• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
21
0
0

Teljes szövegt

(1)

volume 7, issue 5, article 192, 2006.

Received 9 February, 2006;

accepted 23 May, 2006.

Communicated by:J. Sándor

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A SHARP INEQUALITY OF OSTROWSKI-GRÜSS TYPE

ZHENG LIU

Institute of Applied Mathematics Faculty of Science

Anshan University of Science and Technology Anshan 114044, Liaoning

People’s Republic of China.

EMail:lewzheng@163.net

c

2000Victoria University ISSN (electronic): 1443-5756 163-06

(2)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

Abstract

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose first derivative are functions of Lipschitizian type and pre- cisely characterize the functions for which equality holds.

2000 Mathematics Subject Classification:26D15.

Key words: Ostrowski-Grüss type inequality, Grüss type inequality for Riemann- Stieltjes integrals, Lipschitzian type function, Sharp bound.

Contents

1 Introduction. . . 3 2 The Results . . . 7

References

(3)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

1. Introduction

In 1935, G. Grüss (see [4, p. 296]) proved the following integral inequality which gives an approximation for the integral of a product of two functions in terms of the product of integrals of the two functions.

Theorem A. Let h, g : [a, b] → Rbe two integrable functions such that φ ≤ h(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b], where φ,Φ, γ,Γ are real numbers. Then we have

|T(h, g)|

(1.1)

:=

1 b−a

Z b a

h(x)g(x)dx− 1 b−a

Z b a

h(x)dx· 1 b−a

Z b a

g(x)dx

≤ 1

4(Φ−φ)(Γ−γ),

and the inequality is sharp, in the sense that the constant 14 cannot be replaced by a smaller one.

It is clear that the constant 14 is achieved for

h(x) =g(x) = sgn

x− a+b 2

.

From then on, (1.1) has been known in the literature as the Grüss inequality.

In 1998, S.S. Dragomir and I. Fedotov [2] established the following Grüss type inequality for Riemann-Stieltjes integrals:

(4)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

Theorem B. Leth, u: [a, b]→Rbe so thatuisL-Lipschitzian on[a, b],i.e.,

|u(x)−u(y)| ≤L|x−y|

for all x, y ∈ [a, b], h is Riemann integrable on [a, b] and there exists the real numbers m, M so thatm ≤ h(x) ≤ M for all x ∈ [a, b]. Then we have the inequality

(1.2)

Z b a

h(x)du(x)− u(b)−u(a) b−a

Z b a

h(t)dt

≤ 1

2L(M −m)(b−a) and the constant 12 is sharp.

In a recent paper [3], the inequality (1.2) has been improved and refined as follows:

Theorem C. Let h, u : [a, b] → R be so thatu is L-Lipschitzian on [a, b], h is Riemann integrable on [a, b]and there exist the real numbers m, M so that m ≤h(x)≤M for allx∈[a, b]. Then we have

Z b a

h(x)du(x)− u(b)−u(a) b−a

Z b a

h(t)dt (1.3)

≤L Z b

a

h(x)− 1 b−a

Z b a

h(t)dt

dx

≤L(b−a)p

T(h, h)

≤ 1

2L(M −m)(b−a).

All the inequalities in (1.3) are sharp and the constant 12 is the best possible one.

(5)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

Theorem D. Let h, u : [a, b] → Rbe so that uis (l, L)-Lipschitzian on[a, b], i.e., it satisfies the condition

l(x2−x1)≤u(x2)−u(x1)≤L(x2−x1)

fora≤ x1 ≤x2 ≤bwithl < L, his Riemann integral on[a, b]and there exist the real numbersm, M so thatm≤h(x)≤M for allx∈[a, b]. Then we have the inequality

Z b a

h(x)du(x)− u(b)−u(a) b−a

Z b a

h(t)dt (1.4)

≤ L−l 2

Z b a

h(x)− 1 b−a

Z b a

h(t)dt

dx

≤ L−l

2 (b−a)p

T(h, h)

≤ 1

4(L−l)(M −m)(b−a).

All the inequalities in (1.4) are sharp and the constant 14 is the best possible one.

In [1], L.J. Dedi´c et al. have proved the following Ostrowski type inequality as

Theorem E. Ifu0isL-Lipschitzian on[a, b], then for everyx∈[a, b]we have (1.5)

Z b a

u(t)dt− b−a 2

u(x) + u(a) +u(b)

2 +

x− a+b 2

u0(x)

≤L 1 3

x− a+b 2

3

+(b−a)3 48

! .

(6)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

In this paper, we will use TheoremCand TheoremDto obtain some sharp integral inequalities of Ostrowski-Grüss type for functions whose first deriva- tive are functions of Lipschitzian type. Thus a further generalization of the Ostrowski type inequality and a perturbed version of the inequality (1.5) is ob- tained.

(7)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

2. The Results

Theorem 2.1. Letu: [a, b]→Rbe a differentiable function so thatu0is(l, L)- Lipschitzian on[a, b], i.e., satisfies the condition

(2.1) l(x2−x1)≤u0(x2)−u0(x1)≤L(x2−x1) fora≤x1 ≤x2 ≤bwithl < L.Then for allx∈[a, b]we have (2.2)

Z b a

u(t)dt− b−a 2

(u(x) + u(a) +u(b)

2 +

x− a+b 2

u0(x)

−u0(b)−u0(a) 4

x− a+b 2

2− (b−a)2 12

≤ L−l

4 I(a, b, x), where

(2.3) I(a, b, x)=

















































1 6

a+b

2 −x a+3b

4 −x

[3(x−a)+(b−x)]

+43 h1

2 x−a+b2 2

+(b−a)48 2 i32

, a≤x≤ξ,

1 6

a+b 2 −x

x−3a+b4

[(x−a)+3(b−x)]

+4 h1

2 x−a+b2 2

+(b−a)48 2 i32

, ξ < x < ζ,

16 3

h1

2 x−a+b2 2

+(b−a)48 2 i32

, ζ≤x≤θ,

1

6 x−a+b2 a+3b

4 −x

[3(x−a)+(b−x)]

+4h

1

2 x−a+b2 2

+(b−a)48 2i32

, θ < x < η,

1

6 x−a+b2

x−3a+b4

[(x−a)+3(b−x)]

+43h

1

2 x−a+b2 2

+(b−a)48 2i32

, η≤x≤b

(8)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

with

ξ= a+b

2 −

√3(b−a)

6 , η= a+b

2 +

√3(b−a)

6 ,

ζ =a+

√6(b−a)

6 , θ=b−

√6(b−a) 6 anda < ξ < 3a+b4 < ζ < a+b2 < θ < a+3b4 < η < b.

Proof. Integrating by parts produces the identity

(2.4) Z b

a

K(x, t)du0(t)

= Z b

a

u(t)dt− 1

2(b−a)

u(x) + u(a) +u(b)

2 +

x−a+b 2

u0(x)

, where

(2.5) K(x, t) =

( 1

2(t−a) t− a+b2

, t∈[a, x],

1

2(t−b) t− a+b2

, t∈(x, b].

Moreover,

(2.6) 1

b−a Z b

a

K(x, t)dt = 1 4

"

x−a+b 2

2

−(b−a)2 12

# .

(9)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

Applying the Grüss type inequality (1.4) gives

Z b a

K(x, t)du0(t)−u0(b)−u0(a) b−a

Z b a

K(x, t)dt

≤ L−l 2

Z b a

K(x, t)− 1 b−a

Z b a

K(x, s)ds

dt.

Then for any fixedx∈[a, b]we can derive from (2.4), (2.5) and (2.6) that (2.7)

Z b a

u(t)dt− b−a 2

u(x) + u(a) +u(b)

2 +

x−a+b 2

u0(x)

−u0(b)−u0(a) 4

"

x−a+b 2

2

−(b−a)2 12

#

≤ L−l

4 I(a, b, x), where

I(a, b, x) = Z x

a

(t−a)

t−a+b 2

−1 2

x−a+b 2

2−(b−a)2 12

dt +

Z b x

(t−b)

t−a+b 2

−1 2

x−a+b 2

2− (b−a)2 12

dt.

The last two integrals can be calculated as follows:

For brevity, we put

p1(t) := (t−a)

t− a+b 2

− 1 2

"

x− a+b 2

2

− (b−a)2 12

#

, t∈[a, x],

(10)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

p2(t) := (t−b)

t− a+b 2

− 1 2

"

x− a+b 2

2

− (b−a)2 12

#

, t∈[x, b].

Then we have

p1(a) = p2(b) = 1 2

"

(b−a)2 12 −

x−a+b 2

2#

;

p1(x) = 1 2

x+b−a

2 x−a+b 2

+ (b−a)2 24 , p2(x) = 1

2

x−b−a

2 x−a+b 2

+ (b−a)2 24 . Set

ξ= a+b

2 −

√3(b−a)

6 , η= a+b

2 +

√3(b−a)

6 ,

ζ =a+

√6(b−a)

6 , θ =b−

√6(b−a)

6 .

It is easy to find thatp1(a) =p2(b)≤0forx∈[a, ξ]∪[η, b],p1(a) =p2(b)>0 forx∈ (ξ, η)andp1(x)≤0forx ∈[a, ζ],p1(x)>0forx∈(ζ, b],p2(x) >0 forx∈[a, θ), p2(x)≤0forx∈[θ, b]. Notice that

a < ξ < 3a+b

4 < ζ < a+b

2 < θ < a+ 3b

4 < η < b, we see that there are five possible cases to be determined.

(11)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

(i) In case x ∈ [ζ, θ]. p1(a) = p2(b) > 0, p1(x)≥0, p2(x)≥0 and it is easy to find by elementary calculus that the functionp1(t)is strictly decreasing in a,3a+b4

and strictly increasing in 3a+b4 , x

, also, as the function p2(t)is strictly decreasing in x,a+3b4

and strictly increasing in a+3b4 , b

. Moreover, p1 3a+b

4

=p2 a+3b 4

<0. So,p1(t)has two zeros in(a, x)at the points t1 = 3a+b

4 −

"

1 2

x−a+b 2

2

+(b−a)2 48

#12

and

t2 = 3a+b

4 +

"

1 2

x−a+b 2

2

+(b−a)2 48

#12 . Alsop2(t)has two zeros in(x, b)at the points

t3 = a+ 3b

4 −

"

1 2

x−a+b 2

2

+(b−a)2 48

#12

and

t4 = a+ 3b

4 +

"

1 2

x−a+b 2

2

+(b−a)2 48

#12 . Thus we have

I(a, b, x) (2.8)

= Z t1

a

"

(t−a)

t−a+b 2

−1 2

x−a+b 2

2

+ (b−a)2 24

# dt

(12)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

+ Z t2

t1

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−a)

t−a+b 2

# dt +

Z x t2

(t−a)

t−a+b 2

−1 2

x−a+b 2

2+ (b−a)2 24

dt +

Z t3

x

"

(t−b)

t−a+b 2

−1 2

x−a+b 2

2

+ (b−a)2 24

# dt

+ Z t4

t3

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−b)

t−a+b 2

# dt

+ Z b

t4

"

(t−b)

t−a+b 2

− 1 2

x−a+b 2

2

+(b−a)2 24

# dt

= 16 3

"

1 2

x−a+b 2

2

+ (b−a)2 48

#32 .

(ii) In case x ∈ [a, ξ], p1(a) = p2(b) ≤ 0, p1(x)<0,p2(x)>0andp1(t)is strictly decreasing in (a, x) as well as p2(t) is strictly decreasing in (x,a+3b4 ) and strictly increasing in (a+3b4 , b) with t3 ∈ (x,a+3b4 ) such that p2(t3) = 0.

Thus we have I(a, b, x) (2.9)

= Z x

a

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−a)

t−a+b 2

# dt

(13)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

+ Z t3

x

"

(t−b)

t−a+b 2

−1 2

x−a+b 2

2

+ (b−a)2 24

# dt

+ Z b

t3

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−b)

t−a+b 2

# dt

= 1 6

a+b

2 −x a+ 3b 4 −x

[3(x−a) + (b−x)]

+ 4 3

"

1 2

x−a+b 2

2

+ (b−a)2 48

#32 .

(iii) In case (ξ, ζ), p1(a) = p2(b) > 0, p1(x)<0,p2(x)>0 and p1(t) has a unique zerot1 ∈(a, x),p2(t)has two zerost3, t4 ∈(x, b). Thus we have

I(a, b, x) (2.10)

= Z t1

a

"

(t−a)

t−a+b 2

−1 2

x−a+b 2

2

+(b−a)2 24

# dt +

Z x t1

1 2

x−a+b 2

2− (b−a)2

24 −(t−a)

t−a+b 2

dt +

Z t3

x

"

(t−b)

t−a+b 2

−1 2

x−a+b 2

2

+(b−a)2 24

# dt

+ Z t4

t3

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−b)

t−a+b 2

# dt

(14)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

+ Z b

t4

(t−b)

t−a+b 2

−1 2

x−a+b 2

2+ (b−a)2 24

dt

= 1 6

a+b

2 −x x− 3a+b 4

[(x−a) + 3(b−x)]

+ 4

"

1 2

x−a+b 2

2

+ (b−a)2 48

#32 .

(iv) In casex ∈(θ, η),p1(a) = p2(b)>0, p1(x)>0, p2(x)<0 andp1(t)has two zerost1, t2 ∈(a, x),p2(t)has a unique zerot4 ∈(x, b). Thus we have

I(a, b, x) (2.11)

= Z t1

a

(t−a)

t−a+b 2

−1 2

x−a+b 2

2+(b−a)2 24

dt +

Z t2

t1

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−a)

t−a+b 2

# dt

+ Z x

t2

"

(t−a)

t−a+b 2

− 1 2

x−a+b 2

2

+(b−a)2 24

# dt

+ Z t4

x

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−b)

t−a+b 2

# dt

+ Z b

t4

"

(t−b)

t−a+b 2

−1 2

x−a+b 2

2

+ (b−a)2 24

# dt

(15)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

= 1 6

x−a+b 2

a+ 3b 4 −x

[3(x−a) + (b−x)]

+ 4

"

1 2

x−a+b 2

2

+ (b−a)2 48

#32 .

(v) In case x∈ [η, b],p1(a) = p2(b)≤0, p1(x)>0, p2(x)< 0andp1(t)has a unique zerot2 ∈(a, x),p2(t)≤0fort∈[x, b]. Thus we have

I(a, b, x) (2.12)

= Z t2

a

"

1 2

x−a+b 2

2

−(b−a)2

24 −(t−a)

t−a+b 2

# dt

+ Z x

t2

"

(t−a)

t−a+b 2

− 1 2

x−a+b 2

2

+ (b−a)2 24

# dt

+ Z b

x

"

1 2

x−a+b 2

2

− (b−a)2

24 −(t−b)

t− a+b 2

# dt

= 1 6

x− a+b

2 x−3a+b 4

[(x−a) + 3(b−x)]

+ 4 3

"

1 2

x− a+b 2

2

+ (b−a)2 48

#32 .

Consequently, the inequality (2.2) with (2.3) follows from (2.7), (2.8), (2.9), (2.10), (2.11) and (2.12).

The proof is completed.

(16)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

Remark 1. It is not difficult to prove that the inequality (2.2) with (2.3) is sharp in the sense that we can construct the function uto attain the equality in (2.2) with (2.3). Indeed, we may chooseusuch that

u(t) =









1

2(t−a)2, a≤t < x,

L

2(t−x)2+ 2l[2(x−a)t−(x2−a2)], x≤t < t3,

l

2[(t−t3)2+ 2(x−a)t−(x2−a2)]

+L2[2(t3−x)t−(t23−x2)], t3 ≤t≤b, which follows

u0(t) =





l(t−a), a≤t < x,

L(t−x) + (x−a)l, x≤t < t3, l(t−t3 +x−a) + (t3−x)L, t3 ≤t≤b, for anyx∈[a, ξ], and

u(t) =





























L

2(t−a)2, a≤t < t1,

l

2(t−t1)2+L2[2(t1 −a)t−(t21−a2)], t1 ≤t < x,

L

2[(t−x)2 + 2(t1−a)t−(t21−a2)]

+2l[2(x−t1)t−(x2 −t21)], x≤t < t3,

l

2[(t−t23) + 2(x−t1)t−(x2−t21)]

+L2[2(t3−x+t1−a)t−(t23−x2+t21−a2)], t3 ≤t < t4,

L

2[(t−t4)2+ 2(t3−x+t1−a)t−(t23−x2+t21−a2)]

+2l[2(t4−t3+x−t1)t−(t24−t23+x2−t21)], t4 ≤t ≤b,

(17)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

which follows

u0(t) =

















L(t−a), a≤t < t1,

l(t−t1) + (t1−a)L, t1 ≤t < x, L(t−x+t1−a) + (x−t1)l, x≤t < t3, l(t−t3+x−t1) + (t3−x+t1−a)L, t3 ≤t < t4, L(t−t4+t3−x+t1−a) + (t4−t3+x−t1)l, t4 ≤t≤b, for anyx∈(ξ, ζ), and

u(t) =





































L

2(t−a)2, a≤t < t1,

l

2(t−t1)2+L2[2(t1 −a)t−(t21−a2)], t1 ≤t < t2,

L

2[(t−t2)2+ 2(t1−a)t−(t21−a2)]

+2l[2(t2−t1)t−(t22−t21)], t2 ≤t < t3,

l

2[(t−t23) + 2(t2−t1)t−(t22−t21)]

+L2[2(t3−t2+t1−a)t−(t23−t22+t21−a2)], t3 ≤t < t4,

L

2[(t−t4)2+ 2(t3−t2+t1−a)t−(t23 −t22+t21−a2)]

+2l[2(t4−t3 +t2−t1)t−(t24−t23+t22−t21) ], t4 ≤t ≤b,

(18)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

which follows

u0(t) =





















L(t−a), a≤t < t1,

l(t−t1) + (t1−a)L, t1 ≤t < t2, L(t−t2 +t1−a) + (t2 −t1)l, t2 ≤t < t3, l(t−t3+t2−t1) + (t3−t2+t1−a)L, t3 ≤t < t4, L(t−t4 +t3−t2+t1−a) + (t4−t3+t2−t1)l, t4 ≤t ≤b, for anyx∈(ξ, ζ), and

u(t) =





































L

2(t−a)2, a≤t < t1,

l

2(t−t1)2+L2[2(t1 −a)t−(t21−a2)], t1 ≤t < t2,

L

2[(t−t2)2+ 2(t1−a)t−(t21−a2)]

+2l[2(t2−t1)t−(t22−t21)], t2 ≤t < x,

l

2[(t−x2) + 2(t2−t1)t−(t22−t21)]

+L2[2(x−t2+t1−a)t−(x2−t22+t21−a2)], x≤t < t4,

L

2[(t−t4)2+ 2(x−t2 +t1−a)t−(x2−t22+t21−a2)]

+2l[2(t4−x+t2−t1)t−(t24−x2+t22−t21)], t4 ≤t ≤b,

(19)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

which follows

u0(t) =





















L(t−a), a≤t < t1,

l(t−t1) + (t1−a)L, t1 ≤t < t2, L(t−t2+t1−a) + (t2−t1)l, t2 ≤t < x, l(t−x+t2−t1) + (x−t2+t1−a)L, x≤t < t4, L(t−t4+x−t2+t1−a) + (t4−x+t2−t1)l, t4 ≤t≤b, for anyx∈(θ, η),and

u(t) =













l

2(t−a)2, a≤t < t2,

L

2(t−t2)2+ 2l[2(t2−a)t−(t22−a2)], t2 ≤t < x,

l

2[(t−x)2+ 2(t2−a)t−(t22−a2)]

+L2[2(x−t2)t−(x2−t22)], x≤t≤b, which follows

u0(t) =









l(t−a), a≤t < t2,

L(t−t2) + (t2−a)l, t2 ≤t < x, l(t−x+t2−a) + (x−t2)L, x≤t≤b.

for anyx∈[η, b].

(20)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

It is clear that all the aboveu0(t)satisfy the condition (2.1) on[a, b].

Remark 2. Forx= a+b2 , we have

Z b a

u(t)dt− b−a 2

u

a+b 2

+u(a) +u(b) 2

+(b−a)2

48 [u0(b)−u0a)]

≤ (L−l)(b−a)3 144√

3 .

Corollary 2.2. Ifu0 isL-Lipschitzian on[a, b], then for allx∈[a, b]we have (2.13)

Z b a

u(t)dt− b−a 2

u(x) + u(a) +u(b)

2 +

x− a+b 2

u0(x)

−u0(b)−u0(a) 4

x−a+b 2

2−(b−a)2 12

≤ L

2I(a, b, x), whereI(a, b, x)is as defined in (2.3).

Proof. It is immediate by takingl =−Lin the theorem.

(21)

A Sharp Inequality of Ostrowski-Grüss Type

Zheng Liu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of21

J. Ineq. Pure and Appl. Math. 7(5) Art. 192, 2006

http://jipam.vu.edu.au

References

[1] L.J. DEDI ´C, M. MATI ´C, J. PE ˇCARI ´CAND A. VUKELI ´C, On generaliza- tions of Ostrowski inequality via Euler harmonic identities, J. of Inequal. &

Appl., 7(6) (2002), 787–805.

[2] S.S. DRAGOMIR AND I. FEDOTOV, An inequality of Grüss type for Riemann-Stieltjes integral and applications for special means, Tamkang J.

of Math., 29(4) (1998), 286–292.

[3] Z. LIU, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. of Math., 30(4) (2004), 483–489.

[4] D.S. MITRINOVI ´C, J. PE ˇCARI ´CANDA.M. FINK, Classical and New In- equalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

FEDOTOV, A Grüss type inequality for map- ping of bounded variation and applications to numerical analysis integral and applications for special means, RGMIA Res. DRAGOMIR,

FEDOTOV, A Grüss type inequality for mapping of bounded variation and applications to numerical analysis integral and applications for special means, RGMIA Res.. DRAGOMIR,

In Section 3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type inequality.... Ostrowski-Grüss type Inequalities in

In Section 3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type

In this paper we establish two new integral inequalities similar to that of the Grüss inequality by using a fairly elementary analysis.. Key words and phrases: Grüss type,

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

DRAGOMIR, A Grüss type integral inequality for mappings of r- Hölder’s type and applications for trapezoid formula, Tamkang J. DRAGOMIR, New estimation of the remainder in

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.. 2000