• Nem Talált Eredményt

OPERATOR NORM INEQUALITIES OF MINKOWSKI TYPE

N/A
N/A
Protected

Academic year: 2022

Ossza meg "OPERATOR NORM INEQUALITIES OF MINKOWSKI TYPE"

Copied!
21
0
0

Teljes szövegt

(1)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page

Contents

JJ II

J I

Page1of 21 Go Back Full Screen

Close

OPERATOR NORM INEQUALITIES OF MINKOWSKI TYPE

KHALID SHEBRAWI HUSSIEN ALBADAWI

Department of Applied Sciences Department of Basic Sciences and Mathematics Al-Balqa’ Applied University Philadelphia University

Salt, Jordan Amman, Jordan

EMail:khalid@bau.edu.jo EMail:hbadawi@philadelphia.edu.jo

Received: 23 August, 2007

Accepted: 09 March, 2008

Communicated by: F. Zhang

2000 AMS Sub. Class.: 47A30, 47B10, 47B15, 47B20.

Key words: Unitarily invariant norm, Minkowski inequality, Schattenp−norm,n−tuple of operators, triangle inequality.

Abstract: Operator norm inequalities of Minkowski type are presented for unitarily invari- ant norm. Some of these inequalities generalize an earlier work of Hiai and Zhan.

Acknowledgements: The authors are grateful to the referee for his valuable suggestions which im- proved an earlier version of the paper.

(2)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page2of 21 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Norm Inequalities of Minkowski Type 6

3 Norm Inequalities of Minkowski Type for the SchattenP−Norm 16

(3)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page3of 21 Go Back Full Screen

Close

1. Introduction

Let B(H) be the space of all bounded linear operators on a separable complex Hilbert space H. A unitarily invariant norm |||·||| is a norm on the space of op- erators satisfying|||A||| =|||U AV|||for allAand all unitary operatorsU andV in B(H). Except for the operator norm, which is defined on all ofB(H), each unitarily invariant norm|||·||| is defined on a norm idealC|||·|||contained in the ideal of com- pact operators. When we talk of|||A|||we are implicitly assuming thatAbelongs to C|||·|||.

The absolute value of an operatorA∈B(H), denoted by|A|, is defined by|A|= (AA)1/2. Lets1(A), s2(A), . . . be the singular values of the compact operator A, i.e., the eigenvalues of|A|, rearranged such thats1(A)≥s2(A)≥ · · ·.

Forp > 0and for every unitarily invariant norm|||·|||onB(H), define

|||A|||(p)=||| |A|p|||1/p. It is known that

(1.1) ||| |A+B|p|||1/p≤ ||| |A|p|||1/p+||| |B|p|||1/p forp≥1and

(1.2) ||| |A+B|p|||1/p≤21/p−1

||| |A|p|||1/p+||| |B|p|||1/p

for0 < p < 1(see e.g., [1, p.p. 95,108]). Based on the definition of |||·|||(p) and inequality (1.1), it can be easily seen that |||·|||(p) is a unitarily invariant norm for p≥1.

For0< p <∞, let

kAkp =

X

i=1

spi (A)

!1p .

(4)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page4of 21 Go Back Full Screen

Close

Ifp≥1, thenk·kp is a norm, called the Schattenp-norm. So, kAkp = (tr|A|p)1/p,

wheretris the usual trace functional. Whenp= 1,kAk1 is called the trace norm of A. Note that for all positive real numbersrandp, we have

(1.3) k |A|rkp =kAkrrp.

For the theory of unitarily invariant norms, the reader is referred to [1], [3], [8], [9], [10], and the references therein.

The Minkowski’s inequality for scalars asserts that ifai, bi (i = 1,2, . . . , n) are complex numbers andp≥1, then

n

X

i=1

|ai+bi|p

!1p

n

X

i=1

|ai|p

!1p +

n

X

i=1

|bi|p

!1p .

Hiai and Zhan [4], proved that if A1, A2, B1, B2 are matrices of order n and 1≤p, r <∞, then

(1.4) ||| |A1+A2|p+|B1+B2|p|||1/p

≤2|1/p−1/2|

||| |A1|p+|B1|p|||1/p+||| |A2|p +|B2|p|||1/p ,

(1.5) k|A1+A2|p+|B1+B2|pk1/pr

≤2(1−1/r)/p

k|A1|p +|B1|pk1/pr +k|A2|p +|B2|pk1/pr ,

(5)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page5of 21 Go Back Full Screen

Close

and (1.6)

(|A1+A2|p+|B1+B2|p)1/p r

≤2|1/p−1/r|

(|A1|p+|B1|p)1/p r+

(|A2|p+|B2|p)1/p r

. These inequalities are norm inequalities of Minkowski type.

The purpose of this paper is to establish new operator norm inequalities. Our in- equalities generalize the inequalities (1.4), (1.5), and (1.6) forn−tuple of operators.

Our analysis is based on some recent results on convexity and concavity of functions and on some operator inequalities.

(6)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page6of 21 Go Back Full Screen

Close

2. Norm Inequalities of Minkowski Type

In this section, we generalize inequality (1.4) for operators Ai, Bi ∈ B(H) (i = 1,2, . . . , n), and other norm inequalities of Minkowski type. To achieve our goal we need the following two lemmas. The first lemma can be found in [2] and a stronger version of the second lemma can be found in [5].

Lemma 2.1. Let A1, . . . , An ∈B(H)be positive operators. Then, for every unitar- ily invariant norm,

(2.1)

n

X

i=1

Ari

n

X

i=1

Ai

!r forr≥1and

(2.2)

n

X

i=1

Ai

!r

n

X

i=1

Ari for0< r≤1.

Lemma 2.2. Let A1, . . . , An ∈B(H)be positive operators. Then, for every unitar- ily invariant norm,

(2.3)

n

X

i=1

Ai

!r

≤nr−1

n

X

i=1

Ari forr ≥1and

(2.4)

n

X

i=1

Ari

≤n1−r

n

X

i=1

Ai

!r for0< r≤1.

(7)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page7of 21 Go Back Full Screen

Close

Now, we are in a position to generalize (1.4).

Theorem 2.3. Let Ai, Bi ∈ B(H) (i = 1,2, . . . , n) and p ≥ 1. Then, for every unitarily invariant norm,

(2.5) n−|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

and

(2.6)

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

≤n|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

+

n

X

i=1

|Ai−Bi|p

1 p

.

Proof. Let

A=

A1 0 · · · 0 A2 0 · · · 0 ... ... . .. ...

An 0 · · · 0

and B =

B1 0 · · · 0 B2 0 · · · 0 ... ... . .. ...

Bn 0 · · · 0

be operators inB(Ln

i=1H). Then

|A|2 =

 Pn

i=1|Ai|2 0 · · · 0

0 0 · · · 0

... ... . .. ...

0 0 · · · 0

, |B|2 =

 Pn

i=1|Bi|2 0 · · · 0

0 0 · · · 0

... ... . .. ...

0 0 · · · 0

 ,

(8)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page8of 21 Go Back Full Screen

Close

and

|A+B|2 =

 Pn

i=1|Ai+Bi|2 0 · · · 0

0 0 · · · 0

... ... . .. ...

0 0 · · · 0

 .

By applying (1.1) to the operatorsAandB, we get

(2.7)

n

X

i=1

|Ai+Bi|2

!p2

1 p

n

X

i=1

|Ai|2

!p2

1 p

+

n

X

i=1

|Bi|2

!p2

1 p

.

For1≤p≤2, it follows, from (2.2) and (2.4), that

(2.8)

n

X

i=1

|Ai|2

!p2

n

X

i=1

|Ai|p ,

(2.9)

n

X

i=1

|Bi|2

!p2

n

X

i=1

|Bi|p ,

and

(2.10)

n

X

i=1

|Ai+Bi|p

≤n1−p/2

n

X

i=1

|Ai+Bi|2

!p2 .

Now, inequality (2.5) follows by combining (2.8), (2.9), and (2.10) by (2.7).

(9)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page9of 21 Go Back Full Screen

Close

Forp > 2,it follows, from (2.1) and (2.3), that

(2.11)

n

X

i=1

|Ai+Bi|p

n

X

i=1

|Ai+Bi|2

!p2 ,

(2.12)

n

X

i=1

|Ai|2

!p2

≤np/2−1

n

X

i=1

|Ai|p ,

and

(2.13)

n

X

i=1

|Bi|2

!p2

≤np/2−1

n

X

i=1

|Bi|p .

Consequently, inequality (2.5) follows, by combining (2.11), (2.12), and (2.13) by (2.7). This completes the proof of inequality (2.5).

For inequality (2.6), replacingAiandBiin (2.5) byAi+BiandAi−Bi, respec- tively, we have

(2.14) 2

n

X

i=1

|Ai|p

1 p

≤n|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

+

n

X

i=1

|Ai−Bi|p

1 p

.

(10)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page10of 21 Go Back Full Screen

Close

Again, replacingAiandBi in (2.5) byAi+BiandBi−Ai, respectively, we have

(2.15) 2

n

X

i=1

|Bi|p

1 p

≤n|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

+

n

X

i=1

|Ai−Bi|p

1 p

.

Now, inequality (2.6) follows, by adding inequalities (2.14) and (2.15). This com- pletes the proof of the theorem.

Based on inequality (1.2) and using a procedure similar to that given in the proof of Theorem2.3, we have the following result.

Theorem 2.4. LetAi, Bi ∈B(H) (i= 1,2, . . . , n)and0< p≤1. Then, for every unitarily invariant norm,

(2.16) 21−1/pn−|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

and

(2.17)

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

(11)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page11of 21 Go Back Full Screen

Close

≤21/p−1n|1/p−1/2|

n

X

i=1

|Ai+Bi|p

1 p

+

n

X

i=1

|Ai−Bi|p

1 p

.

Forp≥1inequalities (2.5) and (2.6) can be written in equivalent forms as follow:

(2.18) n−|1/p−1/2|

n

X

i=1

|Ai+Bi|p

!1p

(p)

n

X

i=1

|Ai|p

!1p

(p)

+

n

X

i=1

|Bi|p

!p1

(p)

and

(2.19)

n

X

i=1

|Ai|p

!p1

(p)

+

n

X

i=1

|Bi|p

!1p

(p)

≤n|1/p−1/2|

n

X

i=1

|Ai+Bi|p

!p1

(p)

+

n

X

i=1

|Ai−Bi|p

!1p

(p)

.

In the following theorem we give inequalities related to inequalities (2.18) and (2.19). In order to do that we need the following lemma, which is a particular case of Theorem 2 in [7].

(12)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page12of 21 Go Back Full Screen

Close

Lemma 2.5. LetAi, Bi ∈B(H) (i= 1,2, . . . , n)andp≥2. Then

(2.20)

n

X

i=1

|Ai|2

!12

≤n1/2−1/p

n

X

i=1

|Ai|p

!1p

for every unitarily invariant norm.

Theorem 2.6. Let Ai, Bi ∈ B(H) (i = 1,2, . . . , n) and p ≥ 2. Then, for every unitarily invariant norm,

(2.21) n−(1−1/p)

n

X

i=1

|Ai +Bi|p

!1p

n

X

i=1

|Ai|p

!1p

+

n

X

i=1

|Bi|p

!1p and

(2.22)

n

X

i=1

|Ai|p

!p1

+

n

X

i=1

|Bi|p

!1p

≤n1−1/p

n

X

i=1

|Ai+Bi|p

!p1

+

n

X

i=1

|Ai−Bi|p

!1p

.

(13)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page13of 21 Go Back Full Screen

Close

Proof. By using (2.2), (2.4), (2.7), and (2.20), respectively, we have

n

X

i=1

|Ai +Bi|p

!1p

n

X

i=1

|Ai+Bi|

≤n1/2

n

X

i=1

|Ai+Bi|2

!12

≤n1/2

n

X

i=1

|Ai|2

!12

+

n

X

i=1

|Bi|2

!12

≤n1−1/p

n

X

i=1

|Ai|p

!p1

+

n

X

i=1

|Bi|p

!1p

. This proves inequality (2.21). Inequality (2.22) follows from inequality (2.21) by a proof similar to that given for inequality (2.6) in Theorem2.3. The proof is complete.

It is known that for a positive operatorAand for0< r≤1, we have

(2.23) |||A|||r ≤ |||Ar|||

for every unitarily invariant norm; and the reverse inequality holds forr≥1.

Using inequality (2.23) we have the following application of Theorem2.6.

Corollary 2.7. Let Ai, Bi ∈ B(H) (i = 1,2, . . . , n) and p ≥ 2. Then, for every

(14)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page14of 21 Go Back Full Screen

Close

unitarily invariant norm,

(2.24) n−(1−1/p)

n

X

i=1

|Ai+Bi|p

1 p

n

X

i=1

|Ai|p

!1p

+

n

X

i=1

|Bi|p

!p1 and

(2.25)

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

≤n1−1/p

n

X

i=1

|Ai+Bi|p

!p1

+

n

X

i=1

|Ai−Bi|p

!1p

.

Remark 1. In view of (2.5), (2.21), and (2.23), one might conjecture that ifAi, Bi ∈ B(H) (i= 1,2, . . . , n), then, for every unitarily invariant norm,

(2.26)

n

X

i=1

|Ai+Bi|p

!p1

≤n|1/p−1/2|

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

forp≥1and

(2.27)

n

X

i=1

|Ai+Bi|p

!p1

≤n1−1/p

n

X

i=1

|Ai|p

1 p

+

n

X

i=1

|Bi|p

1 p

(15)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page15of 21 Go Back Full Screen

Close

forp≥2.

Remark 2. Using the same procedure used in the proof of inequality (2.6) in Theorem 2.3, inequalities (1.1) and (1.2) imply that

(2.28) ||| |A|p|||1/p+||| |B|p|||1/p≤ ||| |A+B|p|||1/p+||| |A−B|p|||1/p forp≥1and

(2.29) ||| |A|p|||1/p+||| |B|p|||1/p≤21/p−1(||| |A+B|p|||1/p+||| |A−B|p|||1/p) for0 < p ≤ 1. Forp ≥ 1, it follows, from the triangle inequality for norms and a scalar inequality, that

(2.30) ||| |A+B|p +|A−B|p|||1/p≤ ||| |A+B|p|||1/p+||| |A−B|p|||1/p. Forp≥ 2, the left hand side of (2.30) is the right hand side of the famous Clarkson inequality

(2.31) 2||| |A|p+|B|p||| ≤ ||| |A+B|p+|A+B|p|||,

see e.g., [6]. In view of the inequalities (2.29) and (2.30) we may introduce the following question: Forp≥2are the following inequalities:

(2.32) ||| |A|p|||1/p+||| |B|p|||1/p≤ ||| |A+B|p +|A−B|p|||1/p and

(2.33) 2||| |A|p+|B|p||| ≤

||| |A|p|||1/p+||| |B|p|||1/pp

true?

Inequalities (2.32) and (2.33), if true, form a refinement of the Clarkson inequality (2.31).

(16)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page16of 21 Go Back Full Screen

Close

3. Norm Inequalities of Minkowski Type for the Schatten P −Norm

In this section, we present some norm inequalities of Minkowski type for the Schat- ten p−norm. These inequalities generalize the inequalities (1.5) and (1.6) for an n−tuple of operators.

Theorem 3.1. LetAi, Bi ∈B(H) (i= 1,2, . . . , n)and1≤p, r <∞. Then

(3.1) n−(1−1/r)/p

n

X

i=1

|Ai+Bi|p

1 p

r

n

X

i=1

|Ai|p

1 p

r

+

n

X

i=1

|Bi|p

1 p

r

and

(3.2)

n

X

i=1

|Ai|p

1 p

r

+

n

X

i=1

|Bi|p

1 p

r

≤n(1−1/r)/p

n

X

i=1

|Ai+Bi|p

1 p

r

+

n

X

i=1

|Ai−Bi|p

1 p

r

.

Proof. It follows, from (1.3) and the triangle inequality, that

n

X

i=1

|Ai+Bi|pr

1 pr

1

=

A1 +B1 0 · · · 0

0 A2+B2 · · · 0

... ... . .. ...

0 0 · · · An+Bn

pr

(17)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page17of 21 Go Back Full Screen

Close

=

A1 0 · · · 0 0 A2 · · · 0 ... ... . .. ... 0 0 · · · An

 +

B1 0 · · · 0 0 B2 · · · 0 ... ... . .. ... 0 0 · · · Bn

pr

A1 0 · · · 0 0 A2 · · · 0 ... ... . .. ... 0 0 · · · An

pr

+

B1 0 · · · 0 0 B2 · · · 0 ... ... . .. ... 0 0 · · · Bn

pr

=

n

X

i=1

|Ai|pr

1 pr

1

+

n

X

i=1

|Bi|pr

1 pr

1

(3.3) .

Now, by using (1.3), (2.3), (3.3), and (2.2), respectively, we have

n

X

i=1

|Ai+Bi|p

1 p

r

=

n

X

i=1

|Ai+Bi|p

!r

1 pr

1

≤n(r−1)/pr

n

X

i=1

|Ai+Bi|pr

1 pr

1

≤n(1−1/r)/p

n

X

i=1

|Ai|pr

1 pr

1

+

n

X

i=1

|Bi|pr

1 pr

1

=n(1−1/r)/p

n

X

i=1

|Ai|pr

!1r

1 p

r

+

n

X

i=1

|Bi|pr

!1r

1 p

r

(18)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page18of 21 Go Back Full Screen

Close

≤n(1−1/r)/p

n

X

i=1

|Ai|p

1 p

r

+

n

X

i=1

|Bi|p

1 p

r

.

This proves inequality (3.1). The proof of inequality (3.2) follows from (3.1) by a proof similar to that given for inequality (2.6) in Theorem2.3. The proof is complete.

The following is our final result.

Theorem 3.2. LetAi, Bi ∈B(H) (i= 1,2, . . . , n)and1≤p, r <∞. Then

(3.4) n−|1/p−1/r|

n

X

i=1

|Ai+Bi|p

!p1 r

n

X

i=1

|Ai|p

!1p r

+

n

X

i=1

|Bi|p

!1p r

and

(3.5)

n

X

i=1

|Ai|p

!p1 r

+

n

X

i=1

|Bi|p

!1p r

≤n|1/p−1/r|

n

X

i=1

|Ai+Bi|p

!1p r

+

n

X

i=1

|Ai−Bi|p

!1p r

.

Proof. First suppose thatr ≤ p. By using (1.3), (2.2), (3.3), and (2.4), respectively,

(19)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page19of 21 Go Back Full Screen

Close

we have

n

X

i=1

|Ai+Bi|p

!1p r

=

n

X

i=1

|Ai+Bi|p

!rp

1 r

1

n

X

i=1

|Ai+Bi|r

1 r

1

n

X

i=1

|Ai|r

1 r

1

+

n

X

i=1

|Bi|r

1 r

1

≤n1/r−1/p

n

X

i=1

|Ai|p

!rp

1 r

1

+

n

X

i=1

|Bi|p

!pr

1 r

1

=n1/r−1/p

n

X

i=1

|Ai|p

!1p r

+

n

X

i=1

|Bi|p

!1p r

.

Next, forp < r, by using (1.3) and (3.1), we have

n

X

i=1

|Ai+Bi|p

!1p r

=

n

X

i=1

|Ai+Bi|p

1 p

r p

≤n1/p(1−p/r)

n

X

i=1

|Ai|p

1 p

r p

+

n

X

i=1

|Bi|p

1 p

r p

(20)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page20of 21 Go Back Full Screen

Close

=n1/p−1/r

n

X

i=1

|Ai|p

!1p r

+

n

X

i=1

|Bi|p

!1p r

. This proves inequality (3.4). The proof of inequality (3.5) follows from (3.4) by a proof similar to that given for inequality (2.6) in Theorem2.3. The proof is complete.

Remark 3. For the Schattenp−norm, (3.4) is better than (2.21), and if rp ≤ 2 or r(4−p)≤2, then (3.1) is better than (2.5).

(21)

Operator Norm Inequalities Khalid Shebrawi and

Hussien Albadawi vol. 9, iss. 1, art. 26, 2008

Title Page Contents

JJ II

J I

Page21of 21 Go Back Full Screen

Close

References

[1] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.

[2] R. BHATIA AND F. KITTANEH, Clarkson inequality with several operators, Bull. London. Math. Soc., 36 (2004), 820–832.

[3] I.C. GOHBERG and M.C. KREIN, Introduction to the Theory of Linear Non- selfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Prov- idence, RI, 1969.

[4] F. HIAI AND X. ZHAN, Inequalities involving unitarily invariant norms and operator monotone functions, Linear Algebra Appl., 341 (2002), 151–169.

[5] O. HIRZALLAHANDF. KITTANEH, Non-commutative Clarkson inequalities forn-tuples of operators, Integra. Equ. Oper. Theory, in press.

[6] O. HIRZALLAHANDF. KITTANEH, Non-commutative Clarkson inequalities for unitarily invariant norms, Pacific J. of Math., 2 (2002), 363–369.

[7] B. MONDANDJ. PE ˇCARI ´C, On Jensen’s inequality for operator convex func- tions, Houston J. Math., 21 (1995), 739–754.

[8] R. SCHATTEN, Norm Ideals of Completely Continuous Operators, Springer- Verlag, Berlin, 1960.

[9] B. SIMON, Trace Ideal and Their Applications, Cambridge University Press, Cambridge, UK, 1979.

[10] X. ZHAN, Matrix Inequalities, Springer-Verlag, Berlin, 2002.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Volterra-Fredholm type, integral equation, Banach fixed point theorem, integral inequality, Bielecki type norm, existence and uniqueness, continuous depen- dence..

Key words and phrases: Volterra-Fredholm type, integral equation, Banach fixed point theorem, integral inequality, Bielecki type norm, existence and uniqueness, continuous

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

The purpose of the present work is to obtain a weighted norm Hardy-type inequality involving mixed norms which contains the above result as a special case and also provides

The purpose of the present work is to obtain a weighted norm Hardy-type inequality involving mixed norms which contains the above result as a special case and also provides

Key words: Ostrowski’s inequality, Ostrowski-like type inequality, Trapezoid type inequality, Sharp inequality, Mid-point-trapezoid type inequality.. Abstract: Several new

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given.. Applica- tions for

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given.. Applications for vector