• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
27
0
0

Teljes szövegt

(1)

volume 7, issue 1, article 14, 2006.

Received 28 June, 2005;

accepted 17 September, 2005.

Communicated by:A. Lupa¸s

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A POTPOURRI OF SCHWARZ RELATED INEQUALITIES IN INNER PRODUCT SPACES (II)

S.S. DRAGOMIR

School of Computer Science and Mathematics Victoria University

PO Box 14428, Melbourne City Victoria 8001, Australia.

EMail:sever.dragomir@vu.edu.au URL:http://rgmia.vu.edu.au/dragomir

2000c Victoria University ISSN (electronic): 1443-5756 196-05

(2)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Abstract

Further inequalities related to the Schwarz inequality in real or complex inner product spaces are given.

2000 Mathematics Subject Classification:46C05, 26D15.

Key words: Schwarz inequality, Inner product spaces, Reverse inequalities.

Contents

1 Introduction. . . 3

2 Quadratic Schwarz Related Inequalities. . . 6

3 Other Inequalities . . . 15

4 Applications for the Triangle Inequality. . . 22 References

(3)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

1. Introduction

Let(H;h·,·i)be an inner product space over the real or complex number field K. One of the most important inequalities in inner product spaces with numer- ous applications is the Schwarz inequality, that may be written in two forms:

(1.1) |hx, yi|2 ≤ kxk2kyk2, x, y ∈H (quadratic form) or, equivalently,

(1.2) |hx, yi| ≤ kxk kyk, x, y ∈H (simple form).

The case of equality holds in (1.1) or in (1.2) if and only if the vectorsxandy are linearly dependent.

In the previous paper [6], several results related to Schwarz inequalities have been established. We recall few of them below:

1. Ifx, y ∈H\ {0}andkxk ≥ kyk,then

(1.3) kxk kyk −Rehx, yi ≤





1

2r2kxk

kyk

r−1

kx−yk2 if r ≥1

1 2

kxk

kyk

1−r

kx−yk2 if r <1.

2. If(H;h·,·i)is complex, α ∈ C with Reα, Imα > 0and x, y ∈ H are such that

(1.4)

x− Imα Reα ·y

≤r

(4)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

then

(1.5) kxk kyk −Rehx, yi ≤ 1

2 · Reα Imαr2. 3. Ifα∈K\ {0},then for anyx, y ∈H

(1.6) kxk kyk −Re α2

|α|2 hx, yi

≤ 1

2 ·[|Reα| kx−yk+|Imα| kx+yk]2

|α|2 .

4. Ifp≥1,then for anyx, y ∈Hone has

(1.7) kxk kyk −Rehx, yi ≤ 1 2×





(kxk+kyk)2p− kx+yk2p1p , kx−yk2p− |kxk − kyk|2pp1

. 5. Ifα, γ >0andβ ∈Kwith|β|2 ≥αγ then forx, a∈Hwitha6= 0and

(1.8)

x− β αa

≤ |β|2−αγ12

α kak,

one has

kxk kak ≤ ReβRehx, ai+ ImβImhx, ai

√αγ (1.9)

≤ |β| |hx, ai|

√αγ

(5)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

and

(1.10) kxk2kak2− |hx, ai|2 ≤ |β|2 −αγ

αγ |hx, ai|2.

The aim of this paper is to provide other results related to the Schwarz in- equality. Applications for reversing the generalised triangle inequality are also given.

(6)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

2. Quadratic Schwarz Related Inequalities

The following result holds.

Theorem 2.1. Let (H;h·,·i)be a complex inner product space andx, y ∈ H, α ∈[0,1].Then

(2.1)

αkty−xk2+ (1−α)kity−xk2 kyk2

≥ kxk2kyk2−[(1−α) Imhx, yi+αRehx, yi]2 ≥0 for anyt ∈R.

Proof. Firstly, recall that for a quadratic polynomial P : R → R, P(t) = at2+ 2bt+c, a >0, we have that

(2.2) inf

t∈R

P (t) = P

−b a

= ac−b2 a . Now, consider the polynomialP :R→Rgiven by

(2.3) P(t) :=αkty−xk2+ (1−α)kity−xk2. Since

kty−xk2 =t2kyk2 −2tRehx, yi+kxk2 and

kity−xk2 =t2kyk2 −2tImhx, yi+kxk2, hence

P (t) = t2kyk2−2t[αRehx, yi+ (1−α) Imhx, yi] +kxk2.

(7)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

By the definition of P (see (2.3)), we observe thatP(t) ≥ 0for every t ∈ R, therefore 14∆≤0,i.e.,

[(1−α) Imhx, yi+αRehx, yi]2 − kxk2kyk2 ≤0, proving the second inequality in (2.1).

The first inequality follows by (2.2) and the theorem is proved.

The following particular cases are of interest.

Corollary 2.2. For anyx, y ∈H one has the inequalities:

kty−xk2kyk2 ≥ kαk2kyk2−[Rehx, yi]2 ≥0;

(2.4)

kity−xk2kyk2 ≥ kαk2kyk2−[Imhx, yi]2 ≥0;

(2.5) and (2.6) 1

2

kty−xk2+kity−xk2 kyk2

≥ kxk2kyk2

Imhx, yi+ Rehx, yi 2

2

≥0, for anyt ∈R.

The following corollary may be stated as well:

Corollary 2.3. Letx, y ∈H andMi, mi ∈R,i∈ {1,2}such thatMi ≥mi >

0, i ∈ {1,2}.If either

(2.7) RehM1y−x, x−m1yi ≥0 and RehM2iy−x, x−im2yi ≥0,

(8)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

or, equivalently,

x−M1 +m1

2 y

≤ 1

2(M1−m1)kyk and (2.8)

x− M2 +m2 2 iy

≤ 1

2(M2−m2)kyk hold, then

(0≤)kxk2kyk2−[(1−α) Imhx, yi+αRehx, yi]2 (2.9)

≤ 1 4kyk4

α(M1−m1)2+ (1−α) (M2−m2)2 for anyα∈[0,1].

Proof. It is easy to see that, if x, z, Z ∈ H,then the following statements are equivalent:

(i) RehZ −x, x−zi ≥0, (ii)

x−z+Z2

12kZ−zk.

Utilising this property one may simply realize that the statements (2.7) and (2.8) are equivalent.

Now, on making use of (2.8) and (2.1), one may deduce the desired inequal- ity (2.9).

(9)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Remark 1. If one assumes thatM1 =M2 =M, m1 =m2 =min either (2.7) or (2.8), then

(0≤)kxk2kyk2−[(1−α) Imhx, yi+αRehx, yi]2 (2.10)

≤ 1

4kyk4(M −m)2 for eachα∈[0,1].

Remark 2. Corollary 2.3 may be seen as a potential source of some reverse results for the Schwarz inequality. For instance, ifx, y ∈ H andM ≥ m > 0 are such that either

(2.11) RehM y−x, x−myi ≥0 or

x− M +m

2 y

≤ 1

2(M −m)kyk hold, then

(2.12) (0≤)kxk2kyk2−[Rehx, yi]2 ≤ 1

4(M −m)2kyk4. Ifx, y ∈H andN ≥n >0are such that either

(2.13) RehN iy −x, x−niyi ≥0 or

x− N +n 2 iy

≤ 1

2(N −n)kyk hold, then

(2.14) (0≤)kxk2kyk2−[Imhx, yi]2 ≤ 1

4(N −n)2kyk4.

(10)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

We notice that (2.12) is an improvement of the inequality (0≤)kxk2kyk2− |hx, yi|2 ≤ 1

4(M−m)2kyk4

that has been established in [4] under the same condition (2.11) given above.

The following result may be stated as well.

Theorem 2.4. Let (H;h·,·i) be a real or complex inner product space and x, y ∈H, α ∈[0,1].Then

(2.15)

αkty−xk2+ (1−α)ky−txk2 αkyk2+ (1−α)kxk2

(1−α)kxk2+αkyk2 αkxk2+ (1−α)kyk2

−[Rehx, yi]2 ≥0 for anyt ∈R.

Proof. Consider the polynomialP :R→Rgiven by

(2.16) P(t) :=αkty−xk2 + (1−α)ky−txk2. Since

kty−xk2 =t2kyk2 −2tRehx, yi+kxk2 and

ky−txk2 =t2kxk2−2tRehx, yi+kyk2, hence

P(t) =

αkyk2+ (1−α)kxk2

t2−2tRehx, yi+

αkxk2+ (1−α)kyk2

(11)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

for anyt∈R.

By the definition of P (see (2.16)), we observe that P (t) ≥ 0 for every t ∈R, therefore 14∆≤0,i.e., the second inequality in (2.15) holds true.

The first inequality follows by (2.2) and the theorem is proved.

Remark 3. We observe that if eitherα= 0orα= 1,then (2.15) will generate the same reverse of the Schwarz inequality as (2.4) does.

Corollary 2.5. Ifx, y ∈H,then

(2.17) kty−xk2+ky−txk2

2 · kxk2 +kyk2 2

≥ kxk2+kyk2 2

!2

−[Rehx, yi]2 ≥0

for anyt ∈Rand (2.18) kx±yk2

αkyk2+ (1−α)kxk2

(1−α)kxk2+αkyk2 αkxk2+ (1−α)kyk2

−[Rehx, yi]2 ≥0 for anyα∈[0,1].

In particular, we have

(2.19) kx±yk2· kxk2+kyk2 2

!

≥ kxk2+kyk2 2

!2

−[Rehx, yi]2 ≥0.

(12)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

In [7, p. 210], C.S. Lin has proved the following reverse of the Schwarz inequality in real or complex inner product spaces(H;h·,·i) :

(0≤)kxk2kyk2− |hx, yi|2 ≤ 1

r2 kxk2kx−ryk2 for anyr∈R,r 6= 0andx, y ∈H.

The following slightly more general result may be stated:

Theorem 2.6. Let (H;h·,·i)be a real or complex inner product space. Then for anyx, y ∈H andα∈K(C,R)withα6= 0we have

(2.20) (0≤)kxk2kyk2− |hx, yi|2 ≤ 1

|α|2 kxk2kx−αyk2. The case of equality holds in (2.20) if and only if

(2.21) Rehx, αyi=kxk2.

Proof. Observe that

I(α) := kxk2kx−αyk2− |α|2

kxk2kyk2− |hx, yi|2

=kxk2

kxk2−2 Re [ ¯αhx, yi] +|α|2kyk2

− |α|2kxk2kyk2+|α|2|hx, yi|2

=kxk4−2kxk2Re [ ¯αhx, yi] +|α|2|hx, yi|2. Since

(2.22) Re [ ¯αhx, yi]≤ |α| |hx, yi|,

(13)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

hence

I(α)≥ kxk4−2kxk2|α| |hx, yi|+|α|2|hx, yi|2 (2.23)

= kxk2− |α| |hx, yi|2

≥0.

Conversely, if (2.21) holds true, thenI(α) = 0,showing that the equality case holds in (2.20).

Now, if the equality case holds in (2.20), then we must have equality in (2.22) and in (2.23) implying that

Re [hx, αyi] =|α| |hx, yi| and |α| |hx, yi|=kxk2 which imply (2.21).

The following result may be stated.

Corollary 2.7. Let(H;h·,·i)be as above andx, y ∈H, α∈K\ {0}andr >0 such that|α| ≥r.If

(2.24) kx−αyk ≤rkyk,

then

(2.25)

q

|α|2−r2

|α| ≤ |hx, yi|

kxk kyk(≤1). Proof. From (2.24) and (2.20) we have

kxk2kyk2 − |hx, yi|2 ≤ r2

|α|2 kxk2kyk2,

(14)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

that is,

|α|2−r2

|α|2 kxk2kyk2 ≤ |hx, yi|2, which is clearly equivalent to (2.25).

Remark 4. Since forΓ, γ ∈Kthe following statements are equivalent (i) RehΓy−x, x−γyi ≥0,

(ii)

x−γ+Γ2 ·y

12|Γ−γ| kyk, hence by Corollary2.7we deduce

(2.26) 2 [Re (Γ¯γ)]12

|Γ +γ| ≤ |hx, yi|

kxk kyk,

providedRe (Γ¯γ) >0,an inequality that has been obtained in a different way in [3].

Corollary 2.8. Ifx, y ∈ H, α ∈ K\ {0} andρ > 0such thatkx−αyk ≤ ρ, then

(2.27) (0≤)kxk2kyk2− |hx, yi|2 ≤ ρ2

|α|2 kxk2.

(15)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

3. Other Inequalities

The following result holds.

Proposition 3.1. Letx, y ∈H\ {0}andε ∈(0,12]. If (3.1) (0≤) 1−ε−√

1−2ε≤ kxk

kyk ≤1−ε+√

1−2ε, then

(3.2) (0≤)kxk kyk −Rehx, yi ≤εkx−yk2. Proof. Ifx=y,then (3.2) is trivial.

Supposex6=y.Utilising the inequality (2.5) from [6], we can state that kxk kyk −Rehx, yi

kx−yk2 ≤ 2kxk kyk (kxk+kyk)2 for anyx, y ∈H\ {0}, x6=y.

Now, if we assume that

2kxk kyk

(kxk+kyk)2 ≤ε, then, after some manipulation, we get that

εkxk2+ 2 (ε−1)kxk kyk+εkyk2 ≥0, which, forε∈(0,12]andy6= 0,is clearly equivalent to (3.1).

The proof is complete.

(16)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

The following result may be stated:

Proposition 3.2. Let(H;h·,·i)be a real or complex inner product space. Then for anyx, y ∈H andϕ∈Rone has:

kxk kyk −[cos 2ϕ·Rehx, yi+ sin 2ϕ·Imhx, yi]

≤ 1

2[|cosϕ| kx−yk+|sinϕ| kx+yk]2.

Proof. For ϕ ∈ R, consider the complex number α = cosϕ −isinϕ. Then α2 = cos 2ϕ −isin 2ϕ, |α| = 1 and by the inequality (1.6) we deduce the desired result.

From a different perspective, we may consider the following results as well:

Theorem 3.3. Let(H;h·,·i)be a real or complex inner product space, α ∈K with|α−1|= 1.Then for anye∈Hwithkek= 1andx, y ∈H,we have (3.3) |hx, yi −αhx, ei he, yi| ≤ kxk kyk.

The equality holds in (3.3) if and only if there exists aλ ∈Ksuch that

(3.4) αhx, eie=x+λy.

Proof. It is known that foru, v ∈H,we have equality in the Schwarz inequality

(3.5) |hu, vi| ≤ kuk kvk

if and only if there exists aλ∈Ksuch thatu=λv.

(17)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

If we apply (3.5) foru=αhx, eie−x, v =y,we get (3.6) |hαhx, eie−x, yi| ≤ kαhx, eie−xk kyk with equality iff there exists aλ∈Ksuch that

αhx, eie=x+λy.

Since

kαhx, eie−xk2 =|α|2|hx, ei|2−2 Re [α]|hx, ei|2+kxk2

= |α|2−2 Re [α]

|hx, ei|2+kxk2

= |α−1|2−1

|hx, ei|2+kxk2

=kxk2 and

hαhx, eie−x, yi=αhx, ei he, yi − hx, yi hence by (3.6) we deduce the desired inequality (3.3).

Remark 5. Ifα= 0in (3.3), then it reduces to the Schwarz inequality.

Remark 6. Ifα6= 0,then (3.3) is equivalent to

(3.7)

hx, ei he, yi − 1 α hx, yi

≤ 1

|α|kxk kyk.

(18)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Utilising the continuity property of modulus for complex numbers, i.e.,

|z−w| ≥ ||z| − |w||we then obtain

|hx, ei he, yi| − 1

|α||hx, yi|

≤ 1

|α|kxk kyk, which implies that

(3.8) |hx, ei he, yi| ≤ 1

|α|[|hx, yi|+kxk kyk]. Fore= kzkz , z6= 0,we get from (3.8) that

(3.9) |hx, zi hz, yi| ≤ 1

|α|[|hx, yi|+kxk kyk]kzk2 for anyα∈K\ {0}with|α−1|= 1andx, y, z ∈H.

Forα= 2,we get from (3.9) the Buzano inequality [1]

(3.10) |hx, zi hz, yi| ≤ 1

2[|hx, yi|+kxk kyk]kzk2 for anyx, y, z ∈H.

Remark 7. In the case of real spaces the condition|α−1|= 1is equivalent to eitherα= 0orα = 2.Forα= 2we deduce from (3.7) that

(3.11) 1

2[hx, yi − kxk kyk]≤ hx, ei he, yi ≤ 1

2[hx, yi+kxk kyk]

(19)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

for anyx, y ∈H ande ∈H withkek = 1,which implies Richard’s inequality [8]:

(3.12) 1

2[hx, yi − kxk kyk]kzk2 ≤ hx, zi hz, yi ≤ 1

2[hx, yi+kxk kyk]kzk2, for anyx, y, z ∈H.

The following result concerning a generalisation for orthornormal families of the inequality (3.3) may be stated.

Theorem 3.4. Let(H;h·,·i)be a real or complex inner product space,{ei}i∈F a finite orthonormal family, i.e., hei, eji = δij for i, j ∈ F, where δij is Kro- necker’s delta and αi ∈ K, i ∈ F such thati−1| = 1 for each i ∈ F.

Then

(3.13)

hx, yi −X

i∈F

αihx, eii hei, yi

≤ kxk kyk.

The equality holds in (3.13) if and only if there exists a constantλ ∈ K such that

(3.14) X

i∈F

αihx, eiiei =x+λy.

Proof. As above, by Schwarz’s inequality, we have

(3.15)

* X

i∈F

αihx, eiiei−x, y +

X

i∈F

αihx, eiiei−x

kyk

(20)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

with equality if and only if there exists aλ ∈ Ksuch thatP

i∈Fαihx, eiiei = x+λy.

Since

X

i∈F

αihx, eiiei−x

2

=kxk2−2 Re

* x,X

i∈F

αihx, eiiei +

+

X

i∈F

αihx, eiiei

2

=kxk2−2X

i∈F

αihx, eii hx, eii+X

i∈F

i|2|hx, eii|2

=kxk2+X

i∈F

|hx, eii|2i|2−2 Reαi

=kxk2+X

i∈F

|hx, eii|2i−1|2−1

=kxk2,

hence the inequality (3.13) is obtained.

Remark 8. If the space is real, then the nontrivial case one can get from (3.13) is for allαi = 2,obtaining the inequality

(3.16) 1

2[hx, yi − kxk kyk]≤X

i∈F

hx, eii hei, yi ≤ 1

2[hx, yi+kxk kyk]

that has been obtained in [5].

(21)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Corollary 3.5. With the above assumptions, we have

X

i∈F

αihx, eii hei, yi

≤ |hx, yi|+

hx, yi −X

i∈F

αihx, eii hei, yi (3.17)

≤ |hx, yi|+kxk kyk, x, y ∈H,

wherei−1|= 1for eachi∈F and{ei}i∈F is an orthonormal family inH.

(22)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

4. Applications for the Triangle Inequality

In 1966, Diaz and Metcalf [2] proved the following reverse of the triangle inequality:

(4.1)

n

X

i=1

xi

≥r

n

X

i=1

kxik,

provided the vectors xi in the inner product space (H;h·,·i) over the real or complex number fieldKare nonzero and

(4.2) 0≤r≤ Rehxi, ai

kxik for each i∈ {1, . . . , n}, wherea∈H,kak= 1.The equality holds in (4.2) if and only if (4.3)

n

X

i=1

xi =r

n

X

i=1

kxik

! a.

The following result may be stated:

Proposition 4.1. Let e ∈ H with kek = 1, ε ∈ 0,12

and xi ∈ H, i ∈ {1, . . . , n}with the property that

(4.4) (0≤) 1−ε−√

1−2ε≤ kxik ≤1−ε+√ 1−2ε for eachi∈ {1, . . . , n}.Then

(4.5)

n

X

i=1

kxik ≤

n

X

i=1

xi

n

X

i=1

kxi−ek2.

(23)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Proof. Utilising Proposition3.1forx=xi andy =e,we can state that kxik −Rehxi, ei ≤εkxi−ek2

for eachi∈ {1, . . . , n}.Summing overifrom1ton,we deduce that (4.6)

n

X

i=1

kxik ≤Re

* n X

i=1

xi, e +

n

X

i=1

kxi−ek2.

By Schwarz’s inequality in(H;h·,·i),we also have Re

* n X

i=1

xi, e +

Re

* n X

i=1

xi, e +

* n X

i=1

xi, e +

(4.7)

n

X

i=1

xi

kek=

n

X

i=1

xi .

Therefore, by (4.6) and (4.7) we deduce (4.5).

In the same spirit, we can prove the following result as well:

Proposition 4.2. Let (H;h·,·i) be a real or complex inner product space and e ∈H withkek= 1.Then for anyϕ ∈Rone has the inequality:

(4.8)

n

X

i=1

kxik ≤

n

X

i=1

xi

+1 2

n

X

i=1

[|cosϕ| kxi−ek+|sinϕ| kxi+ek]2.

(24)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

Proof. Applying Proposition3.2forx=xi andy =e,we have:

(4.9) kxik ≤cos 2ϕ·Rehxi, ei+ sin 2ϕ·Imhxi, ei + 1

2[|cosϕ| kxi−ek+|sinϕ| kxi+ek]2 for anyi∈ {1, . . . , n}.

Summing in (4.5) overifrom1ton,we have:

(4.10)

n

X

i=1

kxik ≤cos 2ϕ·Re

* n X

i=1

xi, e +

+ sin 2ϕ·Im

* n X

i=1

xi, e +

+1 2

n

X

i=1

[|cosϕ| kxi−ek+|sinϕ| kxi+ek]2. Now, by the elementary inequality for the real numbersm, p, M andP,

mM +pP ≤ m2+p212

M2 +P212 , we have

cos 2ϕ·Re

* n X

i=1

xi, e +

+ sin 2ϕ·Im

* n X

i=1

xi, e + (4.11)

≤ cos22ϕ+ sin212

×

"

Re

* n X

i=1

xi, e +#2

+

"

Im

* n X

i=1

xi, e +#2

1 2

(25)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

=

* n X

i=1

xi, e +

n

X

i=1

xi

kek=

n

X

i=1

xi ,

where for the last inequality we used Schwarz’s inequality in(H;h·,·i). Finally, by (4.10) and (4.11) we deduce the desired result (4.8).

(26)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

References

[1] M.L. BUZANO, Generalizzazione della disiguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).

[2] J.B. DIAZ AND F.T. METCALF, A complementary inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc., 17(1) (1966), 88-97.

[3] S.S. DRAGOMIR, Reverses of Schwarz, triangle and Bessel inequal- ities in inner product spaces, J. Inequal. Pure & Appl. Math., 5(3) (2004), Art. 76. [ONLINE http://jipam.vu.edu.au/article.

php?sid=432].

[4] S.S. DRAGOMIR, A counterpart of Schwarz’s inequality in inner product spaces, East Asian Math. J., 20(1) (2004), 1-10.

[5] S.S. DRAGOMIR, Inequalities for orthornormal families of vectors in in- ner product spaces related to Buzano’s, Richard’s and Kurepa’s results, RGMIA Res. Rep. Coll., 7(2004), Article 25. [ONLINEhttp://rgmia.

vu.edu.au/v7(E).html].

[6] S.S. DRAGOMIR, A potpourri of Schwarz related inequalities in inner product spaces (I), J. Inequal. Pure & Appl. Math., 6(3) (2004), Art.

59. [ONLINE http://jipam.vu.edu.au/article.php?sid=

532].

[7] C.S. LIN, Cauchy-Schwarz inequality and generalized Bernstein-type in- equalities, in Inequality Theory and Applications, Vol. 1, Eds. Y.J. Cho, J.K. Kim and S.S. Dragomir, Nova Science Publishers Inc., N.Y., 2001.

(27)

A Potpourri of Schwarz Related Inequalities in Inner Product

Spaces (II) S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of27

J. Ineq. Pure and Appl. Math. 7(1) Art. 14, 2006

http://jipam.vu.edu.au

[8] U. RICHARD, Sur des inégalités du type Wirtinger et leurs application aux équationes différentielles ordinaires, Colloquium of Analysis held in Rio de Janeiro, August, 1972, pp. 233-244.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

DRAGOMIR, Some reverses of the generalized triangle inequality in complex inner product spaces, arXiv:math.FA/0405497.

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

Applications for discrete and integral inequalities including the Heisen- berg inequality for vector-valued functions in Hilbert spaces are provided.. 2000 Mathematics

Kurepa [1] established the following refinement of the Schwarz inequality in inner product spaces that generalises de Bruijn’s result for sequences of real and complex numbers

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject