereactionconditionsplaycrucialroleinthepho-

Correspondingauthorat:DepartmentofInorganicandAnalyticalChemistry, UniversityofSzeged,Dómtér7,Szeged,H−6720Hungary.

E-mailaddress:sipos@chem.u-szeged.hu(P.Sipos).

tocatalyticefficiency[4,5].Transitionmetal-containingLDHsare usuallypoorlycrystallinematerials[6,7],andaslongasthisisthe case,photocatalystsofpoorperformancewaspossibletobepre- paredofthem. Ontheotherhand,withincreasingcrystallinity, thespecificsurfaceareaofthephotocatalystinevitablydecreases, whichmayalsoexertanadverseeffectonthephotoactivity[8,9].

In thiswork,ouraimswere(i) thesynthesis ofmanganese- chromiumcontainingLDHsampleswithoptimalcrystallinityand (ii)theiruseasphotocatalystsinthedegradationofmethyleneblue, asmodelcompound.

ThetrivalentcationofchoicewasCr(III),becauseofitsexpected photoactivity [10]. It has been already shown that ZnCr-LDHs, duetothepresenceofCr(III),displaysphotocatalyticactivity[10], whichcanbeenhancedbydopingitwithTb(III)[11] orinclud- inggrapheneinthecomposite[12].Althoughthedivalentcationic partnerismostoftenZn(II)inthelayers,someexamplesforapply- ingCu(II),Ni(II)andevenMg(II)areknown[10,13,14].Itistobe noted, however, that Cr(III)-containing LDHswere only seldom made[15,16]anddetailsaboutthesynthesisisevenmorescarcely

http://dx.doi.org/10.1016/j.cattod.2016.12.037 0920-5861/©2016ElsevierB.V.Allrightsreserved.

(2)

efficiency. Accordingly, the following experimental parameters weresystematically varied duringthe preparation:pH (from 8 to11);thepreparationtemperature(from25to80C),theratio betweenthe di-andthetrivalent ions (from 2:1 to4:1).1 Both nitrateandchloridesaltswereusedforthesyntheses;however, chloridesaltswereomitted,asitwasobservedthattheLDHdidnot precipitatefromthereactionmixtureifchloridesaltswereutilized.

Duringatypical,e.g.,Mn2Cr-LDH,synthesis viaco-precipitation, a mixture of analytical grade Mn(NO3)2×4H2O (30mmol) and Cr(NO3)3×9H2O(15mmol) (bothareReanal products)wasdis- solvedin100mLofdistilledwater,andwasstirredatpH=10for 24h.ThepHwasadjustedviaaddingasolutionof3MNaOHtothe system,thepHofwhichwasmonitoredwithacalibratedglasselec- trode.Thesuspensionwasfiltered,washedwithdistilledwaterand theblackish-bluecrystalsweredriedfor24hinvacuooverP2O5. Hydrothermaltreatment[22]wascarried outin aclosed Pyrex glassvesselat80±3C,usingcontinuousstirring.Theresulting suspensionwasfilteredanddriedfor24hinvacuooverP2O5.

Thematerialspreparedwerecharacterizedbyvariousmethods.

X-raydiffractometry(XRD)wasusedtoverifythesuccess(or thefailure)ofthepreparationoftheLDHs,sinceLDHsareknown tohavecharacteristicXRDpatterns.TheXRDtracesofthevarious sampleswererecordedonaRigakuXRD-6000diffractometer,using CuKradiation(␭=0.15418nm)at40kV,30mA.

Scanning electron microscopy (SEM) was also employed to makethecharacteristichexagonalmorphologyoftheLDHsvisi- ble.ThemorphologyofthinfilmswasinvestigatedusingaHitachi S-4700scanningelectronmicroscopewiththeacceleratingvoltage of10–18kV.

Energy dispersive X-ray (EDX) microspectroscopy gives a (semi)quantitative picture of the components in the material synthesized. EDX data wereobtained on a Röntec QX2 energy dispersivemicroanalyticalsystemfromtwodifferentpartsofthe sample.ThesystemwascoupledtotheSEM,andprovidedwiththe elementalmapofthechosenregionofthesample.

To identify interlayer anions, IR spectra of some selected sampleswererecorded.Forthis,aBIO-RADDigilabDivisionFTS- 65A/896FT-IRspectrophotometerwith4cm−1 resolution,using DRS technique was employed. Spectra in the 4000–600cm1 wavenumber range were recorded, but the most relevant 1850–600cm−1rangewillbedisplayedanddiscussed.256scans werecollectedforeachspectrum.

Thebandgapofthematerialpreparedwasdeterminedfromthe UV–visspectrumregisteredonOceanOpticsUSB4000spectrome-

1 IntheacronymusedfortheLDHsprepared,i.e.,MnnCr,nstandsfortheMn:Cr molarratiointhesolid.

Fig.1.XRDpatternsforthesolidsubstancesobtainedfromasolutioncontaining Mn(II)andCr(III)inamolarratioof2:1atvariouspH-s:A:pH=9,B:pH=10,C:

pH=11;thetemperatureofthereactionmixturewasT=25C.

terwithaDH-2000-BALUV–vis-NIRlightsourcemeasuringdiffuse reflectancemodeandusingBaSO4asreference.Thespectrumwas analyzedwiththeSpectraSuitepackage.Theband-gapenergywas determinedfromtheextrapolationofthestraightsectionofthe modifiedKubelka-Munkfunctionplottedvs.energyoftheincident light.Bandgapdeterminationwasdoneonlyforthephase pure LDH,asthisspecimenwasexclusivelyusedforthephotocatalytic tests.

Forthephotocatalytictests,1mgofcatalyst in200mLsolu- tionwasused,thepHwascontrolledbyabufferbasedonKH2PO4

(0.15M).Todeterminethebestparametersetforthephotocat- alyticdegradation,thepHofthesolution(7–10),thetemperatureof thereactionmixture(8–50C)andtheconcentrationofsubstrate, methylenebluethatis(productofAldrichChemicals)weresystem- aticallyvaried.ThephotoreactorwasanopenPyrexglassvessel.An OSRAMPowerStarHCl-TC70W/WDLlamp(␭=360–800nm)was appliedatafixedposition)forirradiatingthereactor;theirradi- ationtookplacefromverticalposition,ca.10cmfromtheinletof thevessel.ThedegradationofthedyewasfollowedbyUV–visspec- trometryonaShimadzuUV–1650spectrophotometer.Absorbance valuesatabsorptionmaximumofmethyleneblue(665nm)were recorded.

The X-ray photoelectron spectra (XPS) of the freshly pre- paredandtheusedsamplesweretakenwithaSPECSinstrument equipped with a PHOIBOS 150 MCD 9 hemispherical electron energyanalyzer(Germany)operatedintheFATmode.Theexci- tationsourcewastheK␣radiationofmagnesium(h␯=1253.6eV) andaluminum(h␯=1486.3eV)anodes.TheX-raygunwasoper- atedat180Wpower(12kV,15mA).Thepassenergywassetto 20eV,thestepsizewas25 meV,andthecollectiontimeinone channelwas150ms.

3. Resultsanddiscussion

3.1. PreparationandstructuralcharacteristicsoftheMn2Cr-LDH samples

During thepreparative work, first, the synthesis of MnnCr- LDH with appreciable crystallinity was aimed at. As simple co-precipitationwithouthydrothermalpost-treatmentisreported tobea veryefficientwayofLDH preparationingeneral,there- fore,thistrivialsynthesisroutewasinitiallyemployed[22,23].As itisshowninFigs.1–3,viausingthispreparationmethod,the

(3)

Fig.2.XRDpatternsforthesolidsubstancesobtainedfromasolutioncontaining Mn(II)andCr(III)atvariousmolarratios:A:2:1;B:3:1;C:4:1.Thesyntheseswere performedatpH=10andT=25Cthroughout.

Fig.3.XRDpatternsforthesolidobtainedfromasolutioncontainingMn(II)and Cr(III)inamolarratioof2:1atvarioustemperatures:A:T=40C,B:T=60C,C:

T=80C.ThepHofthereactionmixturewas10throughout.Theweakfeatureat2

12denotedby(003)islikelytobeareflectionstemmingfromsomeMn2Cr-LDH.

desiredLDHformationcouldnotbeobservedeitherviasystem- aticallychangingthepH(Fig.1),thereactantratio(Fig.2)orthe temperature(Fig.3).Thelackofthecharacteristic(003)reflectionof theLDHsaround2≈12(exceptfortheweakfeaturecorrespond- ingtoinFig.3C,seebelow)unambiguouslyprove,thattheuseof these(otherwisecommonlyemployed)synthesisparametersdid notleadtopureandhighlycrystallineMnnCr-LDH.

InFig.3C,undersuperambientconditions(T=80C),thefor- mationofsomeMn2Cr-LDHcouldbeobserved.Accordingly,itwas hypothesised,thatalongerhydrothermaltreatmentmayleadto theformationofthedesiredMn2Cr-LDH.Uponusinghydrother- maltreatmentat80Cfor24h,theappearanceoftheXRDpatterns characteristictotheLDH(Fig.4)couldbeobserved.Fromthis,itcan alsobestatedthattheby-productsalsodisappeared,andthebasal spacingwascalculatedasd=0.744nm(withestimateda[14,24]

andcalculatedclatticeparametersof4.7nmand2.23nm,respec- tively[24]).OnthebasisoftheXRDpatterns,thesampleobtained couldbeconsideredasphasepure.TheXRDpatternandtheBET surfacearea(56.4m2/g)ofthesuccessfullypreparedsampledid

Fig.4. XRDpatternsforthesolidsubstancesobtainedfromasolutioncontaining Mn(II)andCr(III)inamolarratioof2:1,subjectedtohydrothermaltreatmentfor 24hatvarioustemperatures:A:T=40C,B:T=60C,C:T=80C.ThepHofthe reactionmixturewas10throughout.

notchangewithintwomonthsfromthesynthesisindicatingcon- siderablystability.TheaveragethicknessoftheLDHparticleswere calculatedfromtheDebye-Scherrerequationandwasfoundtobe 3.1nm.

Forthephase-pureMn2Cr-LDHspecimen,theXRDpatternof whichisshowninFig.4C,theSEMimageswerealsorecorded.From thepictures,thelaminarhexagonally-shapedmorphology,typical ofLDHscanbeobserved(Fig.5).

The SEM–EDX elemental map obtained for the phase-pure Mn2Cr-LDHsampleisdisplayedinFig.6.Itshowsthatboththe manganeseandchromiumareevenlydistributed.

TheIRspectrumofthephase-pureMn2Cr-LDH(Fig.7)showsthe characteristicvibrationoftheintercalatedNO3ionat1405cm−1 [25].AstheIRbandofthecarbonateionappearsveryclosetothatof nitrate,somecontributionfrompossiblecarbonatecontamination mayalsobepresentinthissignal.Theothertwodistinctvibration bandscorrespondtotheLDH structure,andareassociatedwith

␤-OH(1630cm1)[26]andCr−O(780cm1)modes[25].

DRSspectrumoftheas-preparedphasepureMn2Cr-LDHwas alsorecorded (Fig.8).Assuming direct bandgaptransitionand extrapolatingthestraightsectionofthemodifiedKubelka-Munk functionplottedvs.energyoftheincidentlightresultedinbandgap energyof1.46eV.Thiscorrespondsto850nmwavelength,which isconsistentwiththeblackish-bluecolourofthespecimen.Tak- ingindirectbandgaptransition,itsenergywasnotpossibletobe accuratelycomputed(beingatca.0.8eVandthereforefallingout- sidethemeasurementrangeoftheinstrument).Comparingthetwo typesofbandgapenergies,directbandgaptransitionseemstobe morerealisticforthephasepureMn2Cr-LDHsemiconductor.

3.2. PhotocatalysisofmethyleneblueoverMn2Cr-LDH

Thephotocatalyticactivityofthephase-pureMn2Cr-LDHcom- positewastestedinthephotodegradationofmethyleneblue(MB) underUV–vislightirradiation.Intheabsenceofthecatalyst,itwas observedthatthedecompositionofMBwasnegligibleevenafter anextendedperiodoftime.Itwasreportedpreviouslybyothers thatuponUV–visirradiation,morethan10%oftheMBdecomposed within6h;however,thosereactionswereperformedunderacidic conditions[27].Atthebeginningofthecatalyticexperiments,MB wasallowedtoadsorbover thesurfaceofthecatalysts;ineach case,onehour“darktime”wasallowed,beforeswitchingtheillu-

(4)

Fig.6. SEM–EDXelementalmapsforthephase-pureMn2Cr-LDH(hydrothermallytreatedatT=80Cfor24hatpH=10).

minationon.TheinitialdecreaseoftheMBconcentrationpriorto switchingonthelightsourceismostprobablyassociatedwiththis surfaceabsorptionofthesubstrate.

3.2.1. TheeffectofpHduringthereaction

The most important parameter that affect degradation was foundtobethepHofthesolution(Fig.9).Itwasfoundthatthe photoreactioncommencedwithaninductionperiodateachpH, andwasthefaster,whenthepHofthesolutionwasadjustedto9.

Undertheseconditions,thedegradationoftheMBreached>80%

after120min.AthigherandatlowerpH,thereactionratewas significantlylower.AtpH=7,apparentlythec/c0 vs.timecurve startsincreasingafterca.60min(Fig.9A),mostprobably,dueto theformationofsomeintermediate,whichalsoabsorbsthelightat thedetectionwavelength.Theseobservationsstronglysuggestthat themechanismofthephotodegradationofMBoverMn2Cr-LDH compositeisstronglypH-dependent[28].

3.2.2. EffectofMBconcentration

TheinitialconcentrationoftheMBcanbeanimportantfactor in the photodegradation reaction. Therefore, in further experi- ments,itsconcentrationwassystematicallychangedfrom20mg/L to40mg/L.Fig.10atteststhatthedegreeofdegradationvaried inthe70–92%range.Takingintoconsiderationtheerrorsinthese photocatalytictestmeasurements,itseemsreasonabletosuggest, thatintheMBconcentrationrangecovered,thereactionrateis roughlyindependentofthesubstrateconcentration.Inthesub- sequentmeasurements,c0=30mg/Lsubstrateconcentrationwas employed.

3.2.3. Effectofphotocatalystcalcination

During thesubsequent experiments,thephase-pure Mn2Cr- LDHcompositewassubjectedtoannealingatvarioustemperatures (250,500and750C)for24h.Followingthiscalcinationprocedure, thephotodegradationexperimentswererepeatedusingtheopti- mized decomposition conditions (c0=30mg/L,pH=9, T=25C).

Theeffectofthevariouscalcinationtemperaturesonthephoto-

(5)

Fig.7.IRspectrumofphase-pureMn2Cr–LDH.

Fig.8. TaucplotofthephasepureMn2Cr-LDH.

Fig.9. ThephotodegrationofMBexpressedasc/c0asafunctionofillumination timeoverphase-pureMn2Cr-LDHcompositeatvariouspHvaluesandat25C.A:

pH=7,B:pH=9,C:pH=10(initialconcentrationofMB:c0=30mg/L).

Fig.10.ThephotodegrationofMBexpressedasc/c0asafunctionofillumination timeoverphase-pureMn2Cr-LDHcompositeatvariousinitialconcentrationofMB.

A:20mg/L;B:30mg/L;C:40mg/LpH=9,T=25C.

Fig.11.ThephotodegrationofMBexpressedasc/c0asafunctionofillumination timeoverphase-pureMn2Cr-LDHcompositecalcinedatvarioustemperaturesfor 24h.Calcinationtemperatures:A:nocalcination;B:250C;C:500C;D:750C.

Conditionsofphotodegradation:c0=30mg/L;pH=9,T=25C.

catalyticactivityaredisplayedinFig.11,whiletheXRDpatternsof thecalcinedphase-pureMn2Cr-LDHcompositeisshowninFig.12.

ItwasobservedthatamongtheMn2Cr-LDHsamples,theuncal- cinedphotocatalystexhibitedthehighestphotocatalyticactivity.

Increasingthecalcinationtemperatureresultedin adrasticand systematicdecreaseinthephotocatalyticactivity.Calcinationat 750Cfor24hresultedinamaterial,whichhadpracticallynopho- tocatalyticactivitywhatsoever.FromFig.12,itis apparentthat theincreasingcalcinationtemperatureresultedinagradualcol- lapseoftheLDHstructure, and(most probably)resultedin the progressiveformationofsomesortofdoubleoxide.Lattercom- positehasnophotocatalyticactivity,asopposedtothecomposite havingthelayeredstructure.Thephotocatalyticactivityofthevar- iousMn2Cr-LDHsamplesclearlycorrelatewiththeproportionof thelayeredstructureremainingaftercalcination.Thisobservation stronglysuggeststhatthepresenceoftheorderedlayeredstructure isadvantageousforthephotocatalyticactivityofthesecomposites inMBdegradation;thehighlyregularstructurehelpsinpreserving theoxidationstateofthecationiccomponentsoftheas-prepared LDH.

(6)

Fig.12. XRDpatternsofphase-pureMn2Cr-LDHsamplescalcinedatvarioustem- peraturesfor24h.Calcinationtemperatures:A:uncalcinedsample,B:250C,C:

500C,D:750C.

Tocomparetheperformance ofourbestMn2Cr-LDHsample withthat of the commerciallyavailable Degussa P25 TiO2, MB photodegradationexperiments were performed (Fig. 13) under identicalconditionsemploying1mgphotocatalystofbothsolidsin 200cm3testsolution.Fromthisgraph,itisapparentthatthepho- tocatalyticperformanceoftheMn2Cr-LDHcompositewasalmost thesameasthatofP25.

Thestability of theMn2Cr-LDHphotocatalyst wastested by reusingthesamplesfivetimesintheMBdegradationexperiment, employing the optimaldegradation conditions. Aftereach run, thephotocatalystwasremovedviafiltrationanddriedoverP2O5 invacuo,intheusualway.AsshowninFig.14,thedegradationeffi- ciencydidnotchangesignificantlyafterfivecycles,suggestingthat thephotocatalystpreparedbyusisreasonablystableandresistant tophotocorrosion.

3.2.4. TheXPSanalysisoftheas-preparedandtheusedcatalyst TheoxidationofthecationiccomponentsoftheLDHwasstudied withX-rayphotoelectronspectroscopybeforeandafterthereac- tion(Fig.15).Thephotoelectronspectrarevealedthattheoxidation stateofneithercationiccomponentchangedduringthecatalytic reaction.

Fig.13.ThephotodegrationofMBexpressedasc/c0asafunctionofillumination time.A:Nophotocatalystadded;B:overDegussaP25TiO2;C:overphase-pure, uncalcinedMn2Cr-LDHcomposite.Conditionsofphotodegradation:c0=30mg/L;

pH=9,T=25C.

Fig.14.ThephotodegrationofMBexpressedasc/c0asafunctionofillumina- tiontimeoverfiveconsecutiveruns,denotedbyA,B,C,DandE.Conditionsof photodegradation:c0=30mg/L;pH=9,T=25C.

4. Conclusions

Insearchforalayereddoublehydroxidethathasappreciable heterogeneousphotocatalyticactivity,firstthesynthesisofcrys-

Fig.15.TheX-rayphotoelectronspectraoftheMn2Cr-LDHcatalystas-prepared(A)andused(B).

(7)

tallineMn2Cr-LDHwasattempted.Phase-pureLDHwasisolated fromsolutions containing theMn(II) and Cr(III) in a 2:1molar ratioandatpH=10.Fortheformationofphase-pureMn2Cr-LDH, hydrothermaltreatmentat80Cfor24hwasfoundtobeneces- sary;thiswayaMn2Cr-LDHsamplewithreasonablecrystallinity wasobtained.Thismaterialprovedtobeanefficientphotocatalyst inthedegradationreactionofMB.Itwasfoundthatoptimalpho- tocatalyticperformancewasobtained,whenthepHofthesolution wasadjustedto9,andwhenthephotocatalystwasnotsubjectedto anycalcinationbeforethedegradationexperiment.Thephase-pure anduncalcinedMn2Cr-LDHphotocatalystdisplayedphotocatalytic performancethatwasfoundtobepracticallyidenticaltothatofthe commerciallyDegussaP25TiO2.

Acknowledgment

This work was supported by the National Science Fund of HungarythroughOTKANKFI106234andGINOP-2.3.2-15-2016- 00013grants.Thefinancialhelpishighlyappreciated.

References

[1]S.Sikarwar,R.Jain,WaterAirSoilPollut.226(2015)277.

[2]G.Karaca,Y.Tasdemir,J.EnvironSci.HealthATox.HazardSubst.EnvironEng.

48(2013)855–861.

[3]E.Dvininova,M.Ignat,P.Barvinschi,M.A.Smithers,E.Popovici,J.Hazard.

Mater.177(2010)150–158.

[4]N.Ahmed,Y.Shibata,T.Taniguchi,Y.Izumi,J.Catal.279(2011)123–135.

[5]Y.Zhao,M.Wei,J.Lu,Z.LinWang,X.Duan,ACSNano3(2009)4009–4016.

[6]M.delArco,M.V.G.Galiano,V.Rives,R.Trujillano,P.Malet,Inorg.Chem.35 (1996)6362–6372.

[7]H.Wan,J.Liu,Y.Ruan,L.Lv,L.Peng,X.Ji,L.Miao,J.Jiang,ACSAppl.Mater.

Interfaces7(2015)15840–15847.

[8]M.F.deAlmeida,C.R.Bellato,A.H.Mounteer,S.O.Ferreirac,J.L.Milagres,L.D.L.

Miranda,Appl.Surf.Sci.357(2015)1765–1775.

[9]K.Abderrazek,F.S.Najoua,E.Srasra,Appl.Clay.Sci.119(2016)229–235.

[10]N.Baliarsingh,K.M.Parida,G.C.Pradhan,Ind.Eng.Chem.Res.53(2014) 3834–3841.

[11]Y.Fu,F.Ning,S.Xu,H.An,M.Shao,M.Wei,J.MaterChem.A4(2016) 3907–3913.

[12]J.L.Gunjakar,I.Y.Kim,J.M.Lee,N.-S.Lee,S.-J.Hwang,EnergyEnviron.Sci.6 (2013)1008–1017.

[13]A.deRoy,C.Forano,J.P.Besse,LayeredDoubleHydroxides:Presentand Future,in:V.Rives(Ed.),NovaSciencePublishers,Inc,NewYork,2006,pp.

1–39(Ch.1).

[14]J.W.Boclair,P.S.Braterman,J.Jiang,S.Lou,F.Yarberry,Chem.Mater.11 (1999)303–307.

[15]V.R.Choudhary,D.K.Dumbre,B.S.Uphade,V.S.Narkhede,J.Mol.Catal.A215 (2004)129–135.

[16]J.W.Boclair,P.S.Braterman,Chem.Mater.11(1999)298–302.

[17]E.Horváth,P.R.Ribiˇc,F.Hashemi,L.Forró,A.Magrez,J.Mater.Chem.22 (2012)8778–8784.

[18]L.Xiong,Y.Yang,J.Mai,W.Sun,C.Zhang,D.Wei,Q.Chen,J.Ni,Chem.Eng.J.

156(2010)313–320.

[19]E.Horváth,I.Szilágyi,L.Forró,A.Magrez,J.Coll.InterfaceSci.416(2014) 190–197.

[20]S.Xia,L.Zhang,G.Pan,P.Qian,Z.Ni,Phys.Chem.Chem.Phys.17(2015) 5345–5351.

[21]E.M.Seftel,M.Niarchos,Ch.Mitropoulos,M.Mertens,E.F.Vansant,P.Cool, Catal.Today252(2015)120–127.

[22]J.H.Choy,Y.M.Kwon,K.S.Han,S.W.Song,S.H.Chang,Mater.Lett.34(1998) 356–363.

[23]F.M.Labajos,V.Rives,M.A.Ulibarri,Mater.Sci.27(1992)1546–1552.

[24]T.P.F.Teixeira,S.F.Aquino,S.I.Pereira,A.Dias,Braz.J.Chem.Eng.31(2014) 19–26.

[25]F.A.Miller,C.H.Wilkins,Anal.Chem.24(1952)1253–1294.

[26]M.Mora,M.I.López,C.Jiménez-Sanchidrián,J.R.Ruiz,SolidStateSci.13 (2011)101–105.

[27]Y.Zhou,L.Shuai,X.Jiang,F.Jiao,J.Yu,Adv.PowderTechnol.26(2015) 439–447.

[28]K.Abderrazek,F.S.Najoua,E.Srasra,Appl.Clay.Sci.119(2016)229–235.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

degradation efficiency for both the pollutants (phenol and RhB) under visible light. 9, it is clear that as the band gap energy of the composites is increased, the

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

We found that the different pulping processes results in differences of the specific surface of the fibres measured with iron/III/hydroxide, TiO 2 and Methylene blue adsorption,

The photocatalytic activity of silver-bromide was ne-tuned using different precursors during the solvothermal synthesis and the effect of the “S1 chemical elements” (Li + , Na + ,

The photocatalytic activity enhancement caused by either the un- ique morphology and the presence of noble metals was investigated by the degradation of phenol and oxalic acid

Although no better photocatalytic activity was achieved with the composites (both AA- and P25-based ones), it was observed that, for the methyl orange degradation, the samples

hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation

Using cationic dyes to assess the photocatalytic activity of α -MoO 3 requires meticulous investigations since adsorption can be mistaken with photocatalytic activity: the