• Nem Talált Eredményt

A MATRIX INEQUALITY FOR MÖBIUS FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A MATRIX INEQUALITY FOR MÖBIUS FUNCTIONS"

Copied!
17
0
0

Teljes szövegt

(1)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

JJ II

J I

Page1of 17 Go Back Full Screen

Close

A MATRIX INEQUALITY FOR MÖBIUS FUNCTIONS

OLIVIER BORDELLÈS BENOIT CLOITRE

2 allée de la combe 19 rue Louise Michel

43000 AIGUILHE (France) 92300 LEVALLOIS-PERRET (France)

EMail:borde43@wanadoo.fr EMail:benoit7848c@orange.fr

Received: 24 November, 2008

Accepted: 27 March, 2009

Communicated by: L. Tóth

2000 AMS Sub. Class.: 15A15, 11A25, 15A18, 11C20.

Key words: Determinants, Dirichlet convolution, Möbius functions, Singular values.

Abstract: The aim of this note is the study of an integer matrix whose determinant is related to the Möbius function. We derive a number-theoretic inequality involving sums of a certain class of Möbius functions and obtain a sufficient condition for the Riemann hypothesis depending on an integer triangular matrix. We also provide an alternative proof of Redheffer’s theorem based upon a LU decomposition of the Redheffer’s matrix.

(2)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page2of 17 Go Back Full Screen

Close

Contents

1 Introduction 3

1.1 Arithmetic motivation . . . 3

1.2 Convolution identities for the Möbius function . . . 4

2 An Integer Matrix Related to the Möbius Function 7 2.1 The determinant ofΓn . . . 7

2.2 A sufficient condition for the PNT and the RH . . . 10

2.2.1 Computation ofUn−1 . . . 10

2.2.2 A sufficient condition for the PNT and the RH . . . 15

(3)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page3of 17 Go Back Full Screen

Close

1. Introduction

In what follows, [t] is the integer part of t and, for integers i, j > 1, we set mod (j, i) :=j−i[j/i].

1.1. Arithmetic motivation

In 1977, Redheffer [5] introduced the matrixRn = (rij)∈ Mn({0,1})defined by rij =

(1, ifi|j or j = 1;

0, otherwise and has shown that (see appendix)

detRn=M(n) :=

n

X

k=1

µ(k),

where µ is the Möbius function and M is the Mertens function. This determi- nant is clearly related to two of the most famous problems in number theory, the Prime Number Theorem (PNT) and the Riemann Hypothesis (RH). Indeed, it is well-known that

PNT⇐⇒M(n) = o(n) and RH⇐⇒M(n) = Oε n1/2+ε

(for anyε > 0). These estimations for|detRn|remain unproven, but Vaughan [6]

showed that1is an eigenvalue ofRnwith (algebraic) multiplicityn−h

logn log 2

i−1, that Rn has two "dominant" eigenvalues λ± such that |λ±| n1/2, and that the others eigenvalues satisfyλ(logn)2/5.

(4)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page4of 17 Go Back Full Screen

Close

It should be mentioned that Hadamard’s inequality, which states that

|detRn|2 6

n

Y

i=1

kLik22,

whereLi is theith row ofRnandk·k2is the euclidean norm onCn, gives

(M(n))2 6n

n

Y

i=2

1 +hn

i i

= 2n−[n/2]n

[n/2]

Y

i=2

1 +hn

i i

62n−[n/2]

n+ [n/2]

n

, which is very far from the trivial bound |M(n)| 6 n so that it seems likely that general matrix analysis tools cannot be used to provide an elementary proof of the PNT.

In this work we study an integer matrix whose determinant is also related to the Möbius function. This will provide a new criteria for the PNT and the RH (see Corollary2.3below). In an attempt to go further, we will prove an inequality for a class of Möbius functions and deduce a sufficient condition for the PNT and the RH in terms of the smallest singular value of a triangular matrix.

1.2. Convolution identities for the Möbius function

The functionµ, which plays an important role in number theory, satisfies the follow- ing well-known convolution identity.

Lemma 1.1. For every real numberx>1we have X

k6x

µ(k) hx

k i

=X

d6x

M x

d

= 1.

One can find a proof for example in [1]. The following corollary will be useful.

(5)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page5of 17 Go Back Full Screen

Close

Corollary 1.2. For every integerj >1we have (i)

j

X

k=1

µ(k) mod (j, k)

k =j

j

X

k=1

µ(k) k −1.

(ii)

j

X

k=1 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k)) = 1.

Proof.

(i) We have

j

X

k=1

µ(k) mod (j, k)

k =

j

X

k=1

µ(k) k

j−k

j k

=j

j

X

k=1

µ(k)

k −

j

X

k=1

µ(k) j

k

and we conclude with Lemma1.1.

(ii) Using Abel summation we get

j

X

k=1 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k))

=

j

X

h=1

µ(h) h

! j X

k=1

(mod(j, k+ 1)−mod(j, k))

j−1

X

k=1 k+1

X

h=1

µ(h)

h −

k

X

h=1

µ(h) h

! k X

m=1

(mod(j, m+ 1)−mod(j, m))

(6)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page6of 17 Go Back Full Screen

Close

=j

j

X

k=1

µ(k)

k −

j−1

X

k=1

µ(k+ 1) mod (j, k+ 1) k+ 1

=j

j

X

k=1

µ(k)

k −

j

X

k=1

µ(k) mod (j, k) k

and we conclude using (i).

(7)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page7of 17 Go Back Full Screen

Close

2. An Integer Matrix Related to the Möbius Function

We now consider the matrixΓn= (γij)defined by

γij =









mod(j,2)−1, if i= 1 and 26j 6n;

mod(j, i+ 1)−mod(j, i), if 26i6n−1 and 16j 6n;

1, if (i, j)∈ {(1,1),(n,1)};

0, otherwise.

The matrixΓnis almost upper triangular except the entryγn1 = 1which is nonzero.

Note that it is easy to check that|γij| 6ifor every1 6i, j 6 nand thatγij =−1 if[j/2]< i < j.

Example 2.1.

Γ8 =

1 −1 0 −1 0 −1 0 −1

0 2 −1 1 1 0 0 2

0 0 3 −1 −1 2 2 −2

0 0 0 4 −1 −1 −1 3

0 0 0 0 5 −1 −1 −1

0 0 0 0 0 6 −1 −1

0 0 0 0 0 0 7 −1

1 0 0 0 0 0 0 0

 .

2.1. The determinant ofΓn

Theorem 2.1. Letn >2be an integer andΓndefined as above. Then we have det Γn=n!

n

X

k=1

µ(k) k .

(8)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page8of 17 Go Back Full Screen

Close

A possible proof of Theorem2.1uses a LU decomposition of the matrixΓn. Let Ln= (lij)andUn = (uij)be the matrices defined by

uij =





0, if (i, j) = (n,1);

1, if (i, j) = (n, n);

γij, otherwise and

lij =













1, if 16i=j 6n−1;

Pj k=1

µ(k)

k , if i=n and 16j 6n−1;

nPn k=1

µ(k)

k , if (i, j) = (n, n);

0, otherwise.

The proof of Theorem2.1follows from the lemma below.

Lemma 2.2. We haveΓn =LnUn.

Proof. SetLnUn = (xij). Wheni = 1we immediately obtainx1j =u1j1j.We also have

xn1 =

n

X

k=1

lnkuk1 =ln1u11= 1 =γn1.

Moreover, using Corollary1.2(ii) we get fori=nand26j 6n−1 xnj =

n

X

k=1

lnkukj =ln1u1j+

n

X

k=2

lnkukj

(9)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page9of 17 Go Back Full Screen

Close

= mod(j,2)−1 +

j

X

k=2 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k))

=

j

X

k=1 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k))−1 = 0 =γnj and, for(i, j) = (n, n), we have similarly

xnn =

n

X

k=1

lnkukn =ln1u1n+

n−1

X

k=2

lnkukn+lnnunn

= mod(n,2)−1 +

n−1

X

k=2 k

X

h=1

µ(h) h

!

(mod(n, k+ 1)−mod(n, k)) +n

n

X

k=1

µ(k) k

=

n

X

k=1 k

X

h=1

µ(h) h

!

(mod(n, k+ 1)−mod(n, k))−1 = 0 =γnn. Finally, for26i6n−1and16j 6n, we get

xij =

n

X

k=1

likukj =liiuij =uijij.

(10)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page10of 17 Go Back Full Screen

Close

Example 2.2.

Γ8 =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 12 16 16301 15210511058

1 −1 0 −1 0 −1 0 −1

0 2 −1 1 1 0 0 2

0 0 3 −1 −1 2 2 −2

0 0 0 4 −1 −1 −1 3

0 0 0 0 5 −1 −1 −1

0 0 0 0 0 6 −1 −1

0 0 0 0 0 0 7 −1

0 0 0 0 0 0 0 1

 .

Theorem2.1now immediately follows from

det Γn = detLndetUn= (n−1)! detLn=n!

n

X

k=1

µ(k) k .

We easily deduce the following criteria for the PNT and the RH.

Corollary 2.3. For any real numberε >0we have

PNT⇐⇒det Γn=o(n!) and RH⇐⇒det Γn=Oε(n−1/2+εn!).

2.2. A sufficient condition for the PNT and the RH

2.2.1. Computation ofUn−1

The inverse ofUnuses a Möbius-type function denoted byµiwhich we define below.

Definition 2.4. Set µ1 = µ the well-known Möbius function and, for any integer

(11)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page11of 17 Go Back Full Screen

Close

i>2, we define the Möbius functionµi byµi(1) = 1and, for any integerm>2, by

µi(m) :=













 µ mi

, if i|m and (i+ 1)-m;

−µ i+1m

, if (i+ 1)|m andi-m;

µ mi

−µ i+1m

, if i(i+ 1)|m;

0, otherwise.

The following result completes and generalizes Lemma1.1and Corollary1.2.

Lemma 2.5. For all integersi, j >2we have

j

X

k=i

µi(k) j

k

ij,

j

X

k=i

µi(k) mod (j, k)

k =j

j

X

k=i

µi(k) k −δij,

j

X

k=i k

X

h=i

µi(h) h

!

(mod(j, k+ 1)−mod(j, k)) =δij, whereδij is the Kronecker symbol.

Proof. We only prove the first identity, the proof of the two others being strictly iden- tical to the identities of Corollary1.2. Without loss of generality, one can suppose that26i6j. Ifi=j then we have

j

X

k=i

µi(k) j

k

j(j) j

j

=µ j

j

= 1.

(12)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page12of 17 Go Back Full Screen

Close

Now suppose that26i < j. By Lemma1.1, we have

j

X

k=i

µi(k) j

k

=

j

X

i|k,k=i(i+1)-k

µ k

i j k

j

X

(i+1)|k, ik=i -k

µ k

i+ 1 j k

+

j

X

i(i+1)|kk=i

µ

k i

−µ k

i+ 1

j k

=

j

X

k=ii|k

µ k

i j k

j

X

(i+1)|kk=i

µ k

i+ 1 j k

=

[j/i]

X

h=1

µ(h) [j/i]

h

[j/(i+1)]

X

h=1

µ(h)

[j/(i+ 1)]

h

= 1−1 = 0, which concludes the proof.

This result gives the inverse ofUn.

Corollary 2.6. SetUn−1 = (θij). Then we have θij =

j

X

k=i

µi(k)

k (16i6j 6n−1) θin=n

n

X

k=i

µi(k)

k (16i6n).

(13)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page13of 17 Go Back Full Screen

Close

Proof. SinceUn−1is upper triangular, it suffices to show that, for all integers16i6 j 6n, we have

j

X

k=i

θikukjij.

In what follows, we setSij as the sum on the left-hand side

We easily check that Sjj = 1for every integer 1 6 j 6 n. Now suppose that 16i < j 6n−1. By Corollary1.2, we first have

S1j =

j

X

k=1

θ1kukj11u1j+

j

X

k=2

θ1kukj

= mod(j,2)−1 +

j

X

k=2 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k))

=

j

X

k=1 k

X

h=1

µ(h) h

!

(mod(j, k+ 1)−mod(j, k))−1 = 0 and, if26i < j 6n−1, then by Lemma2.5, we have

Sij =

j

X

k=i k

X

h=1

µi(h) h

!

(mod(j, k+ 1)−mod(j, k)) =δij = 0.

Now suppose thatj =n. By Corollary1.2, we first have S1n=

n

X

k=1

θ1kukn11u1n+

n−1

X

k=2 k

X

h=1

µ(h) h

!

(mod(n, k+ 1)−mod(n, k)) +θ1nunn

= mod(n,2)−1 +

n−1

X

k=2 k

X

h=1

µ(h) h

!

(mod(n, k+ 1)−mod(n, k)) +n

n

X

k=1

µ(k) k

(14)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page14of 17 Go Back Full Screen

Close

=

n

X

k=1 k

X

h=1

µ(h) h

!

(mod(n, k+ 1)−mod(n, k))−1 = 0 and, if26i6n−1, we have

Sin=

n−1

X

k=i k

X

h=i

µi(h) h

!

(mod(n, k+ 1)−mod(n, k)) +θinunn

=

n−1

X

k=i k

X

h=i

µi(h) h

!

(mod(n, k+ 1)−mod(n, k)) +n

n

X

k=i

µi(k) k

=

n

X

k=i k

X

h=i

µi(h) h

!

(mod(n, k+ 1)−mod(n, k)) = δin = 0 which completes the proof.

For example, we get

U8−1 =

1 12 16 16301 15210511058 0 12 1612112112112123 0 0 13 121 121121121 13 0 0 0 14 201 201 20135 0 0 0 0 15 301 301 154 0 0 0 0 0 16 421 214

0 0 0 0 0 0 17 17

0 0 0 0 0 0 0 1

 .

(15)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page15of 17 Go Back Full Screen

Close 2.2.2. A sufficient condition for the PNT and the RH

Corollary 2.7. For all integersi>1andn>2we have

n

X

k=i

µi(k) k

6 1

n,

whereσnis the smallest singular value ofUn. Thus any estimate of the form σnε n−1+ε,

whereε >0is any real number, is sufficient to prove the PNT. Similarly, any estimate of the form

σnε n−1/2−ε

whereε >0is any real number, is sufficient to prove the RH.

Proof. The result follows at once from the well-known inequalities kUn−1k2 > max

16i,j6nij|>|θin|

(see [3]), wherek·k2 is the spectral norm, and the fact thatσn=kUn−1k−12 .

Smallest singular values of triangular matrices have been studied by many au- thors. For example (see [2,4]), it is known that, ifAn = (aij)is an invertible upper triangular matrix such that|aii|>|aij|fori < j, then we have

σn> min|aii| 2n−1

but, applied here, such a bound is still very far from the PNT.

(16)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page16of 17 Go Back Full Screen

Close

Appendix : A Proof of Redheffer’s Theorem

LetSn= (sij)andTn= (tij)be the matrices defined by

sij =

(1, if i|j;

0, otherwise

and tij =





M(n/i), if j = 1;

1, if i=j >2;

0, otherwise.

Proposition 2.8. We haveRn =SnTn.In particular,detRn=M(n).

Proof. SetSnTn = (xij). Ifj = 1,by Lemma1.1, we have xi1 =

n

X

k=1

siktk1 =X

k6n i|k

Mn k

= X

d6n/i

M n/i

d

= 1 =ri1.

Ifj >2, thent1j = 0and thus xij =

n

X

k=2

siktkj =sij =

(1, if i|j 0, otherwise

=rij which is the desired result. The second assertion follows at once from

detRn = detSndetTn = detTn =M(n).

The proof is complete.

(17)

Möbius Functions Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ II

J I

Page17of 17 Go Back Full Screen

Close

References

[1] O. BORDELLÈS, Thèmes d’arithmétique, Editions Ellipses, 2006.

[2] N.J. HIGHAM, A survey of condition number for triangular matrices, Soc. Ind.

Appl. Math., 29 (1987), 575–596.

[3] R.A. HORN AND C.R. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.

[4] F. LEMEIRE, Bounds for condition number of triangular and trapezoid matrices, BIT, 15 (1975), 58–64.

[5] R.M. REDHEFFER, Eine explizit lösbare Optimierungsaufgabe, Internat.

Schiftenreihe Numer. Math., 36 (1977), 213–216.

[6] R.C. VAUGHAN, On the eigenvalues of Redheffer’s matrix I, in : Number The- ory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283–296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

We give a condition for obtaining the optimal constant of the integral inequality for the numerical analysis of a nonlinear system of PDEs.... Note on an Integral

Abstract: In this paper, an integral inequality and an application of it, that imply the Cheby- shev functional for two 3-convex (3-concave) functions, are given.... Integral

Abstract: In this paper we obtain a sufficient condition for the analyticity and the univalence of the functions defined by an integral operator.. In a particular case we find the

A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

THOMPSON, Convex and concave functions of singular values of matrix sums, Pacific J. ZENG, Young’s inequality in compact

In this paper we introduce the class B(p, n, µ, α) of analytic and p-valent functions to obtain some sufficient conditions and some angular properties for functions belonging to