• Nem Talált Eredményt

(1)http://jipam.vu.edu.au/ Volume 7, Issue 3, Article 97, 2006 NORM INEQUALITIES FOR SEQUENCES OF OPERATORS RELATED TO THE SCHWARZ INEQUALITY SEVER S

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(1)http://jipam.vu.edu.au/ Volume 7, Issue 3, Article 97, 2006 NORM INEQUALITIES FOR SEQUENCES OF OPERATORS RELATED TO THE SCHWARZ INEQUALITY SEVER S"

Copied!
10
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 97, 2006

NORM INEQUALITIES FOR SEQUENCES OF OPERATORS RELATED TO THE SCHWARZ INEQUALITY

SEVER S. DRAGOMIR

SCHOOL OFCOMPUTERSCIENCE ANDMATHEMATICS

VICTORIAUNIVERSITY, PO BOX14428 MELBOURNECITY, VIC, 8001, AUSTRALIA.

sever.dragomir@vu.edu.au URL:http://rgmia.vu.edu.au/dragomir

Received 21 March, 2006; accepted 12 July, 2006 Communicated by F. Zhang

ABSTRACT. Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given. Applications for vector inequalities are also provided.

Key words and phrases: Bounded linear operators, Hilbert spaces, Schwarz inequality, Cartesian decomposition of operators.

2000 Mathematics Subject Classification. Primary 47A05, 47A12.

1. INTRODUCTION

Let(H;h·,·i)be a real or complex Hilbert space andB(H)the Banach algebra of all bounded linear operators that mapH intoH.

In many estimates one needs to use upper bounds for the norm of the linear combination of bounded linear operators A1, . . . , An with the scalars α1, . . . , αn, where separate information for scalars and operators are provided. In this situation, the classical approach is to use a Hölder type inequality as stated below

n

X

i=1

αiAi

n

X

i=1

i| kAik

!

















1≤i≤nmax{|αi|}Pn

i=1

kAik; n

P

i=1

i|p

1p n P

i=1

kAikq 1q

ifp >1, 1p + 1q = 1;

1≤i≤nmax{kAik}

n

P

i=1

i|.

ISSN (electronic): 1443-5756

c 2006 Victoria University. All rights reserved.

088-06

(2)

Notice that, the case when p = q = 2, which provides the Cauchy-Bunyakovsky-Schwarz inequality

(1.1)

n

X

i=1

αiAi

n

X

i=1

i|2

!12 n X

i=1

kAik2

!12

is of special interest and of larger utility.

In the previous paper [1], in order to improve (1.1), we have established the following norm inequality for the operatorsA1, . . . , An∈B(H)and scalarsα1, . . . , αn ∈K:

(1.2)

n

X

i=1

αiAi

2

















1≤i≤nmax|αi|2

n

P

i=1

kAik2; n

P

i=1

i|2p

p1 n P

i=1

kAik2q 1q

ifp > 1, 1p +1q = 1;

n

P

i=1

i|2 max

1≤i≤nkAik2

+

























1≤i6=j≤nmax {|αi| |αj|} P

1≤i6=j≤n

AiAj ;

"

n P

i=1

i|r 2

n

P

i=1

i|2r

#1r

P

1≤i6=j≤n

AiAj

s

!1s ifr >1, 1r + 1s = 1;

"

n P

i=1

i| 2

−Pn

i=1

i|2

#

1≤i6=j≤nmax

AiAj , where (1.2) should be seen as all the9possible configurations.

Some particular inequalities of interest that can be obtained from (1.2) and provide alternative bounds for the classical Cauchy-Bunyakovsky-Schwarz (CBS) inequality are the following [1]:

(1.3)

n

X

i=1

αiAi

≤ max

1≤i≤ni|

n

X

i,j=1

AiAj

!12 ,

(1.4)

n

X

i=1

αiAi

2

n

X

i=1

i|2

1≤i≤nmax kAik2+ (n−1) max

1≤i6=j≤n

AiAj

,

(1.5)

n

X

i=1

αiAi

2

n

X

i=1

i|2

max

1≤i≤nkAik2+ X

1≤i6=j≤n

AiAj

2

!12

 and

(1.6)

n

X

i=1

αiAi

2

n

X

i=1

i|2p

!1p

n

X

i=1

kAik2q

!1q

+ (n−1)1p X

1≤i6=j≤n

AiAj

q

!1q

,

(3)

wherep > 1, 1p +1q = 1.In particular, forp=q = 2,we have from (1.6)

(1.7)

n

X

i=1

αiAi

2

n

X

i=1

i|4

!12

n

X

i=1

kAik4

!12

+ (n−1)12 X

1≤i6=j≤n

AiAj

2

!12

. The aim of the present paper is to establish other upper bounds of interest for the quantity kPn

i=1αiAik,where, as above,α1, . . . , αnare real or complex numbers, whileA1, . . . , Anare bounded linear operators on the Hilbert space (H;h·,·i).These are compared with the (CBS) inequality (1.1) and shown that some times they are better. Applications for vector inequalities are also given.

2. SOMEGENERAL RESULTS

The following result containing 9 different inequalities may be stated:

Theorem 2.1. Letα1, . . . , αn ∈KandA1, . . . , An ∈B(H).Then

(2.1)

n

X

i=1

αiAi

2

 A B C where

A:=

























1≤k≤nmax |αk|2 Pn

i,j=1

AiAj ,

1≤k≤nmax |αk| n

P

i=1

i|r

1r n P

i=1 n

P

j=1

AiAj

!s!1s ,

wherer >1, 1r +1s = 1;

1≤k≤nmax |αk|

n

P

i=1

i|max

1≤i≤n n

P

j=1

AiAj

! ,

(2.2) B :=

































1≤i≤nmax |αi| n

P

k=1

k|p 1p n

P

i=1 n

P

j=1

AiAj

q

!1q

n P

i=1

i|t

1t n P

k=1

k|p 1p

n

P

i=1 n

P

j=1

AiAj

q

!uq

1 u

wheret >1, 1t +u1 = 1;

n

P

i=1

i| n

P

k=1

k|p 1p

1≤i≤nmax

n

P

j=1

AiAj

q

!1q

 ,

(4)

forp > 1, 1p +1q = 1and

C :=

























1≤i≤nmax|αi|

n

P

k=1

k|

n

P

i=1 1≤j≤nmax

AiAj , n

P

i=1

i|m m1 n

P

k=1

k|

"

n

P

i=1

1≤j≤nmax

AiAj

l#1l , wherem, l >1, m1 +1l = 1;

n P

k=1

k| 2

1≤i,j≤nmax

AiAj .

Proof. We observe, in the operator partial order ofB(H), we have that 0≤

n

X

i=1

αiAi

! n X

i=1

αiAi

!

(2.3)

=

n

X

i=1

αiAi

n

X

j=1

αjAj =

n

X

i=1 n

X

j=1

αiαjAiAj.

Taking the norm in (2.3) and noticing thatkU Uk=kUk2for anyU ∈B(H),we have:

n

X

i=1

αiAi

2

=

n

X

i=1 n

X

j=1

αiαjAiAj

n

X

i=1 n

X

j=1

i| |αj| AiAj

=

n

X

i=1

i|

n

X

j=1

j| AiAj

!

=:M.

Utilising Hölder’s discrete inequality we have that

n

X

j=1

j| AiAj

















1≤k≤nmax |αk|

n

P

j=1

AiAj , n

P

k=1

k|p

1p n P

j=1

AiAj

q

!1q

wherep > 1, 1p +1q = 1;

n

P

k=1

k| max

1≤j≤n

AiAj , for anyi∈ {1, . . . , n}.

This provides the following inequalities:

M ≤





















1≤k≤nmax |αk|

n

P

i=1

i|

n

P

j=1

AiAj

!

=:M1 n

P

k=1

k|p 1p n

P

i=1

i|

n

P

j=1

AiAj

q

!1q

:=Mp wherep > 1, 1p +1q = 1;

n

P

k=1

k|

n

P

i=1

i|

1≤j≤nmax

AiAj

:=M.

(5)

Utilising Hölder’s inequality forr, s >1, 1r + 1s = 1,we have:

n

X

i=1

i|

n

X

j=1

AiAj

!





















1≤i≤nmax |αi|

n

P

i,j=1

AiAj n

P

i=1

i|r 1r "

n

P

i=1 n

P

j=1

AiAj

!s#1s

, wherer >1, 1r + 1s = 1;

n

P

i=1

i| max

1≤i≤n n

P

j=1

AiAj

! ,

and thus we can state that

M1





















1≤k≤nmax |αk|2

n

P

i,j=1

AiAj ;

1≤k≤nmax |αk| n

P

i=1

i|r

1r n P

i=1 n

P

j=1

AiAj

!s!1s

, wherer >1, 1r +1s = 1;

1≤k≤nmax |αk|

n

P

i=1

i| max

1≤i≤n n

P

j=1

AiAj

! ,

and the first part of the theorem is proved.

By Hölder’s inequality we can also have that (forp > 1, 1p +1q = 1)

Mp

n

X

k=1

k|p

!1p

×

























1≤i≤nmax |αi|Pn

i=1 n

P

j=1

AiAj

q

!1q

; n

P

i=1

i|t 1t

n

P

i=1 n

P

j=1

AiAj

q

!uq

1 u

, wheret >1, 1t + 1u = 1;

n

P

i=1

i| max

1≤i≤n

n

P

j=1

AiAj

q

!1q

 ,

and the second part of (2.1) is proved.

Finally, we may state that

M

n

X

k=1

k

















1≤i≤nmax |αi|

n

P

i=1 1≤j≤nmax

AiAj n

P

i=1

i|m m1 "

n

P

i=1

1≤j≤nmax

AiAj

l#1l

wherem, l >1, m1 +1l = 1;

n

P

i=1

i| max

1≤i,j≤n

AiAj ,

giving the last part of (2.1).

(6)

Remark 2.2. It is obvious that out of (2.1) one can obtain various particular inequalities. For instance, the choicet = 2, p= 2(thereforeu=q= 2) in theB−branch of (2.2) gives:

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

i,j=1

AiAj

2

!12 (2.4)

=

n

X

i=1

i|2

n

X

i=1

kAik4 + X

1≤i6=j≤n

AiAj

!12 .

If we consider now the usual Cauchy-Bunyakovsky-Schwarz (CBS) inequality

(2.5)

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

i=1

kAik2,

and observe that

n

X

i,j=1

AiAj

2

!12

n

X

i,j=1

kAik2 Aj

2

!12

=

n

X

i=1

kAik2,

then we can conclude that (2.4) is a refinement of the (CBS) inequality (2.5).

Corollary 2.3. Let α1, . . . , αn ∈ Kand A1, . . . , An ∈ B(H)so that AiAj = 0with i 6= j.

Then

(2.6)

n

X

i=1

αiAi

2

 A˜ B˜ C˜ where

A˜:=

















1≤k≤nmax |αk|2

n

P

i=1

kAik2;

1≤k≤nmax |αk| n

P

i=1

i|r

1r n P

i=1

kAik2s 1s

, wherer >1, 1r +1s = 1;

1≤k≤nmax |αk|

n

P

i=1

i| max

1≤i≤n

kAik2 ,

B˜ :=

















1≤i≤nmax|αi| n

P

k=1

k|p 1p n

P

i=1

kAik2; v

n P

i=1

i|t

1t n P

k=1

k|p

1p n P

i=1

kAik2u 1u

, wheret >1, 1t + 1u = 1;

n

P

i=1

i| n

P

k=1

k|p 1p

1≤i≤nmax

kAik2 ,

(7)

wherep >1and

C˜ :=

















1≤i≤nmax |αi|

n

P

k=1

k|

n

P

i=1

kAik2; n

P

i=1

i|m m1 n

P

k=1

k| n

P

i=1

kAik2l 1l

, wherem, l >1, m1 +1l = 1;

n P

k=1

k| 2

1≤i,j≤nmax

kAik2 .

3. OTHER RESULTS

A different approach is embodied in the following theorem:

Theorem 3.1. Ifα1, . . . , αn ∈KandA1, . . . , An ∈B(H),then

n

X

i=1

αiAi

2

n

X

i=1

i|2

n

X

j=1

AiAj (3.1)





















n

P

i=1

i|2 max

1≤i≤n

"

n

P

j=1

AiAj

#

; n

P

i=1

i|2p 1p"

n

P

i=1 n

P

j=1

AiAj

!q#1q

wherep >1, 1p +1q = 1;

1≤i≤nmax|αi|2

n

P

i,j=1

AiAj . Proof. From the proof of Theorem 2.1 we have that

n

X

i=1

αiAi

2

n

X

i=1 n

X

j=1

i| |αj| AiAj

. Using the simple observation that

i| |αj| ≤ 1

2 |αi|2+|αj|2

, i, j ∈ {1, . . . , n}, we have

n

X

i=1 n

X

j=1

i| |αj| AiAj

≤ 1 2

n

X

i=1 n

X

j=1

i|2+|αj|2 AiAj

= 1 2

n

X

i=1 n

X

j=1

i|2 AiAj

+|αj|2 AiAj

=

n

X

i=1 n

X

j=1

i|2 AiAj

, which proves the first inequality in (3.1).

The second part follows by Hölder’s inequality and the details are omitted.

Remark 3.2. If in (3.1) we chooseα1 =· · ·=αn= 1,then we get

n

X

i=1

Ai

n

X

i=1

kAik2+

n

X

1≤i6=j≤n

AiAj

!12

n

X

i=1

kAik,

(8)

which is a refinement for the generalised triangle inequality.

The following corollary may be stated:

Corollary 3.3. IfA1, . . . , An ∈ B(H)are such that AiAj = 0 fori 6= j, i, j ∈ {1, . . . , n}, then

n

X

i=1

αiAi

2

n

X

i=1

i|2kAik2 (3.2)

















n

P

i=1

i|2 max

1≤i≤nkAik2; n

P

i=1

i|2p 1p"

n

P

j=1

kAik2q

#1q

wherep >1, 1p + 1q = 1;

1≤i≤nmax|αi|2

n

P

i=1

kAik2.

Finally, the following result may be stated as well:

Theorem 3.4. Ifα1, . . . , αn ∈KandA1, . . . , An ∈B(H),then

(3.3)

n

X

i=1

αiAi

2

















1≤i≤nmax |αi|2

n

P

i,j=1

AiAj ; n

P

i=1

i|p

2p n P

i,j=1

AiAj

q

!1q

wherep >1, 1p +1q = 1;

n P

i=1

i| 2

1≤i,j≤nmax

AiAj . Proof. We know that

n

X

i=1

αiAi

2

n

X

i=1 n

X

j=1

i| |αj| AiAj

=:P.

Firstly, we obviously have that

P ≤ max

1≤i,j≤n{|αi| |αj|}

n

X

i,j=1

AiAj

= max

1≤i≤ni|2

n

X

i,j=1

AiAj . Secondly, by the Hölder inequality for double sums, we obtain

P ≤

" n X

i,j=1

(|αi| |αj|)p

#1p n X

i,j=1

AiAj

q

!1q

=

n

X

i=1

i|p

n

X

j=1

j|p

!1p n X

i,j=1

AiAj

q

!1q

=

n

X

i=1

i|p

!2p n X

i,j=1

AiAj

q

!1q , wherep > 1, 1p +1q = 1.

(9)

Finally, we have

P ≤ max

1≤i,j≤n

AiAj

n

X

i,j=1

i| |αj|

=

n

X

i=1

i|

!2

1≤i,j≤nmax

AiAj

and the theorem is proved.

Corollary 3.5. If α1, . . . , αn ∈ K and A1, . . . , An ∈ B(H) are such that AiAj = 0 for i, j ∈ {1, . . . , n}withi6=j,then

(3.4)

n

X

i=1

αiAi

2

















1≤i≤nmax |αi|2Pn

i=1

kAik2; n

P

i=1

i|p

p2 n P

i=1

kAik2q 1q

, wherep > 1, 1p +1q = 1;

n P

i=1

i| 2

1≤i≤nmax

kAik2 .

4. VECTORINEQUALITIES

As pointed out in our previous paper [1], the operator inequalities obtained above may pro- vide various vector inequalities of interest.

If by M(α,A)we denote any of the bounds provided by (2.1), (2.4), (3.1) or (3.3) for the quantitykPn

i=1αiAik2, then we may state the following general fact:

Under the assumptions of Theorem 2.1, we have:

(4.1)

n

X

i=1

αiAix

2

≤ kxk2M(α,A). for anyx∈Hand

(4.2)

n

X

i=1

αihAix, yi

2

≤ kxk2kyk2M(α,A). for anyx, y ∈H,respectively.

The proof follows by the Schwarz inequality in the Hilbert space(H,h·,·i), see for instance [1], and the details are omitted.

Now, we consider the non zero vectorsy1, . . . , yn ∈H.Define the operators [1]

Ai :H →H, Aix= hx, yii

kyik ·yi, i∈ {1, . . . , n}. Since

kAik=kyik, i∈ {1, . . . , n}

thenAiare bounded linear operators inH.Also, since

hAix, xi= |hx, yii|2

kyik ≥0, x∈H, i∈ {1, . . . , n}

(10)

and

hAix, zi= hx, yii hyi, zi kyik , hx, Aizi= hx, yii hyi, zi

kyik , giving

hAix, zi=hx, Aizi, x, z ∈H, i∈ {1, . . . , n},

we may conclude thatAi(i= 1, . . . , n)are positive self-adjoint operators onH.

Since, for anyx∈H,one has

k(AiAj) (x)k= |hx, yji| |hyj, yii|

kyjk , i, j ∈ {1, . . . , n}, then we deduce that

kAiAjk=|(yi, yj)|; i, j ∈ {1, . . . , n}.

If(yi)i=1,n is an orthonormal family onH,thenkAik = 1andAiAj = 0fori, j ∈ {1, . . . , n}, i6=j.

Now, utilising, for instance, the inequalities in Theorem 3.1 we may state that:

n

X

i=1

αihx, yii kyik yi

2

≤ kxk2

n

X

i=1

i|2

n

X

j=1

|hyi, yji|

(4.3)

≤ kxk2×

























n

P

i=1

i|2 max

1≤i≤n

"

n

P

j=1

|hyi, yji|

#

; n

P

i=1

i|2p 1p"

n

P

i=1 n

P

j=1

|(yi, yj)|

!q#1q wherep > 1, 1p +1q = 1;

v max

1≤i≤ni|2

n

P

i,j=1

|hyi, yji|. for anyx, y1, . . . , yn∈H andαn, . . . , αn ∈K.

The proof follows on choosing Ai = h·,ykyii

ikyi in Theorem 3.1 and taking into account that kAik=kyik,

AiAj

=|hyi, yji|, i, j ∈ {1, . . . , n}. We omit the details.

The choiceαi = kyik(i= 1, . . . , n) will produce some interesting bounds for the norm of the Fourier series

n

X

i=1

hx, yiiyi .

Notice that the vectorsyi(i= 1, . . . , n)are not necessarily orthonormal.

Similar inequalities may be stated if one uses the other two main theorems. For the sake of brevity, they will not be stated here.

REFERENCES

[1] S.S. DRAGOMIR, Some Schwarz type inequalities for sequences of operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 17–26.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given.. Applica- tions for

General companion inequalities related to Jensen’s inequality for the classes of m-convex and (α, m)-convex functions are presented.. We show how Jensen’s inequality for these

General companion inequalities related to Jensen’s inequality for the classes of m-convex and (α, m)-convex functions are presented.. We show how Jensen’s inequality for these

Some reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given.. Applications for complex- valued functions are

Some reverses of the continuous triangle inequality for Bochner integral of vector- valued functions in Hilbert spaces are given.. Applications for complex-valued functions are

Some inequalities in 2-inner product spaces generalizing Bessel’s result that are similar to the Boas-Bellman inequality from inner product spaces, are given.. Applications

Some inequalities in 2-inner product spaces generalizing Bessel’s result that are similar to the Boas-Bellman inequality from inner product spaces, are given.. Applications

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality