• Nem Talált Eredményt

(1)MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES G

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(1)MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES G"

Copied!
6
0
0

Teljes szövegt

(1)

MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES

G. ANASTASSIOU, M. R. HOOSHMANDASL, A. GHASEMI, AND F. MOFTAKHARZADEH DEPARTMENT OFMATHEMATICALSCIENCES

THEUNIVERSITY OFMEMPHIS

MEMPHIS,TN 38152, USA ganastss@memphis.edu

DEPARTMENT OFMATHEMATICALSCIENCES

YAZDUNIVERSITY, YAZD, IRAN

hooshmandasl@yazduni.ac.ir esfahan.ghasemi@yahoo.com

fmoftakhar@yahoo.com

Received 06 August, 2009; accepted 29 November, 2009 Communicated by S.S. Dragomir

ABSTRACT. In the present work we develop some integral identities and inequalities for the fractional integral. We have obtained Montgomery identities for fractional integrals and a gener- alization for double fractional integrals. We also produced Ostrowski and Grüss inequalities for fractional integrals.

Key words and phrases: Montgomery identity; Fractional integral; Ostrowski inequality; Grüss inequality.

2000 Mathematics Subject Classification. 26A33.

1. INTRODUCTION

Letf : [a, b] →Rbe differentiable on[a, b], andf0 : [a, b]→Rbe integrable on[a, b], then the following Montgomery identity holds [1]:

(1.1) f(x) = 1

b−a Z b

a

f(t)dt+ Z b

a

P1(x, t)f0(t)dt, whereP1(x, t)is the Peano kernel

(1.2) P1(x, t) =

( t−a

b−a, a≤t≤x,

t−b

b−a, x < t≤b.

Suppose now thatw : [a, b] → [0,∞)is some probability density function, i.e. it is a positive integrable function satisfyingRb

a w(t)dt = 1, andW(t) =Rx

a w(x)dxfort∈[a, b],W(t) = 0

207-09

(2)

for t < a and W(t) = 1 for t > b. The following identity (given by Peˇcari´c in [4]) is the weighted generalization of the Montgomery identity:

(1.3) f(x) =

Z b

a

w(t)f(t)dt+ Z b

a

Pw(x, t)f0(t)dt, where the weighted Peano kernel is

Pw(x, t) =

( W(t), a≤t≤x, W(t)−1, x < t≤b.

In [2, 3], the authors obtained two identities which generalized (1.1) for functions of two vari- ables. In fact, for a functionf : [a, b]×[c, d]→Rsuch that the partial derivatives ∂f∂s(s,t), ∂f∂t(s,t) and 2∂s∂tf(s,t)all exist and are continuous on[a, b]×[c, d], so for all(x, y)∈[a, b]×[c, d]we have:

(1.4) (d−c)(b−a)f(x, y) = Z d

c

Z b

a

f(s, t)ds dt+ Z d

c

Z b

a

∂f(s, t)

∂s p(x, s)ds dt +

Z b

a

Z d

c

∂f(s, t)

∂t q(y, t)dt ds+ Z d

c

Z b

a

2f(s, t)

∂s∂t p(x, s)q(y, t)ds dt, where

(1.5) p(x, s) =

( s−a, a≤s≤x,

s−b, x < s≤b, and q(y, t) =

( t−c, c≤t ≤y, t−d, y < t≤d.

2. FRACTIONALCALCULUS

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper.

Definition 2.1. The Riemann-Liouville integral operator of orderα >0witha≥ 0is defined as

Jaαf(x) = 1 Γ(α)

Z x

a

(x−t)α−1f(t)dt, (2.1)

Ja0f(x) = f(x).

Properties of the operator can be found in [8]. In the case of α = 1, the fractional integral reduces to the classical integral.

3. MONTGOMERYIDENTITIES FORFRACTIONALINTEGRALS

Montgomery identities can be generalized in fractional integral forms, the main results of which are given in the following lemmas.

Lemma 3.1. Letf : [a, b]→ Rbe differentiable on[a, b], andf0 : [a, b]→ Rbe integrable on [a, b], then the following Montgomery identity for fractional integrals holds:

(3.1) f(x) = Γ(α)

b−a(b−x)1−αJaαf(b)−Jaα−1(P2(x, b)f(b)) +Jaα(P2(x, b)f0(b)), α ≥1, whereP2(x, t)is the fractional Peano kernel defined by:

(3.2) P2(x, t) =

( t−a

b−a(b−x)1−αΓ(α), a≤t≤x,

t−b

b−a(b−x)1−αΓ(α), x < t≤b.

(3)

Proof. In order to prove the Montgomery identity for fractional integrals in relation (3.1), by using the properties of fractional integrals and relation (3.2), we have

Γ(α)Jaα(P1(x, b)f0(b)) (3.3)

= Z b

a

(b−t)α−1P1(x, t)f0(t)dt

= Z x

a

t−a

b−a(b−t)α−1f0(t)dt+ Z b

x

t−b

b−a(b−t)α−1f0(t)dt

= Z x

a

(b−t)α−1f0(t)dt− 1 b−a

Z b

a

(b−t)αf0(t)dt.

Next, integrating by parts and using (3.3), we have Γ(α)Jaα(P1(x, b)f0(b))

(3.4)

= (b−x)α−1f(x)− α

b−aΓ(α)Jaαf(b) + (α−1) Z x

a

(b−t)α−2f(t)dt

= (b−x)α−1f(x)− 1

b−aΓ(α)Jaαf(b) + Γ(α)Jaα−1(P1(x, b)f(b)).

Finally, from (3.4) forα≥1, we obtain f(x) = Γ(α)

b−a(b−x)1−αJaαf(b)−Jaα−1(P2(x, b)f(b)) +Jaα(P2(x, b)f0(b)),

and the proof is completed.

Remark 1. Lettingα = 1, formula (3.1) reduces to the classic Montgomery identity (1.1).

Lemma 3.2. Letw : [a, b]→ [0,∞)be a probability density function, i.e. Rb

aw(t)dt = 1, and setW(t) = Rt

aw(x)dx fora ≤ t ≤ b, W(t) = 0fort < aandW(t) = 1fort > b, α ≥ 1.

Then the generalization of the weighted Montgomery identity for fractional integrals is in the following form:

(3.5) f(x) = (b−x)1−αΓ(α)Jaα(w(b)f(b))−Jaα−1(Qw(x, b)f(b)) +Jaα(Qw(x, b)f0(b)), where the weighted fractional Peano kernel is

(3.6) Qw(x, t) =

( (b−x)1−αΓ(α)W(t), a≤t≤x, (b−x)1−αΓ(α)(W(t)−1), x < t≤b.

Proof. From fractional calculus and relation (3.6), we have Jaα(Qw(x, b)f0(b))

(3.7)

= 1

Γ(α) Z b

a

(b−t)α−1Qw(x, t)f0(t)dt

= (b−x)1−α Z b

a

(b−t)α−1W(t)f0(t)dt− Z b

x

(b−t)α−1f0(t)dt

. Using integration by parts in (3.7) andW(a) = 0, W(b) = 1, we have

(3.8) Z b

a

(b−t)α−1W(t)f0(t)dt

=−Γ(α)Jaα(w(b)f(b)) + (α−1) Z b

a

(b−t)α−2W(t)f(t)dt,

(4)

and (3.9)

Z b

x

(b−t)α−1f0(t)dt=−(b−x)α−1f(x) + (α−1) Z b

x

(b−t)α−2f(t)dt.

We apply (3.8) and (3.9) to (3.7), to get Jaα(Qw(x, b)f0(b))

(3.10)

= (b−x)1−α

−Γ(α)Jaα(w(b)f(b))−(α−1) Z b

x

(b−t)α−2f(t)dt

+(b−x)α−1f(x) + (α−1) Z b

a

(b−t)α−2W(t)f(t)dt

=f(x)−Γ(α)(b−x)1−αJaα(w(b)f(b)) + (b−x)1−α(α−1)

× Z x

a

(b−t)α−2W(t)f(t)dt+ Z b

x

(b−t)α−2(W(t)−1)f(t)dt

=f(x)−Γ(α)(b−x)1−αJaα(w(b)f(b)) +Jaα−1(Qw(x, b)f(b)).

Finally, we have obtained that

(3.11) f(x) = (b−x)1−αΓ(α)Jaα(w(b)f(b))−Jaα−1(Qw(x, b)f(b)) +Jaα(Qw(x, b)f0(b)),

proving the claim.

Remark 2. Lettingα = 1, the weighted generalization of the Montgomery identity for frac- tional integrals in (3.5) reduces to the weighted generalization of the Montgomery identity for integrals in (1.3).

Lemma 3.3. Let a functionf : [a, b]×[c, d] → Rhave continuous partial derivatives ∂f∂s(s,t),

∂f(s,t)

∂t and 2∂s∂tf(s,t)on[a, b]×[c, d],for all(x, y)∈[a, b]×[c, d]andα, β ≥2. Then the following two variables Montgomery identity for fractional integrals holds:

(d−c) (b−a)f(x, y)

= (b−x)1−α(d−y)1−βΓ(α)Γ(β)

Ja,cα,β

q(y, d) ∂

∂tf(b, d)

+Jc,aβ,α

f(b, d) +p(x, b)∂f(b, d)

∂s +p(x, b)q(y, d)∂2f(b, d)

∂s ∂t

−Jc,aβ,α−1

p(x, b)f(b, d) +p(x, b)q(y, d)∂f(b, d)

∂t

−Jc,aβ−1,α

q(y, d)f(b, d) +p(x, b)q(y, d)∂f(b, d)

∂s

+Jc,aβ−1,α−1

p(x, b)q(y, d)f(b, d)i , where

Jc,aβ,αf(x, y) = 1 Γ(α)Γ(β)

Z y

c

Z x

a

(x−s)α−1(y−t)β−1f(s, t)ds dt.

Also,p(x, s)andq(y, t)are defined by (1.5).

Proof. Put into (1.4), instead off,the functiong(x, y) = f(x, y)(b−x)α−1(d−y)β−1.

(5)

4. AN OSTROWSKI TYPE FRACTIONALINEQUALITY

In 1938, Ostrowski proved the following interesting integral inequality [5]:

(4.1)

f(x)− 1 b−a

Z b

a

f(t)dt

"

1

4+ 1

(b−a)2

x− a+b 2

2#

(b−a)M,

wheref : [a, b] → Ris a differentiable function such that|f0(x)| ≤ M, for everyx ∈ [a, b].

Now we extend it to fractional integrals.

Theorem 4.1. Letf : [a, b]→Rbe differentiable on[a, b]and|f0(x)| ≤M, for everyx∈[a, b]

andα ≥1. Then the following Ostrowski fractional inequality holds:

(4.2)

f(x)− Γ(α)

b−a(b−x)1−αJaαf(b) +Jaα−1P2(x, b)f(b)

≤ M α(α+ 1)

(b−x)

b−x b−a

−α−1

+ (b−a)α(b−x)1−α

.

Proof. From Lemma 3.1 we have

(4.3)

f(x)− Γ(α)

b−a(b−x)1−αJaαf(b) +Jaα−1(P2(x, b)f(b))

=

Jaα(P2(x, b)f0(b)) . Therefore, from (4.3) and (2.1) and|f0(x)| ≤M, we have

1 Γ(α)

Z b

a

(b−t)α−1P2(x, t)f0(t)dt (4.4)

≤ 1 Γ(α)

Z b

a

(b−t)α−1

P2(x, t)

f0(t) dt

≤ M Γ(α)

Z b

a

(b−t)α−1

P2(x, t) dt

≤M(b−x)1−α b−a

Z x

a

(b−t)α−1(t−a)dt+ Z b

x

(b−t)αdt

= M

α(α+ 1)

(b−x)

b−x b−a

−α−1

+ (b−a)α(b−x)1−α

.

This proves inequality (4.2).

5. A GRÜSSTYPE FRACTIONALINEQUALITY

In 1935, Grüss proved one of the most celebrated integral inequalities [6], which can be stated as follows

(5.1)

1 b−a

Z b

a

f(x)g(x)dx− 1 (b−a)2

Z b

a

f(x)dx Z b

a

g(x)dx

≤ 1

4(M −m)(N −n), provided thatf andgare two integrable functions on[a, b]and satisfy the conditions

m ≤f(x)≤M, n ≤g(x)≤N, for allx∈[a, b], wherem, M, n, N are given real constants.

A great deal of attention has been given to the above inequality and many papers dealing with various generalizations, extensions, and variants have appeared in the literature [7].

(6)

Proposition 5.1. Given thatf(x)andg(x)are two integrable functions for allx∈ [a, b], and satisfy the conditions

m≤(b−x)α−1f(x)≤M, n ≤(b−x)α−1g(x)≤N,

where α > 1/2, andm, M, n, N are real constants, the following Grüss fractional inequality holds:

(5.2)

Γ(2α−1)

(b−a)Γ2(α)Ja2α−1(f g)(b)− 1

(b−a)2Jaαf(b)Jaαg(b)

≤ 1

4 Γ2(α)(M−m)(N −n).

Proof. If substituteh(x) = (b−x)α−1f(x)andk(x) = (b−x)α−1g(x)in (5.1), we will obtain

(5.2).

In [10] some related fractional inequalities are given.

REFERENCES

[1] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CAND A.M. FINK, Inequalities for Functions and their Inte- grals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.

[2] N.S. BARNETT AND S.S. DRAGOMIR, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math., 27(1) (2001), 1–10.

[3] S.S. DRAGOMIR, P. CERONE, N.S. BARNETT AND J. ROUMELIOTIS, An inequlity of the Ostrowski type for double integrals and applications for cubature formulae, Tamsui Oxf. J. Math.

Sci., 16(1) (2000), 1–16.

[4] J.E. PE ˇCARI ´C, On the ˇCebyšev inequality, Bul. ¸Sti. Tehn. Inst. Politehn. "Traian Vuia" Tim- i¸soara, 25(39)(1) (1980), 5–9.

[5] A. OSTROWSKI, Über die absolutabweichung einer differentiebaren funktion von ihren inte- gralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.

[6] G. GRÜSS, Über das maximum des absoluten betrages von[1/(b−a)]Rb

a f(x)g(x)dx−[1/(b− a)2]Rb

af(x)dxRb

ag(x)dx, Math. Z., 39 (1935), 215–226.

[7] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[8] S. MILLERANDB. ROSS, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 199, p. 2.

[9] J. PE ˇCARI ´C AND A. VUKELI ´C, Montgomery identities for function of two variables, J. Math.

Anal. Appl., 332 (2007), 617–630.

[10] G. ANASTASSIOU, Fractional Differentiation Inequalities, Springer, N.Y., Berlin, 2009.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

DRAGOMIR, A Grüss type integral inequality for mappings of r- Hölder’s type and applications for trapezoid formula, Tamkang J. DRAGOMIR, New estimation of the remainder in

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications in numerical integration, Kyungpook Math. CHENG, Improvement of

We establish here the general form of an inequality of Ostrowski type, differ- ent to that of Cerone, Dragomir and Roumeliotis [1], for twice differentiable mappings in terms of L

We establish here the general form of an inequality of Ostrowski type, different to that of Cerone, Dragomir and Roumeliotis [1], for twice differentiable mappings in terms of L

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose