• Nem Talált Eredményt

GENERALIZATIONS OF SOME NEW ˇCEBYŠEV TYPE INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "GENERALIZATIONS OF SOME NEW ˇCEBYŠEV TYPE INEQUALITIES"

Copied!
15
0
0

Teljes szövegt

(1)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

JJ II

J I

Page1of 15 Go Back Full Screen

Close

GENERALIZATIONS OF SOME NEW ˇ CEBYŠEV TYPE INEQUALITIES

ZHENG LIU

Institute of Applied Mathematics, School of Science University of Science and Technology Liaoning Anshan 114051, Liaoning, China

EMail:lewzheng@163.net

Received: 17 August, 2006

Accepted: 02 January, 2007

Communicated by: N.S. Barnett 2000 AMS Sub. Class.: 26D15.

Key words: Cebyšev type inequalities, Absolutely continuous functions, Cauchy-Schwarz in- equality for double integrals,Lpspaces, Hölder’s integral inequality.

Abstract: We provide generalizations of some recently published ˇCebyšev type inequali- ties.

Acknowledgements: The author wishes to thank the editor for his help with the final presentation of this paper.

(2)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page2of 15 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Statement of Results 6

3 Proof of Theorem 2.1 8

4 Proof of Theorem 2.2 11

5 Proof of Theorem 2.3 13

(3)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page3of 15 Go Back Full Screen

Close

1. Introduction

In a recent paper [1], B.G. Pachpatte proved the following ˇCebyšhev type inequali- ties:

Theorem 1.1. Letf, g : [a, b]→Rbe absolutely continuous functions on[a, b]with f0, g0 ∈L2[a, b], then,

(1.1) |P(F, G, f, g)| ≤ (b−a)2 12

1

b−akf0k22 −([f;a, b])2 12

× 1

b−akg0k22−([g;a, b])2 12

,

(1.2) |P(A, B, f, g)| ≤ (b−a)2 12

1

b−akf0k22−([f;a, b])2 12

× 1

b−akg0k22−([g;a, b])2 12

, where

(1.3) P(α, β, f, g) =αβ − 1 b−a

α

Z b

a

g(t)dt+β Z b

a

f(t)dt

+ 1

b−a Z b

a

f(t)dt 1

b−ag(t)dt

,

(1.4) [f;a, b] = f(b)−f(a)

b−a ,

(4)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page4of 15 Go Back Full Screen

Close

F = f(a) +f(b)

2 , G= g(a) +g(b)

2 , A=f

a+b 2

, B =g

a+b 2

, and

kfk2 :=

Z b

a

f2(t)dt 12

.

Theorem 1.2. Let f, g : [a, b] → R be differentiable functions so that f0, g0 are absolutely continuous on[a, b], then,

(1.5) |P(F , G, f, g)| ≤ (b−a)4

144 kf00−[f0;a, b]kkg00−[g0;a, b]k, where

F = f(a) +f(b)

2 − (b−a)2

12 [f0;a, b], G= g(a) +g(b)

2 −(b−a)2

12 [g0;a, b], P(α, β, f, g)and[f;a, b]are as defined in (1.3) and (1.4), and

kfk = sup

t∈[a,b]

|f(t)|<∞.

In [2], B.G. Pachpatte presented an additional ˇCebyšev type inequality given in Theorem1.3below.

Theorem 1.3. Letf, g: [a, b]→Rbe absolutely continuous functions whose deriva- tivesf0, g0 ∈Lp[a, b],p > 1, then we have,

(1.6) |P(C, D, f, g)| ≤ 1

(b−a)2M2qkf0kpkg0kp,

(5)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page5of 15 Go Back Full Screen

Close

whereP(α, β, f, g)is as defined in (1.3), C = 1

3

f(a) +f(b)

2 + 2f

a+b 2

, D= 1

3

g(a) +g(b)

2 + 2g

a+b 2

,

(1.7) M = (2q+1+ 1)(b−a)q+1

3(q+ 1)6q with 1p + 1q = 1, and

kfkp = Z b

a

|f(t)|pdt 1p

<∞.

In this paper, we provide some generalizations of the above three theorems.

(6)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page6of 15 Go Back Full Screen

Close

2. Statement of Results

We use the following notation to simplify the detail of presentation. For suitable functionsf, g : [a, b]→Rand real numberθ ∈[0,1]we set,

Γθ = θ

2[f(a) +f(b)] + (1−θ)f

a+b 2

,

θ = θ

2[g(a) +g(b)] + (1−θ)g

a+b 2

, Γθ = Γθ+ (1−3θ)(b−a)2

24 [f0, a, b],

θ = ∆θ+(1−3θ)(b−a)2

24 [f0, a, b], where[f;a, b]is as defined in (1.4).

We also useP(α, β, f, g)as defined in (1.3), whereαandβ are real constants.

The results are stated as Theorems2.1,2.2and2.3.

Theorem 2.1. Let the assumptions of Theorem1.1hold, then for anyθ ∈[0,1], (2.1) |P(Γθ,∆θ, f, g)| ≤ (b−a)2

12 [θ3+ (1−θ)3]

× 1

b−akf0k22−([f;a, b])2 12

1

b−akg0k22−([g;a, b])2 12

. Theorem 2.2. Let the assumptions of Theorem1.2hold, then for anyθ ∈[0,1], (2.2) |P(Γθ,∆θ, f, g)| ≤(b−a)4I2(θ)kf00−[f0;a, b]kkg00−[g0;a, b]k,

(7)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page7of 15 Go Back Full Screen

Close

where

(2.3) I(θ) =

( θ3

3θ8 + 241, 0≤θ ≤ 12,

1

8(θ− 13), 12 < θ≤1.

Theorem 2.3. Let the assumptions of Theorem1.3hold, then for anyθ ∈[0,1], (2.4) |P(Γθ,∆θ, f, g)| ≤ 1

(b−a)2M

2 q

θ kf0kpkg0kp, where

(2.5) Mθ = θq+1+ (1−θ)q+1

(q+ 1)2q (b−a)q+1, and 1p + 1q = 1.

(8)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page8of 15 Go Back Full Screen

Close

3. Proof of Theorem 2.1

Define the function,

(3.1) K(θ, t) =

( t−(a+θb−a2 ), t∈[a,a+b2 ], t−(b−θb−a2 ), t∈(a+b2 , b], and we obtain the following identities:

(3.2) Γθ− 1

b−a Z b

a

f(t)dt=O(f;a, b;θ),

(3.3) ∆θ− 1

b−a Z b

a

g(t)dt =O(g;a, b;θ), where

O(f;a, b;θ) = 1 2(b−a)2

Z b

a

Z b

a

(f0(t)−f0(s))(k(θ, t)−k(θ, s)dt ds.

Multiplying the left sides and right sides of (3.2) and (3.3) we get, (3.4) P(Γθ,∆θ, f, g) = O(f;a, b;θ)O(g;a, b;θ).

From (3.4),

(3.5) |P(Γθ,∆θ, f, g)|=|O(f;a, b;θ)||O(g;a, b;θ)|.

(9)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page9of 15 Go Back Full Screen

Close

Using the Cauchy-Schwarz inequality for double integrals,

|O(f;a, b;θ)| ≤ 1 2(b−a)2

Z b

a

Z b

a

|f0(t)−f0(s)||k(θ, t)−k(θ, s)|dt ds (3.6)

1 2(b−a)2

Z b

a

Z b

a

(f0(t)−f0(s))2dt ds 12

×

1 2(b−a)2

Z b

a

Z b

a

(k(θ, t)−k(θ, s))2dt ds 12

. By simple computation,

(3.7) 1

2(b−a)2 Z b

a

Z b

a

(f0(t)−f0(s))2dt ds

= 1

b−a Z b

a

(f0(t))2dt− 1

b−a Z b

a

f0(t)dt 2

, and

(3.8) 1

2(b−a)2 Z b

a

Z b

a

(k(θ, t)−K(θ, s))2dt ds= (b−a)2

12 [θ3+ (1−θ)3].

Using (3.7), (3.8) in (3.6), (3.9) |O(f;a, b;θ)| ≤ b−a

2√

3[θ3+ (1−θ)3]12 1

b−akf0k22−([f;a, b])2 12

. Similarly,

(3.10) |O(g;a, b;θ)| ≤ b−a 2√

3[θ3+ (1−θ)3]12 1

b−akg0k22−([g;a, b])2 12

.

(10)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page10of 15 Go Back Full Screen

Close

Using (3.9) and (3.10) in (3.5), (2.1) follows.

Remark 1. Ifθ= 1andθ = 0in (2.1), the inequalities (1.1) and (1.2) are recaptured.

Thus Theorem2.1may be regarded as a generalization of Theorem1.1.

(11)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page11of 15 Go Back Full Screen

Close

4. Proof of Theorem 2.2

Define the function L(θ, t) =

( 1

2(t−a)[t−(1−θ)a−θb], t∈[a,a+b2 ],

1

2(t−b)[t−θa−(1−θ)b], t∈(a+b2 , b].

It is not difficult to find the following identities:

(4.1) 1

b−a Z b

a

f(t)dt−Γθ =Q(f0, f00;a, b),

(4.2) 1

b−a Z b

a

g(t)dt−∆θ =Q(g0, g00;a, b), where

Q(f0, f00;a, b) = 1 b−a

Z b

a

L(θ, t){f00(t)−[f0;a, b]}dt.

Multiplying the left sides and right sides of (4.1) and (4.2), we get, (4.3) P(Γθ,∆θ, f, g) =Q(f0, f00;a, b)Q(g0, g00;a, b).

From (4.3),

(4.4) |P(Γθ,∆θ, f, g)|=|Q(f0, f00;a, b)||Q(g0, g00;a, b)|.

By simple computation, we have,

|Q(f0, f00;a, b)| ≤ 1 b−a

Z b

a

|L(θ, t)||[f00(t)−[f0;a, b]|dt (4.5)

≤ 1

b−akf00(t)−[f0;a, b]k Z b

a

|L(θ, t)|dt,

(12)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page12of 15 Go Back Full Screen

Close

and similarly,

(4.6) |Q(f0, f00;a, b)| ≤ 1

b−akf00(t)−[f0;a, b]k

Z b

a

|L(θ, t)|dt, where

(4.7)

Z b

a

|L(θ, t)|dt= (b−a)3× ( θ3

3θ8 + 241, 0≤θ≤ 12,

1

8(θ− 13), 12 < θ≤1.

Consequently, the inequalities (2.2) and (2.3) follow from (4.4) – (4.7).

Remark 2. If θ = 1 in (2.2) with (2.3), the inequality (1.5) is recaptured. Thus Theorem2.2may be regarded as a generalization of Theorem1.2.

(13)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page13of 15 Go Back Full Screen

Close

5. Proof of Theorem 2.3

From (3.1), we can also find the following identities:

(5.1) Γθ− 1

b−a Z b

a

f(t)dt= 1 b−a

Z b

a

K(θ, t)f0(t)dt,

(5.2) ∆θ− 1

b−a Z b

a

g(t)dt= 1 b−a

Z b

a

K(θ, t)g0(t)dt.

Multiplying the left sides and right sides of (5.1) and (5.2) we get, (5.3) P(Γθ,∆θ, f, g) = 1

(b−a)2 Z b

a

k(θ, t)f0(t)dt

Z b

a

k(θ, t)g0(t)dt

. From (5.3) and using the properties of modulus and Hölder’s integral inequality, we have,

|P(Γθ,∆θ, f, g)|

(5.4)

≤ 1

(b−a)2 Z b

a

|k(θ, t)||f0(t)|dt

Z b

a

|k(θ, t)||g0(t)|dt

≤ 1

(b−a)2

"

Z b

a

|k(θ, t)|qdt

1q Z b

a

|f0|pdt 1p#

×

"

Z b

a

|k(θ, t)|qdt

1

q Z b

a

|g0|pdt

1 p#

= 1

(b−a)2 Z b

a

|k(θ, t)|qdt 2q

kf0kpkg0kp.

(14)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page14of 15 Go Back Full Screen

Close

A simple computation gives, Z b

a

|k(θ, t)|qdt (5.5)

= Z a+b2

a

t−

a+θb−a 2

q

dt+ Z b

a+b 2

t−

b−θb−a 2

q

dt

=

Z a+θb−a2

a

a+θb−a 2 −t

q

dt+ Z a+b2

a+θb−a2

t−a−θb−a 2

q

dt +

Z b−θb−a

2

a+b 2

b−θb−a 2 −t

q

dt+ Z b

b−θb−a

2

t−b+θb−a 2

q

dt

= 2

q+ 1

"

θ 2

q+1

(b−a)q+1+

1−θ 2

q+1

(b−a)q+1

#

= θq+1+ (1−θ)q+1

(q+ 1)2q (b−a)q+1 =Mθ.

Consequently, the inequality (2.4) with (2.5) follow from (5.4) and (5.5).

Remark 3. If we take θ = 13 in (2.4) with (2.5), we recapture the inequality (1.6) with (1.7). Thus Theorem2.3may be regarded as a generalization of Theorem1.3.

Remark 4. If we take p = 2 in Theorem 2.3, and replacef(t) andg(t) byf(t)− [f;a, b]tandg(t)−[g;a, b]tin (2.4), respectively, then inequality (2.1) is recaptured.

(15)

Cebyšev Type Inequalitiesˇ Zheng Liu vol. 8, iss. 1, art. 13, 2007

Title Page Contents

JJ II

J I

Page15of 15 Go Back Full Screen

Close

References

[1] B.G. PACHPATTE, New ˇCebyšev type inequalities via trapezoidal-like rules, J. Inequal. Pure and Appl. Math., 7(1) (2006), Art. 31. [ONLINE: http://

jipam.vu.edu.au/article.php?sid=637].

[2] B.G. PACHPATTE, On ˇCebyšev type inequalities involving functions whose derivatives belong to Lp spaces, J. Inequal. Pure and Appl. Math., 7(2) (2006), Art. 58. [ONLINE: http://jipam.vu.edu.au/article.php?sid=

675].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

Key words: Ostrowski’s inequality, Ostrowski-like type inequality, Trapezoid type inequality, Sharp inequality, Mid-point-trapezoid type inequality.. Abstract: Several new

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func- tions, Integral inequalities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s type inequali-

In this paper we establish new inequalities similar to the ˇCebyšev integral in- equality involving functions and their derivatives via certain Trapezoidal like rules.. 2000

In this paper we establish new inequalities similar to the ˇ Cebyšev integral inequal- ity involving functions and their derivatives via certain Trapezoidal like rules.. Key words

In this note we establish new ˇCebyšev type integral inequalities involving func- tions whose derivatives belong to L p spaces via certain integral identities.. 2000 Mathematics

In this note we establish new ˇ Cebyšev type integral inequalities involving functions whose derivatives belong to L p spaces via certain integral identities.. Key words and phrases:

ON CHEBYSHEV TYPE INEQUALITIES INVOLVING FUNCTIONS WHOSE DERIVATIVES BELONG TO L p SPACES VIA ISOTONIC