• Nem Talált Eredményt

AN IDENTITY IN REAL INNER PRODUCT SPACES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "AN IDENTITY IN REAL INNER PRODUCT SPACES"

Copied!
10
0
0

Teljes szövegt

(1)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

JJ II

J I

Page1of 10 Go Back Full Screen

Close

AN IDENTITY IN REAL INNER PRODUCT SPACES

JIANGUO MA

Department of Mathematics Zhengzhu University Henan, China

EMail:majg@zzu.edu.cn

Received: 10 March, 2007

Accepted: 10 May, 2007

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: Primary 26D15; Secondary 46C99.

Key words: Real inner product spaces, Equality, Grüss inequality.

Abstract: We obtain an identity in real inner product spaces that leads to the Grüss inequal- ity and an inequality of Ostrowski.

(2)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page2of 10 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Result 4

3 Applications 7

(3)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page3of 10 Go Back Full Screen

Close

1. Introduction

The Grüss inequality was generalized by S.S. Dragomir to the inner product spaces in [1]. It turned out to be an inequality relative to the inner products and norms of vectors in inner product space, that is,

“Let(H;h·,·i)be an inner product space overK(K=C,R) ande∈H,kek= 1.

if φ, γ,Φ,Γ are real or complex numbers and x, y are vectors in H such that the condition

(1.1) RehΦe−x, x−φei ≥0, RehΓe−y, y−γei ≥0 holds, then

(1.2) | hx, yi − hx, ei he, yi | ≤ 1

4|Φ−φ||Γ−γ|.”

In this paper, we give an identity that yields the inequality (1.3)

hx, yi − 1

kzk2hx, zi hy, zi

2

kxk2− 1

kzk2 hx, zi2 kyk2− 1

kzk2 hy, zi2

herex, y, z ∈H,His a real inner product space.

From inequality (1.3), we obtain the Grüss inequality and an inequality by A.

Ostrowski.

(4)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page4of 10 Go Back Full Screen

Close

2. Main Result

Letx, y, zbe three vectors in real inner product spaces. Denote byZ := span{z}the linear subspace spanned byz, andW := span{x, z}the linear subspace spanned by xandz, denote bydist(x,span{z}) = inf

−∞<s<+∞kx−szkfor the distance between xandspan{z}, anddist(z,span{x, y}) = inf

−∞<s,t<+∞kz −(sx+ty)k. The main result of this paper is:

Theorem 2.1. Suppose x, y, z are three non-zero vectors in a real inner product space, then

dist2(x,span{z}) dist2(y,span{z})−

hx, yi − 1

kzk2hx, zi hy, zi

2

= kyk2

kzk2 dist2(x,span{y}) dist2(z,span{x, y}).

Proof. LetD= dist2(x,span{y})kyk2. It is easy to see that

(2.1) D=kxk2kyk2− hx, yi2.

WhenD6= 0, we determine the infimum ofJ(s, t) =kz−(sx+ty)k2by discovering critical points ofJ(s, t). Simple calculus yields

J(s, t) =kzk2−2hx, zis−2hy, zit+kxk2s2+ 2hx, yist+kyk2t2, thus partial derivatives ofJ(s, t)are

∂J

∂s = 2kxk2s+ 2hx, yit−2hx, zi (2.2)

∂J

∂t = 2hx, yis+ 2kyk2t−2hy, zi.

(5)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page5of 10 Go Back Full Screen

Close

Let ∂J∂s = 0and ∂J∂t = 0, we obtain s = 1

D(kyk2hx, zi − hy, zi hx, yi) (2.3)

t = 1

D(kxk2hy, zi − hx, zi hx, yi).

Substituting forsandtin

J(s, t) =kzk2−2hx, zis−2hy, zit+kxk2s2+ 2hx, yist+kyk2t2,

by (2.3), we obtain

(2.4) dist2(z,span{x, y}) = kxk2kyk2kzk2 D

× 1− hx, zi2

kxk2kzk2 − hy, zi2

kyk2kzk2 − hx, yi2

kxk2kyk2 + 2hx, zi hy, zi hx, yi kxk2kyk2kzk2

! .

On the other hand, we have

dist2(x,span{z}) dist2(y,span{z})−

hx, yi − 1

kzk2hx, zi hy, zi

2

(2.5)

= kxk2− hx, zi2 kzk2

!

kyk2− hy, zi kzk2

hx, yi − 1

kzk2hx, zi hy, zi

2

=kxk2kyk2 1− hx, zi2

kxk2kzk2 − hy, zi2 kyk2kzk2

− hx, yi2

kxk2kyk2 + 2hx, zi hy, zi hx, yi kxk2kyk2kzk2

! .

(6)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page6of 10 Go Back Full Screen

Close

Comparing (2.4) and (2.5), and taking note that D = dist2(x,span{y})kyk2, we finish our proof for the caseD6= 0.

WhenD= 0, thenxandyare linearly dependent. in this case we can prove the theorem by straightforward verification.

We point out that Theorem2.1is true also for complex inner product spaces.

(7)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page7of 10 Go Back Full Screen

Close

3. Applications

An application of Theorem2.1is the well known Grüss inequality [2] (see also [3]).

Theorem 3.1 (G. Grüss). Let f and g be two Lebesque integrable functions on (a, b). m, M andn, N are four real numbers such that

(3.1) m ≤f(x)≤M, n ≤g(x)≤N

for eachx∈(a, b), then we have the Grüss inequality (3.2)

1 b−a

Z b

a

f(x)g(x)dx− 1 (b−a)2

Z b

a

f(x)dx Z b

a

g(x)dx

≤ 1

4(M −m)(N −n).

Proof. We consider the Hilbert space L2(a, b) equipped with an inner product de- fined by

(3.3) hf, gi= 1

b−a Z b

a

f(x)g(x)dx.

According to Theorem2.1, we have (3.4)

hx, yi − 1

kzk2 hx, zi hy, zi

≤dist(x,span{z}) dist(y,span{z}).

This inequality yields inequality (1.3) by (2.1).

Letx=f, y =gandz = 1. Note that bym≤f(x)≤M andn≤g(x)≤N, it is easy to see that

(3.5)

f(x)− m+M 2

2

≤ (M −m)2 4

(8)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page8of 10 Go Back Full Screen

Close

and (3.6)

g(x)−n+N 2

2

≤ (N −n)2

4 .

Therefore,

(3.7) dist(f,span{1})≤ 1

b−a Z b

a

(f(x)− M+m 2 )2dx

12

≤ M −m 2 . An identical argument yields

(3.8) dist(g,span{1})≤ N −n

2 .

Substitutex, y andzin (3.4), and byf, gand 1, we obtain (3.2).

Theorem2.1also contains a useful inequality of A. Ostrowski [4] (see also [3]).

Theorem 3.2 (Ostrowski). Leta = (a1, . . . , an)and b = (b1, . . . , bn) be two lin- early independent vectors. If the vectorx= (x1, . . . , xn)satisfies

(3.9)

n

X

i=1

aixi = 0,

n

X

i=1

bixi = 1,

then (3.10)

n

X

i=1

x2i

Pn i=1a2i (Pn

i=1a2i) (Pn

i=1b2i)−(Pn

i=1aibi)2. The equality holds if and only if

(3.11) xk= bkPn

i=1a2i −akPn i=1aibi (Pn

i=1a2i) (Pn

i=1b2i)−(Pn

i=1aibi)2, k= 1,2, . . . , n.

(9)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page9of 10 Go Back Full Screen

Close

Proof. Substitutingx, y, zin inequality (1.3), by vectorsx, a, b, we have (3.12)

kxk2− 1 kbk2

kak2− ha, bi2 kbk2

!

≥ 1

kbk2 ha, bi2.

Simple calculation shows that

(3.13) kxk2 ≥ kak2

kak2kbk2− ha, bi2,

that is, (3.10). According to Theorem 2.1, equality in (3.13) holds if and only if x, a, bare linearly dependent, that is, there exist constantsλ, µsuch thatx=λa+µb.

Taking the inner product of a and b, we get kak2λ+ha, biµ = 0 and ha, biλ + kbk2µ= 1. Solutions of the last two equations are

(3.14) λ= − ha, bi

kak2kbk2− ha, bi2, µ= kak2

kak2kbk2− ha, bi2, thus

(3.15) x= kak2b− ha, bia

kak2kbk2− ha, bi2, that is, (3.11).

(10)

Identity In Real Inner Product Spaces

Jianguo Ma vol. 8, iss. 2, art. 48, 2007

Title Page Contents

JJ II

J I

Page10of 10 Go Back Full Screen

Close

References

[1] S.S. DRAGOMIR, A generalization of Grüss’inequality in inner product spaces and application, J. Math. Anal. Appl., 237 (1999), 74–82.

[2] G. GRÜSS, Über das maximum des absoluten Betrages von

1 b−a

Rb

a f(x)g(x)dx − (b−a)1 2

Rb

a f(x)dxRb

ag(x)dx, Math. Z., 39 (1935), 215–226.

[3] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Classical and New In- equalities in Analysis, Kluwer Academic Publisher, 1993.

[4] A. OSTROWSKI, Vorlesungen Über Differential und Integralrechnung, Vol. 2, Basel, 1951, p. 289.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Some inequalities in 2-inner product spaces generalizing Bessel’s result that are similar to the Boas-Bellman inequality from inner product spaces, are given.. Applications

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

Key words: Triangle inequality, Reverse inequality, Diaz-Metkalf inequality, Inner product

DRAGOMIR, Some reverses of the generalized triangle inequality in complex inner product spaces, arXiv:math.FA/0405497.

DRAGOMIR, Ostrowski’s inequality in complex inner product spaces, RGMIA Research Report Collection 6(Supp.) (2003), Article 6.

Kurepa [1] established the following refinement of the Schwarz inequality in inner product spaces that generalises de Bruijn’s result for sequences of real and complex numbers

DRAGOMIR, On Bessel and Grüss inequalities for orthornormal fam- ilies in inner product spaces, RGMIA Res. DRAGOMIR, A counterpart of Bessel’s inequality in inner prod- uct spaces