• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
23
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 97, 2006.

Received 21 March, 2006;

accepted 12 July, 2006.

Communicated by:F. Zhang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NORM INEQUALITIES FOR SEQUENCES OF OPERATORS RELATED TO THE SCHWARZ INEQUALITY

SEVER S. DRAGOMIR

School of Computer Science and Mathematics Victoria University

PO Box 14428, MCMC 8001 VIC, Australia.

EMail:sever@csm.vu.edu.au URL:http://rgmia.vu.edu.au/dragomir

c

2000Victoria University ISSN (electronic): 1443-5756 088-06

(2)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

Abstract

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given. Applica- tions for vector inequalities are also provided.

2000 Mathematics Subject Classification:Primary 47A05, 47A12.

Key words: Bounded linear operators, Hilbert spaces, Schwarz inequality, Cartesian decomposition of operators.

Contents

1 Introduction. . . 3

2 Some General Results. . . 7

3 Other Results. . . 14

4 Vector Inequalities. . . 19 References

(3)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

1. Introduction

Let(H;h·,·i)be a real or complex Hilbert space andB(H)the Banach algebra of all bounded linear operators that mapHintoH.

In many estimates one needs to use upper bounds for the norm of the linear combination of bounded linear operatorsA1, . . . , Anwith the scalarsα1, . . . , αn, where separate information for scalars and operators are provided. In this situ- ation, the classical approach is to use a Hölder type inequality as stated below

n

X

i=1

αiAi

n

X

i=1

i| kAik

!









1≤i≤nmax {|αi|}Pn

i=1kAik; (Pn

i=1i|p)p1 (Pn

i=1kAikq)1q ifp >1, 1p + 1q = 1;

1≤i≤nmax {kAik}Pn i=1i|.

Notice that, the case whenp=q= 2, which provides the Cauchy-Bunyakovsky- Schwarz inequality

(1.1)

n

X

i=1

αiAi

n

X

i=1

i|2

!12 n X

i=1

kAik2

!12

is of special interest and of larger utility.

In the previous paper [1], in order to improve (1.1), we have established the following norm inequality for the operators A1, . . . , An ∈ B(H) and scalars

(4)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

α1, . . . , αn ∈K:

(1.2)

n

X

i=1

αiAi

2

















1≤i≤nmax |αi|2Pn

i=1kAik2; Pn

i=1i|2p1p Pn

i=1kAik2q1q ifp > 1, 1p +1q = 1;

Pn

i=1i|2 max

1≤i≤nkAik2

+





















1≤i6=j≤nmax {|αi| |αj|}P

1≤i6=j≤n

AiAj ; h

(Pn

i=1i|r)2 −Pn

i=1i|2ri1r P

1≤i6=j≤n

AiAj

s1s

ifr >1, 1r + 1s = 1;

h (Pn

i=1i|)2−Pn

i=1i|2i

1≤i6=j≤nmax

AiAj ,

where (1.2) should be seen as all the9possible configurations.

Some particular inequalities of interest that can be obtained from (1.2) and provide alternative bounds for the classical Cauchy-Bunyakovsky-Schwarz (CBS) inequality are the following [1]:

(1.3)

n

X

i=1

αiAi

≤ max

1≤i≤ni|

n

X

i,j=1

AiAj

!12 ,

(5)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

(1.4)

n

X

i=1

αiAi

2

n

X

i=1

i|2

1≤i≤nmaxkAik2+ (n−1) max

1≤i6=j≤n

AiAj

,

(1.5)

n

X

i=1

αiAi

2

n

X

i=1

i|2

max

1≤i≤nkAik2+ X

1≤i6=j≤n

AiAj

2

!12

and

(1.6)

n

X

i=1

αiAi

2

n

X

i=1

i|2p

!1p

n

X

i=1

kAik2q

!1q

+ (n−1)1p X

1≤i6=j≤n

AiAj

q

!1q

,

wherep >1, 1p + 1q = 1.In particular, forp=q= 2,we have from (1.6)

(1.7)

n

X

i=1

αiAi

2

n

X

i=1

i|4

!12

n

X

i=1

kAik4

!12

+ (n−1)12 X

1≤i6=j≤n

AiAj

2

!12

.

(6)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

The aim of the present paper is to establish other upper bounds of interest for the quantitykPn

i=1αiAik,where, as above,α1, . . . , αnare real or complex numbers, while A1, . . . , An are bounded linear operators on the Hilbert space (H;h·,·i).These are compared with the (CBS) inequality (1.1) and shown that some times they are better. Applications for vector inequalities are also given.

(7)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

2. Some General Results

The following result containing 9 different inequalities may be stated:

Theorem 2.1. Letα1, . . . , αn∈KandA1, . . . , An∈B(H).Then (2.1)

n

X

i=1

αiAi

2

 A B C where

A:=





















1≤k≤nmax |αk|2Pn i,j=1

AiAj ,

1≤k≤nmax |αk|(Pn

i=1i|r)1r Pn

i=1

Pn j=1

AiAj

s1s , wherer >1, 1r +1s = 1;

1≤k≤nmax |αk|Pn

i=1i| max

1≤i≤n

Pn j=1

AiAj

,

(2.2) B :=

























1≤i≤nmax |αi|(Pn

k=1k|p)1pPn i=1

Pn j=1

AiAj

q1q

Pn

i=1i|t1t (Pn

k=1k|p)1p

Pn i=1

Pn j=1

AiAj

ququ1

wheret >1, 1t +u1 = 1;

Pn

i=1i|(Pn

k=1k|p)1p max

1≤i≤n

Pn

j=1

AiAj

q1q ,

(8)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

forp >1, 1p + 1q = 1and

C :=





















1≤i≤nmax|αi|Pn

k=1k|Pn

i=1 max

1≤j≤n

AiAj ,

(Pn

i=1i|m)m1 Pn k=1k|

"

Pn i=1

1≤j≤nmax

AiAj

l#1l ,

wherem, l >1, m1 +1l = 1;

(Pn

k=1k|)2 max

1≤i,j≤n

AiAj .

Proof. We observe, in the operator partial order ofB(H), we have that

0≤

n

X

i=1

αiAi

! n X

i=1

αiAi

!

(2.3)

=

n

X

i=1

αiAi

n

X

j=1

αjAj =

n

X

i=1 n

X

j=1

αiαjAiAj.

Taking the norm in (2.3) and noticing thatkU Uk=kUk2for anyU ∈B(H), we have:

n

X

i=1

αiAi

2

=

n

X

i=1 n

X

j=1

αiαjAiAj

n

X

i=1 n

X

j=1

i| |αj| AiAj

(9)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

=

n

X

i=1

i|

n

X

j=1

j| AiAj

!

=:M.

Utilising Hölder’s discrete inequality we have that

n

X

j=1

j| AiAj













1≤k≤nmax |αk|Pn j=1

AiAj ,

(Pn

k=1k|p)1p Pn

j=1

AiAj

q1q

wherep >1, 1p + 1q = 1;

Pn

k=1k| max

1≤j≤n

AiAj ,

for anyi∈ {1, . . . , n}.

This provides the following inequalities:

M ≤





















1≤k≤nmax |αk|Pn

i=1i| Pn

j=1

AiAj

=:M1 (Pn

k=1k|p)1pPn

i=1i| Pn

j=1

AiAj

q1q

:=Mp wherep > 1, 1p +1q = 1;

Pn

k=1k|Pn i=1i|

1≤j≤nmax

AiAj

:=M.

(10)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

Utilising Hölder’s inequality forr, s >1, 1r +1s = 1,we have:

n

X

i=1

i|

n

X

j=1

AiAj

!

















1≤i≤nmax |αi|Pn i,j=1

AiAj

(Pn

i=1i|r)1r h Pn

i=1

Pn j=1

AiAj

si1s , wherer >1, 1r + 1s = 1;

Pn

i=1i| max

1≤i≤n

Pn j=1

AiAj

, and thus we can state that

M1





















1≤k≤nmax |αk|2Pn i,j=1

AiAj ;

1≤k≤nmax |αk|(Pn

i=1i|r)1r Pn

i=1

Pn j=1

AiAj

s1s , wherer >1, 1r +1s = 1;

1≤k≤nmax |αk|Pn

i=1i| max

1≤i≤n

Pn j=1

AiAj

, and the first part of the theorem is proved.

(11)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

By Hölder’s inequality we can also have that (forp > 1, 1p +1q = 1)

Mp

n

X

k=1

k|p

!1p

×

























1≤i≤nmax|αi|Pn i=1

Pn j=1

AiAj

q1q

; Pn

i=1i|t1t

Pn i=1

Pn j=1

AiAj

ququ1 ,

wheret >1, 1t + 1u = 1;

Pn

i=1i| max

1≤i≤n

Pn

j=1

AiAj

q1q ,

and the second part of (2.1) is proved.

Finally, we may state that

M

n

X

k=1

k| ×





















1≤i≤nmax|αi|Pn

i=1 max

1≤j≤n

AiAj

(Pn

i=1i|m)m1

"

Pn i=1

1≤j≤nmax

AiAj

l#1l

wherem, l >1, m1 +1l = 1;

Pn

i=1i| max

1≤i,j≤n

AiAj ,

giving the last part of (2.1).

Remark 1. It is obvious that out of (2.1) one can obtain various particular inequalities. For instance, the choicet= 2, p= 2(thereforeu=q = 2) in the

(12)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

B−branch of (2.2) gives:

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

i,j=1

AiAj

2

!12 (2.4)

=

n

X

i=1

i|2

n

X

i=1

kAik4+ X

1≤i6=j≤n

AiAj

!12 .

If we consider now the usual Cauchy-Bunyakovsky-Schwarz (CBS) inequality

(2.5)

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

i=1

kAik2,

and observe that

n

X

i,j=1

AiAj

2

!12

n

X

i,j=1

kAik2 Aj

2

!12

=

n

X

i=1

kAik2,

then we can conclude that (2.4) is a refinement of the (CBS) inequality (2.5).

Corollary 2.2. Letα1, . . . , αn∈KandA1, . . . , An ∈B(H)so thatAiAj = 0 withi6=j.Then

(2.6)

n

X

i=1

αiAi

2

 A˜ B˜ C˜

(13)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

where

A˜:=

















1≤k≤nmax |αk|2Pn

i=1kAik2;

1≤k≤nmax |αk|(Pn

i=1i|r)1r Pn

i=1kAik2s1s , wherer >1, 1r + 1s = 1;

1≤k≤nmax |αk|Pn

i=1i| max

1≤i≤n

kAik2 ,

B˜ :=

















1≤i≤nmax|αi|(Pn

k=1k|p)1pPn

i=1kAik2; v Pn

i=1i|t1t (Pn

k=1k|p)1pPn

i=1kAik2uu1 , wheret >1, 1t +u1 = 1;

Pn

i=1i|(Pn

k=1k|p)1p max

1≤i≤n

kAik2 ,

wherep >1and

C˜ :=

















1≤i≤nmax |αi|Pn

k=1k|Pn

i=1kAik2; (Pn

i=1i|m)m1 Pn

k=1k| Pn

i=1kAik2l1l , wherem, l >1, m1 +1l = 1;

(Pn

k=1k|)2 max

1≤i,j≤n

kAik2 .

(14)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

3. Other Results

A different approach is embodied in the following theorem:

Theorem 3.1. Ifα1, . . . , αn∈KandA1, . . . , An∈B(H),then

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

j=1

AiAj (3.1)

















 Pn

i=1i|2 max

1≤i≤n

hPn j=1

AiAj i

; Pn

i=1i|2p1ph Pn

i=1

Pn j=1

AiAj

qi1q wherep >1, 1p + 1q = 1;

1≤i≤nmax |αi|2Pn i,j=1

AiAj . Proof. From the proof of Theorem2.1we have that

n

X

i=1

αiAi

2

n

X

i=1 n

X

j=1

i| |αj| AiAj

.

Using the simple observation that

i| |αj| ≤ 1

2 |αi|2+|αj|2

, i, j ∈ {1, . . . , n},

(15)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

we have

n

X

i=1 n

X

j=1

i| |αj| AiAj

≤ 1 2

n

X

i=1 n

X

j=1

i|2+|αj|2 AiAj

= 1 2

n

X

i=1 n

X

j=1

i|2 AiAj

+|αj|2 AiAj

=

n

X

i=1 n

X

j=1

i|2 AiAj

,

which proves the first inequality in (3.1).

The second part follows by Hölder’s inequality and the details are omitted.

Remark 2. If in (3.1) we chooseα1 =· · ·=αn = 1,then we get

n

X

i=1

Ai

n

X

i=1

kAik2+

n

X

1≤i6=j≤n

AiAj

!12

n

X

i=1

kAik,

which is a refinement for the generalised triangle inequality.

The following corollary may be stated:

Corollary 3.2. If A1, . . . , An ∈ B(H) are such that AiAj = 0 for i 6= j,

(16)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

i, j ∈ {1, . . . , n},then

n

X

i=1

αiAi

2

n

X

i=1

i|2kAik2 (3.2)

















 Pn

i=1i|2 max

1≤i≤nkAik2; Pn

i=1i|2p1ph Pn

j=1kAik2qi1q wherep > 1, 1p +1q = 1;

1≤i≤nmax |αi|2Pn

i=1kAik2. Finally, the following result may be stated as well:

Theorem 3.3. Ifα1, . . . , αn∈KandA1, . . . , An∈B(H),then

(3.3)

n

X

i=1

αiAi

2

















1≤i≤nmax|αi|2Pn i,j=1

AiAj ; (Pn

i=1i|p)2p Pn

i,j=1

AiAj

q1q wherep >1, 1p + 1q = 1;

(Pn

i=1i|)2 max

1≤i,j≤n

AiAj . Proof. We know that

n

X

i=1

αiAi

2

n

X

i=1 n

X

j=1

i| |αj| AiAj

=:P.

(17)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

Firstly, we obviously have that P ≤ max

1≤i,j≤n{|αi| |αj|}

n

X

i,j=1

AiAj

= max

1≤i≤ni|2

n

X

i,j=1

AiAj .

Secondly, by the Hölder inequality for double sums, we obtain

P ≤

" n X

i,j=1

(|αi| |αj|)p

#1p n X

i,j=1

AiAj

q

!1q

=

n

X

i=1

i|p

n

X

j=1

j|p

!1p n X

i,j=1

AiAj

q

!1q

=

n

X

i=1

i|p

!2p n X

i,j=1

AiAj

q

!1q ,

wherep >1, 1p + 1q = 1.

Finally, we have

P ≤ max

1≤i,j≤n

AiAj

n

X

i,j=1

i| |αj|

=

n

X

i=1

i|

!2

1≤i,j≤nmax

AiAj

and the theorem is proved.

(18)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

Corollary 3.4. If α1, . . . , αn ∈ K and A1, . . . , An ∈ B(H) are such that AiAj = 0fori, j ∈ {1, . . . , n}withi6=j,then

(3.4)

n

X

i=1

αiAi

2

















1≤i≤nmax|αi|2Pn

i=1kAik2; (Pn

i=1i|p)2p Pn

i=1kAik2q1q , wherep >1, 1p + 1q = 1;

(Pn

i=1i|)2 max

1≤i≤n

kAik2 .

(19)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

4. Vector Inequalities

As pointed out in our previous paper [1], the operator inequalities obtained above may provide various vector inequalities of interest.

If byM(α,A)we denote any of the bounds provided by (2.1), (2.4), (3.1) or (3.3) for the quantitykPn

i=1αiAik2, then we may state the following general fact:

Under the assumptions of Theorem2.1, we have:

(4.1)

n

X

i=1

αiAix

2

≤ kxk2M(α,A). for anyx∈H and

(4.2)

n

X

i=1

αihAix, yi

2

≤ kxk2kyk2M(α,A).

for anyx, y ∈H,respectively.

The proof follows by the Schwarz inequality in the Hilbert space(H,h·,·i), see for instance [1], and the details are omitted.

Now, we consider the non zero vectorsy1, . . . , yn∈H.Define the operators [1]

Ai :H →H, Aix= hx, yii

kyik ·yi, i∈ {1, . . . , n}.

(20)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

Since

kAik=kyik, i∈ {1, . . . , n}

thenAiare bounded linear operators inH.Also, since hAix, xi= |hx, yii|2

kyik ≥0, x∈H, i∈ {1, . . . , n}

and

hAix, zi= hx, yii hyi, zi kyik , hx, Aizi= hx, yii hyi, zi

kyik ,

giving

hAix, zi=hx, Aizi, x, z ∈H, i∈ {1, . . . , n},

we may conclude that Ai (i= 1, . . . , n)are positive self-adjoint operators on H.

Since, for anyx∈H,one has

k(AiAj) (x)k= |hx, yji| |hyj, yii|

kyjk , i, j ∈ {1, . . . , n}, then we deduce that

kAiAjk=|(yi, yj)|; i, j ∈ {1, . . . , n}.

(21)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

If (yi)i=1,n is an orthonormal family on H,then kAik = 1 andAiAj = 0for i, j ∈ {1, . . . , n}, i6=j.

Now, utilising, for instance, the inequalities in Theorem 3.1 we may state that:

n

X

i=1

αihx, yii kyik yi

2

(4.3)

≤ kxk2

n

X

i=1

i|2

n

X

j=1

|hyi, yji|

≤ kxk2×















 Pn

i=1i|2 max

1≤i≤n

hPn

j=1|hyi, yji|i

; Pn

i=1i|2p1ph Pn

i=1

Pn

j=1|(yi, yj)|qi1q wherep >1, 1p + 1q = 1;

v max

1≤i≤ni|2Pn

i,j=1|hyi, yji|.

for anyx, y1, . . . , yn ∈Handαn, . . . , αn∈K. The proof follows on choosingAi = h·,ykyii

ikyi in Theorem3.1and taking into account thatkAik=kyik,

AiAj

=|hyi, yji|, i, j ∈ {1, . . . , n}. We omit the details.

(22)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

http://jipam.vu.edu.au

The choiceαi = kyik(i= 1, . . . , n)will produce some interesting bounds for the norm of the Fourier series

n

X

i=1

hx, yiiyi

.

Notice that the vectorsyi (i= 1, . . . , n)are not necessarily orthonormal.

Similar inequalities may be stated if one uses the other two main theorems.

For the sake of brevity, they will not be stated here.

(23)

Norm Inequalities for Sequences of Operators

Related to the Schwarz Inequality Sever S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of23

J. Ineq. Pure and Appl. Math. 7(3) Art. 97, 2006

References

[1] S.S. DRAGOMIR, Some Schwarz type inequalities for sequences of opera- tors in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 17–26.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Some inequalities in 2-inner product spaces generalizing Bessel’s result that are similar to the Boas-Bellman inequality from inner product spaces, are given.. Applications

Some inequalities in 2-inner product spaces generalizing Bessel’s result that are similar to the Boas-Bellman inequality from inner product spaces, are given.. Applications

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

Applications for discrete and integral inequalities including the Heisen- berg inequality for vector-valued functions in Hilbert spaces are provided.. 2000 Mathematics

Kurepa [1] established the following refinement of the Schwarz inequality in inner product spaces that generalises de Bruijn’s result for sequences of real and complex numbers

But before maximizing the entropy function one has to see whether the given moment values are consistent or not i.e whether there is any probability distribution which corresponds

PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J.Math.. PACHPATTE, On some new inequalities similar to Hilbert’s