• Nem Talált Eredményt

For˛Dˇ the classS S

N/A
N/A
Protected

Academic year: 2022

Ossza meg "For˛Dˇ the classS S"

Copied!
7
0
0

Teljes szövegt

(1)

Vol. 19 (2018), No. 1, pp. 431–437 DOI: 10.18514/MMN.2018.1945

ON STRONGLY STARLIKE FUNCTIONS OF ORDER .˛; ˇ/

MAMORU NUNOKAWA AND JANUSZ SOK ´ Received 04 April, 2016

Abstract. We consider the class S S.˛; ˇ/of analytic functions which satisfy the condition ˇ=2 <arg˚

´f0.´/=f .´/ < ˛=2for all´in the unit discEon the complex plane, where 0˛ < 1and 0ˇ < 1. For˛Dˇ the classS S.˛; ˇ/is equal to the well known class S S.ˇ/of strongly starlike functions of orderˇ. In this work we derive a sufficient condition for analytic function to be in the classS S.˛; ˇ/strongly starlike functions of order.˛; ˇ/.

2010Mathematics Subject Classification: 30C45

Keywords: convex functions, starlike functions, starlike of order˛, convex of order˛, strongly starlike functions, subordination

1. INTRODUCTION

LetAdenote the class of analytic functionsf in the unit discED f´W j´j< 1gon the complex planeCwith the normalizationf .0/D0,f0.0/D1. A functionf 2A is said to be starlike of orderıif

Re

´f0.´/

f .´/

> ı .´2E/; (1.1)

for some0ı < 1, Robertson [8]. We denote byS.ı/the class of functions starlike of orderı. We say that a functionf 2Ais strongly starlike of orderˇif and only if

ˇ ˇ ˇ ˇ

arg

´f0.´/

f .´/

ˇ ˇ ˇ ˇ

<

2ˇ .´2E/;

for someˇ .0 < ˇ1/:LetS S.ˇ/denote the class of strongly starlike functions of orderˇ. The classS S.ˇ/was introduced independently by Stankiewicz [9,10] and by Brannan and Kirvan [1]. In [11] Takahashi and Nunokawa defined the following subclass ofA:

S S.˛; ˇ/D

f 2AW ˇ

2 <arg´f0.´/

f .´/ < ˛ 2 ; ´2E

;

for some0 < ˛1;and for some0 < ˇ1. We recall here the fact, that in [2] and in [3] a similar class was studied, see also [4, p.141]. Note thatS S.minf˛; ˇg/

c 2018 Miskolc University Press

(2)

S S.˛; ˇ/S S.maxf˛; ˇg/. Of course for˛Dˇ the classS S.˛; ˇ/becomes the classS S.ˇ/. It is easily seen thatS S.˛; ˇ/S.0/.

2. PRELIMINARY RESULTS

Lemma 1([5]). Letw.´/DaCwn´nCwnC1´nC1C be analytic in Ewith w.´/6aandn1. If´0Dr0ei,0 < r0< 1and

jw.´0/j D max

j´jr0jw.´/j; then it follows that

´0w00/ w.´0/ Dm;

where

mn jw.´0/ aj2

jw.´0/j2 jaj2 njw.´0/j jaj jw.´0/j C jaj:

Theorem 1. Letpbe analytic inEwithp.0/D1andp.´/¤0. If there exist two points´12Eand´22Esuch thatj´1j D j´2j Dr < 1and for´2ErD f´W j´j< rg

ˇ

2 Dargp.´1/ <argp.´/ <argp.´2/D ˛

2 ; (2.1)

with some0 < ˛2,0 < ˇ2, then we have

´1p01/

p.´1/ D i m

˛Cˇ 2

1Cs2

2s (2.2)

and

´2p02/ p.´2/ Di m

˛Cˇ 2

1Ct2

2t ; (2.3)

where

m 1 jaj

1C jaj; aDitan 4

˛ ˇ

˛Cˇ

and where

sD jp.´1/j2=.˛Cˇ /; t D jp.´2/j2=.˛Cˇ /:

Proof. The assumption (2.1) says that the domainp.Er/lies in a sector between two rays argfwg D ˇ=2and argfwg D ˛=2and it contacts with the rays atp.´1/ and atp.´2/. The idea of this proof is that we transform this sector into the unit disc and then we will use the Lemma1. We restrict our considerations to proving (2.3), the proof of (2.2) runs analogously as that of (2.3). The function

q.´/DAfp.´/gB; .´2Er/; (2.4) where

ADexp

i.˛ ˇ/

2.˛Cˇ/

; B D 2

˛Cˇ;

(3)

mapsEronto the setq.Er/on the right half-planeRef!g> 0. The boundary@q.Er/ is tangent to the imaginary axis atq.´1/and at q.´2/because@p.Er/is tangent to the sector ˇ=2 <argw < ˛=2atp.´1/and atp.´2/. Moreover,q.´1/lies on the negative imaginary axis, whileq.´2/lies on the positive imaginary axis,

argfq.´1/g Darg n

Afp.´1/gBo

D .˛ ˇ/

2.˛Cˇ/

ˇ 2

2

˛Cˇ D

2 (2.5)

and

argfq.´2/g Dargn

Afp.´2/gBo

D .˛ ˇ/

2.˛Cˇ/C˛ 2

2

˛Cˇ D

2; (2.6) with

jargfq.´/gj D ˇ ˇ ˇarg

n

Afp.´/gBoˇ ˇ ˇ<

2 .´2Er/:

This shows that

Refq.´/g DRen

Afp.´/gBo

> 0 .´2Er/:

Therefore, the function

.´/D 1 q.´/

1Cq.´/ .´2Er/ (2.7)

maps theErinto the unitEdisc and satisfies

jmax´jrj.´/j D j.´1/j D j.´2/j D1: (2.8) By logarithmic differentiation of (2.7), we have

´0.´/

.´/ D´p0.´/

p.´/

2ABpB.´/

1 A2p2B.´/: For the case argfp.´2/g D˛=2, from (2.6), we can put

ApB2/Di t; 0 < t:

Applying Lemma1and (2.8), we have

´202/

2/ D ´2p02/ p.´2/

2ABpB2/ 1 A2p2B2/

D ´2p02/ p.´2/

4i t

˛Cˇ 1

1Ct2 (2.9)

Dm where

mn j.´2/ .0/j2

j.´2/j2 j.0/j2 1 j.0/j

1C j.0/jD 1 jaj 1C jaj and

aDitan 4

˛ ˇ

˛Cˇ

:

(4)

From (2.9), we obtain (2.3) and for the case argfp.´1/g D ˛=2, applying the same method as the above and from (2.5) and (2.8), we obtain (2.2). It completes the proof

of Theorem1.

The above result is a stronger form of Theorem 1 in [7]. For˛ DˇTheorem 1 becomes Nunokawa’s lemma [6].

3. MAIN THEOREM

Our main result is contained in:

Theorem 2. Letf .´/D´CP1

nD2an´nbe analytic inE. Assume that0 < ˛1, 0 < ˇ1and

ˇ

2 B.˛; ˇ/ <arg

1C´f00.´/

f0.´/

< ˛

2 CA.˛; ˇ/ ´2E; (3.1) whereA.1; 1/D0,B.1; 1/D0, while for˛Cˇ < 2

B.˛; ˇ/Dtan 1 m.˛Cˇ/g.t0/cos.ˇ=2/

2Cm.˛Cˇ/g.t0/sin.ˇ=2/; A.˛; ˇ/Dtan 1 m.˛Cˇ/g.t0/cos. ˛=2/

2Cm.˛Cˇ/g.t0/sin. ˛=2/; and where,

m 1 jaj

1C jaj; aDitan

˛ ˇ

˛Cˇ

;

g.t /D 1Ct2

2t.2C˛Cˇ /=2; t0D s

2C˛Cˇ 2 ˛ ˇ: Then we have

ˇ 2 <arg

´f0.´/

f .´/

< ˛

2 ´2E; (3.2)

Proof. Let us define the function

p.´/D ´f0.´/

f .´/ ; p.0/D1;

then it follows that

p.´/C´p0.´/

p.´/ D1C´f00.´/

f0.´/ : If there exists two points´1; ´22E,j´1j D j´2j Drsuch that

ˇ

2 Dargp.´1/ <argp.´/ <argp.´2/D ˛ 2 ;

(5)

with some0 < ˛1,0 < ˇ1, then for all´2Er, then from Theorem1

´1p01/

p.´1/ D i m

˛Cˇ 2

1Cs2 2s and

´2p02/ p.´2/ Di m

˛Cˇ 2

1Ct2 2t ; where

m 1 jaj

1C jaj; aDitan 4

˛ ˇ

˛Cˇ

and where

sD jp.´1/j2=.˛Cˇ /; t D jp.´2/j2=.˛Cˇ /: For the case argfp.´2/g D˛=2, from Theorem1we have

arg

1C´2f002/ f02/

Darg

p.´2/C´2p02/ p.´2/

Dargfp.´2/g Carg

1C´2p02/ p.´2/

1 p.´2/

D˛ 2 Carg

1Ci m

˛Cˇ 2

1Ct2 2t

1 tCˇ /=2ei ˛=2

D˛ 2 Carg

1Cm

˛Cˇ 2

1Ct2 2t.2C˛Cˇ /=2

ei .1 ˛/=2

:

Hence, if ˛D1 then argf1C´2f002/=f02/g D˛=2, which contradicts (3.1) because in this caseAD0. For0 < ˛ < 1, it easily confirm that

arg

1Cm

˛Cˇ 2

1Ct2 2t.2C˛Cˇ /=2

ei .1 ˛/=2

:

takes its minimum value when the function g.t /D 1Ct2

2t.2C˛Cˇ /=2; t > 0;

takes its minimum value att0Dp

.2C˛Cˇ/=.2 ˛ ˇ/and so, we have arg

1C´2f002/ f02/

˛

2 Ctan 1 m.˛Cˇ/g.t0/sin..1 ˛/=2/

2Cm.˛Cˇ/g.t0/cos..1 ˛/=2/

This contradicts (3.1) and for the case argfp.´1/g Dˇ=2, applying the same method as the above we obtain forˇD1a contradiction with (3.1), while for0 < ˇ < 1we

(6)

have

arg

1C´1f001/ f01/

ˇ

2 tan 1 m.˛Cˇ/g.t0/sin..1 ˇ/=2/

2Cm.˛Cˇ/g.t0/cos..1 ˇ/=2/:

This also contradicts (3.1) and therefore, it completes the proof.

If˛Dˇin the above theorem then we get the following corollary.

Corollary 1. Assume that

4 tan 1

p2 2p4

27Cp 2<arg

1C´f00.´/

f0.´/

<

4Ctan 1

p2 2p4

27Cp

2 ´2E:

Then we have

4 <arg

´f0.´/

f .´/

<

4 ´2E;

this means thatf is strongly starlike of order1=2.

Note that

tan 1

p2 2p4

27Cp

2 D0:23 : : : : REFERENCES

[1] D. A. Brannan and W. E. Kirwan, “On some classes of bounded univalent functions.”J. London Math. Soc., vol. 2, no. 1, pp. 431–443, 1969.

[2] C. Bucka and K. Ciozda, “On a new subclass of the classS.”Ann. Polon. Math., vol. 281, pp.

153–161, 1973.

[3] C. Bucka and K. Ciozda, “Sur une class de fonctions univalentes.”Ann. Polon. Math., vol. 28, pp.

233–238, 1973.

[4] A. W. Goodman,Univalent Functions, Vols. I and II. Mariner Publishing Co.: Tampa, Florida, 1983.

[5] S. S. Miller and P. T. Mocanu, “Second order differential inequalities in the complex plane.”J.

Math. Anal. Appl., vol. 65, pp. 289–305, 1978.

[6] M. Nunokawa, “On the Order of Strongly Starlikeness of Strongly Convex Functions.”Proc.

Japan Acad. Ser. A, vol. 69, pp. 234–237, 1993.

[7] M. Nunokawa, S. Owa, H. Saitoh, N. Eun Cho, and N.Takahashi, “Some properties of analytic functions at extremalpoints for arguments.”J. Approx. Theory Appl., vol. 3, no. 1-2, pp. 31–37, 2007.

[8] M. S. Robertson, “Certain classes of starlike functions,”Michigan Math. J., vol. 76, no. 1, pp.

755–758, 1954.

[9] J. Stankiewicz, “Quelques probl`emes extr´emaux dansles classes des fonctions˛-angulairement

´etoil´ees.”Ann. Univ. Mariae Curie-Skłodowska, Sect. A, vol. 20, pp. 59–75, 1965.

[10] J. Stankiewicz, “On a family of starlike functions.”Ann. Univ. Mariae Curie-Skłodowska, Sect. A , vol. 22-24, pp. 175–181, 1968/70.

[11] N. Takahashi and M. Nunokawa, “A certain connectionbetween starlike and convex functions.”

Appl. Math. Lett., vol. 16, pp. 653–655, 2003.

(7)

Authors’ addresses

Mamoru Nunokawa

University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan E-mail address:mamoru nuno@doctor.nifty.jp

Janusz Sok´oł

University of Rzesz´ow, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzesz´ow, Poland

E-mail address:jsokol@ur.edu.pl

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

COEFFICIENTS OF INVERSE FUNCTIONS IN A NESTED CLASS OF STARLIKE FUNCTIONS OF POSITIVE

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which in- troduced and studied

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which introduced and studied

In this paper we consider some integral operators and we determine conditions for the univalence of these integral operators.. 2000 Mathematics Subject Classification:

Using the inclusions between the unit balls for the p-norms, we obtain a new inequality for the gamma function.. 2000 Mathematics Subject Classification: 33B15,

In this paper we introduce the class B(p, n, µ, α) of analytic and p-valent functions to obtain some sufficient conditions and some angular properties for functions belonging to

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification: