• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 7, issue 2, article 76, 2006.

Received 22 September, 2005;

accepted 05 January, 2006.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

FOUR INEQUALITIES SIMILAR TO HARDY-HILBERT’S INTEGRAL INEQUALITY

W.T. SULAIMAN

College of Computer Sciences and Mathematics University of Mosul, Iraq.

EMail:waadsulaiman@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 285-05

(2)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

Abstract

Four new different types of inequalities similar to Hardy-Hilbert’s inequality are given.

2000 Mathematics Subject Classification:26D15.

Key words: Hardy-Hilbert integral inequality.

The author is grateful to the referee who read through the paper very carefully and correct many typing mistakes.

Contents

1 Introduction. . . 3 2 New Inequalities . . . 6

References

(3)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

1. Introduction

Suppose that f and g are real functions, such that 0 < R

0 f2(t)dt < ∞ and 0<R

0 g2(t)dt <∞, then (1.1)

Z

0

Z

0

f(x)g(y) x+y < π

Z

0

f2(t)dt Z

0

g2(t)dt 12

,

where π is best possible. If(an)and(bn)are sequences of real numbers such that0<P

n=1a2n<∞and0<P

n=1b2n <∞, then (1.2)

X

n=1

X

m=1

ambn m+n < π

X

n=1

a2n

X

n=1

b2n

!12 .

The inequalities (1.1) and (1.2) are called Hilbert’s inequalities. These inequal- ities play an important role in analysis (cf. [1, Chap. 9]). In their recent papers Hu [5] and Gao [3] gave two distinct improvements of (1.1) and Gao [4] gave a strengthened version of (1.2).

The following definitions are given:

ϕλ(r) = r+λ−2

r (r=p, q), kλ(p) = B(ϕλ(p), ϕλ(q)), andB is the beta function.

Recently, by introducing some parameters, Yang and Debnath [2] gave the following extensions:

(4)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

Theorem A. Iff, g≥0, p >1, 1p +1q = 1, λ >2−min{p, q},such that 0<

Z

0

t1−λfp(t)dt <∞ and 0<

Z

0

t1−λgq(t)dt <∞, then

(1.3) Z

0

Z

0

f(x)g(y)

(Ax+By)λdxdy

< kλ(p) Aϕλ(p)Bϕλ(q)

Z

0

x1−λfp(x)dx

1pZ

0

y1−λgq(y)dy 1q

, where the constant factor[kλ(p)/Aϕλ(p)Bϕλ(q)]is the best possible.

Theorem B. If f ≥0, p > 1, 1p + 1q = 1, λ > 2−min{p, q}, A, B > 0such that0<R

0 t1−λfp(t)dt <∞,then (1.4)

Z

0

y(λ−1)(p−1) Z

0

f(x) (Ax+By)λdx

!p

dy

<

kλ(p) Aϕλ(p)Bϕλ(q)

pZ

0

x1−λfp(x)dx, where the constant factor

kλ(p)/Aϕλ(p)Bϕλ(q)p

is the best possible. The in- equalities (1.3) and (1.4) are equivalent.

(5)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

Theorem C. Ifan, bn >0 (n ∈N), p >1,1p +1q = 1,2−min{p, q}< λ <2, A, B >0such that

0<

X

n=1

n1−λapn<∞ and 0<

X

n=1

n1−λbqn <∞, then

(1.5)

X

n=1

X

m=1

ambn

(Am+Bn)λ

< kλ(p) Aϕλ(p)Bϕλ(q)

X

n=1

n1−λapn

!p1 X

n=1

n1−λbqn

!1q , where the constant factor

kλ(p)/Aϕλ(p)Bϕλ(q)

is the best possible.

Theorem D. Ifan ≥ 0 (n ∈ N), p >1,1p + 1q = 1,2−min{p, q} < λ ≤ 2, A, B >0such that0<P

n=1n1−λapn <∞,then (1.6)

X

n=1

n(λ−1)(p−1)

X

m=1

am (Am+Bn)λ

!p

<

kλ(p) Aϕλ(p)Bϕλ(q)

p

X

n=1

n1−λapn, where the constant factor

kλ(p)/Aϕλ(p)Bϕλ(q)p

is the best possible. The in- equalities (1.5) and (1.6) are equivalent.

(6)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

2. New Inequalities

The aim of this paper is to give the following results:

Theorem 2.1. Let lnf, lng be convex for nonnegative functionsf andg such that f(0) = g(0) = 0, f(∞) = g(∞) = ∞, f0(s) ≥ 0, g0(s) ≥ 0, s ∈ {xp, yq}.Letλ >max{p, q}, p >1, 1p + 1q = 1. Let

0<

Z

0

t−p2/q2[f(tp)]2−λ+p/q

[f0(t)]pq dt <∞, 0<

Z

0

t−q2/p2[g(tq)]2−λ+q/p

[g0(t)]qp dt <∞, then we have

(2.1) Z

0

Z

0

f(xy)g(xy)

(f(xp) +g(yq))λdxdy

≤ 1

p

p√q

qBp1 (p, λ−p)B1q (q, λ−q)

× Z

0

t−p2/q2[f(tp)]2−λ+p/q [f0(t)]pq dt

!p1

× Z

0

t−q2/p2[g(tq)]2−λ+q/p [g0(t)]qp dt

!1q .

(7)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

Proof. Sincelnf is convex andxy≤ xpp + yqq,then f(xy) =elnf(xy) ≤elnf

xp p+yqq

≤elnfp(xp)+lnf(yqq ) =fp1(xp)f1q(yq).

Therefore, we have Z

0

Z

0

f(xy)g(xy)

(f(xp) +g(yq))λdxdy

≤ Z

0

Z

0

fp1(xp)g1q(yq)[g0(yq)]

1 p

[f0(xp)]1q y

q−1 p

x

p−1 q

(f(xp) +g(yq))λp

f1q(yq)g1p(xp)[f0(xp)]

1q

[g0(yq)]

1 p

x

p−1 q

y

q−1 p

(f(xp) +g(yq))λq

dxdy

≤ Z

0

Z

0

f(xp)gp/q(yq)g0(yq)yq−1

x(p−1)p/q[f0(xp)]pq (f(xp) +g(yq))λdxdy

!p1

× Z

0

Z

0

f(yq)gq/p(xp)f0(xp)xp−1

y(q−1)q/p[g0(yq)]pq (f(xp) +g(yq))λdxdy

!1q

=M1pN1q, say.

Then

M = 1 q

Z

0

x(1−p)p/q[f(xp)]2−λ+p/q [f0(x)]pq dx

Z

0

g(yq) f(xp)

pq

g0(yq)qyf(xq−1p)

1 + fg(y(xqp))

λ dy

(8)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

= 1 q

Z

0

x−p2/q2[f(xp)]2−λ+p/q [f0(x)]pq dx

Z

0

up/q (1 +u)λdu

= 1

qB(p, λ−p) Z

0

x−p2/q2[f(xp)]2−λ+p/q [f0(x)]pq dx.

Similarly,

N = 1

pB(q, λ−q) Z

0

y−q2/p2[g(yq)]2−λ+q/p [g0(y)]qp dy.

Therefore Z

0

Z

0

f(xy)g(xy)

(f(xp) +g(yq))λdxdy

≤ 1

q

p√p

qB1p(p, λ−p)B1q (q, λ−q)

× Z

0

tt−p2/q2[f(tp)]2−λ+p/q [f0(t)]pq dt

!1p

× Z

0

t−q2/p2[g(tq)]2−λ+q/p [g0(t)]qp dt

!1q .

Theorem 2.2. Let f, g, hbe nonnegative functions, h(x, y)is homogeneous of ordern such thath(0,1) =h(1,0) = 0, h(∞,1) = h(1,∞) =∞. Letp > 1,

(9)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

1

p + 1q = 1,

0<1 +µ−r < λ, r∈n

p q,qpo

, hx(x, y)≥0, hy(x, y)≥0, wherehx =dh/dx,0<R

0 tp/qfp(t)dt <∞,0<R

0 tq/pgq(t)dt <∞,then (2.2)

Z

0

Z

0

f(x)g(y)hµ(x, y) (1 +h(x, y))λ dxdy

≤ 1 nB1p

1 +µ−p

q, λ−1−µ+p q

B1q

1 +µ−q

p, λ−1−µ−q p

× Z

0

tq−1p fp(t)dt

1pZ

0

tp−1q gq(t)dt 1q

. Proof. Observe that

Z

0

Z

0

f(x)g(y)hµ(x, y) (1 +h(x, y))λ dxdy

≤ Z

0

Z

0

fp(x)hµ(x, y)hy(x, y) hp/qx (x, y) (1 +h(x, y))λdxdy

!1p

× Z

0

Z

0

gq(y)hµ(x, y)hx(x, y) hq/py (x, y) (1 +h(x, y))λdxdy

!1q

=M1pN1q, say.

(10)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

Then

M =

Z

0

fp(x)dx Z

0

hµ(x, y)hy(x, y)

hp/qx (x, y) (1 +h(x, y))λdy.

Lety=xv,dy=xdvand hence hy(x, y) = dh(x, xv)

dy =xndh(1, v)

dy =xn−1dh(1, v)

dv =xn−1hv(1, v), hx(x, y) = dh(x, xv)

dx = d

dxxnh(1, v) =nxn−1h(1, v), therefore

M = 1

np/q Z

0

xp/q−1fp(x)dx Z

0

[xnh(1, v)]µ−p/qxnhv(1, v) (1 +xnh(1, v))λ dv

= 1

np/qB

1 +µ−p

q, λ−1−µ+p q

Z

0

xp/q−1fp(x)dx.

Similarly,

N = 1

nq/pB

1 +µ− q

p, λ−1−µ+ q p

Z

0

yq/p−1gq(y)dy.

This implies Z

0

Z

0

f(x)g(y)hµ(x, y) (1 +h(x, y))λ dxdy

(11)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

≤ 1 nB1p

1 +µ−p

q, λ−1−µ+p q

B1q

1 +µ− q

p, λ−1−µ+q p

× Z

0

tp/q−1fp(t)dt

1pZ

0

tq/p−1gq(t)dt 1q

.

The following lemma is needed for the coming result.

Lemma 2.3. Lets ≥1,0<1 +µ≤min{α, λ}and define f(s) = s−α

Z s

0

tµ (1 +t)λdt, thenf(s)≤f(1).

Proof. We have

f0(s) =s−α sµ (1 +s)λ +

Z s

0

tµ

(1 +t)λdt(−α)s−α−1

≤ sµ−α

(1 +s)λ − αs−α−1 (1 +s)λ

Z s

0

tµdt

= sµ−α (1 +s)λ

1− α 1 +µ

≤0.

This shows thatf is nonincreasing and hencef(s)≤f(1).

(12)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

Theorem 2.4. Letf, g, F, Gbe nonnegative functions such thatF(s) =Rs

0 f(t)dt, G(s) = Rs

0 g(t)dt, let, p > 1, 1p + 1q = 1, (1−λ/2)r ≤ λ/2 +α ≤ 2α, r ∈n

p q,qpo

, 0<

Z x

0

(x−t)t(1−λ/2)p/q−λ/2−α

Fp−1(t)f(t)dt < ∞, 0<

Z x

0

(x−t)t(1−λ/2)q/p−λ/2−α

Gq−1(t)g(t)dt <∞, then

(2.3) Z x

0

Z x

0

F(s)G(t)

(s+t)λ dsdt≤

p

p√q q 2 xαB

λ 2,λ

2

× Z x

0

(x−t)t(1−λ/2)p/q−λ/2−αFp−1(t)f(t)dt 1p

× Z x

0

(x−t)t(1−λ/2)q/p−λ/2−α

Gq−1(t)g(t)dt 1q

. Proof. Observe that

Z x

0

Z x

0

F(s)G(t) (s+t)λ dsdt

= Z x

0

Z x

0

F(s)

t1/p s1/q

λ/2−1

(s+t)λ/p ·

G(t)

s1/q t1/p

λ/2−1

(s+t)λ/q dsdt

(13)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

≤ Z x

0

Z x

0

Fp(s)tλ/2−1

(s+t)λs(λ/2−1)p/qdsdt

!1p Z x

0

Z x

0

Gq(t)sλ/2−1

(s+t)λt(λ/2−1)q/pdsdt

!1q

=M1pN1q, say.

Then

M =

Z x

0

s(1−λ/2)p/q−λ/2

Fp(s)ds Z x

0 t s

λ/2−1 1

s

1 + stλ dt

= Z x

0

s(1−λ/2)p/q−λ/2

Fp(s)dsx s

αx s

−αZ x/s

0

uλ/2−1 (1 +u)λdu

≤ Z x

0

s(1−λ/2)p/q−λ/2Fp(s)dsx s

αZ 1

0

uλ/2−1 (1 +u)λdu

= xα 2 B

λ 2,λ

2 Z x

0

s(1−λ/2)p/q−λ/2−α

Fp(s)ds, by virtue of the lemma.

As

Fp(s) =p Z s

0

Fp−1(u)f(u)du, then

M = p 2xαB

λ 2,λ

2 Z x

0

s(1−λ/2)p/q−λ/2−αds Z s

0

Fp−1(u)f(u)du

(14)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

= p 2xαB

λ 2,λ

2 Z x

0

Z s

0

u(1−λ/2)p/q−λ/2−α

Fp−1(u)f(u)dsdu

= p 2xαB

λ 2,λ

2 Z x

0

(x−s)s(1−λ/2)p/q−λ/2−α

Fp−1(s)f(s)ds.

Similarly,

N = q 2xαB

λ 2,λ

2 Z x

0

(x−t)t(1−λ/2)q/p−λ/2−α

Gq−1(t)g(t)dt.

Therefore, we have Z x

0

Z x

0

F(s)G(t) (s+t)λ dsdt

p

p√q q 2 xαB

λ 2,λ

2

Z x

0

(x−t)t(1−λ/2)p/q−λ/2−α

Fp−1(t)f(t)dt 1p

× Z x

0

(x−t)t(1−λ/2)q/p−λ/2−α

Gq−1(t)g(t)dt 1q

.

Theorem 2.5. Letf, gbe nonnegative functions,f is submultiplicative andgis concave nonincreasing, f0(x), g0(y) ≥ 0, f(0) = g(0) = 0, f(∞) = g(∞) =

(15)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

∞, p >1, 1p + 1q = 1,0< a+ 1 < λ,0< b+ 1 < λ,

0<

Z

0

[f(x)]µp−bp/q[g(x)]1+a−λ

[f0(x)]pq dx <∞, 0<

Z

0

[g(y)]µq−aq/p[f(y)]1+b−λ

[g0(y)]qp dy <∞, then

(2.4) Z

0

Z

0

fµ(xy) gλ/2(xy)dxdy

≤2λ/2B1p(a+ 1, λ−a−1)B1q (b+ 1, λ−b−1)

× Z

0

[f(t)]µp[g(t)]1+a−λ−bp/q [g0(t)]pq dt

!1p

× Z

0

[f(t)]µq[g(t)]1+b−λ−aq/p [g0(t)]qp dt

!1q .

Proof. Since

xy ≤ x+y2 , then g(xy) = g

(√ xy)2

≥(g(√

xy))2

g

x+y 2

2

g(x) +g(y) 2

2

,

(16)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

and hence Z

0

Z

0

fµ(xy) gλ/2(xy)dxdy

≤2λ/2 Z

0

Z

0

fµ(x)fµ(y)

(g(x) +g(y))λdxdy

= 2λ/2 Z

0

Z

0

fµ(x)[g(y)]a/p

[g(x)]b/q

[g0(y)]1/p [g0(x)]1/q

(g(x) +g(y))λp

·

fµ(y)[g(x)]b/q

[g(y)]a/p · [g0(x)]1/q

[g0(y)]1/p

(g(x) +g(y))λq

≤2λ/2 Z

0

Z

0

fµp(x)ga(y)g0(y)

[g(x)]bp/q[g0(x)]pq (g(x) +g(y))λdxdy

!1p

× Z

0

Z

0

fµq(y)gb(x)g0(x)

[g(y)]aq/p[g0(y)]qp(g(x) +g(y))λdxdy

!1q

= 2λ/2M1pN1q, say.

Then

M =

Z

0

[f(x)]µp[g(x)]1+a−λ−bp/q [g0(x)]pq dx

Z

0

g(y) g(x)

a g0(y) g(x)

1 + g(y)g(x)λdy

=B(a+ 1, λ−a−1) Z

0

[f(x)]ηp[g(x)]1+a−λ−bp/q [g0(x)]pq dx.

(17)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

Similarly, we can show that

N =B(b+ 1, λ−b−1) Z

0

[f(y)]µq[g(y)]1+b−λ−aq/p [g0(y)]qp dy.

The result follows.

(18)

Four Inequalities Similar To Hardy-Hilbert’s Integral

Inequality W.T. Sulaiman

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 7(2) Art. 76, 2006

http://jipam.vu.edu.au

References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cam- bridge Univ. Press. Cambridge, 1952.

[2] B. YANGANDL. DEBNATH, On the extended Hardy-Hilbert’s inequality, J. Math. Anal. Appl., 272 (2002), 187–199.

[3] M. GAO, TAN LI AND L. DEBNATH, Some improvements on Hilbert’s integral inequality, J. Math. Anal. Appl., 229 (1999), 682–689.

[4] M. GAO, A note on Hilbert double series theorem, Hunan Ann. Math., 12(1- 2) (1992), 142–147.

[5] HU KE, On Hilbert’s inequality, Chinese Ann. of Math., 13B(1) (1992), 35–39.

[6] W. RUDIN, Principles of Mathematical Analysis, Third Edition, McGraw- Hill Book Co. 1976.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, we study several new inequalities of Hadamard’s type for Lips- chitzian mappings.. 2000 Mathematics Subject Classification: Primary 26D07; Secondary

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

Applications for discrete and integral inequalities including the Heisen- berg inequality for vector-valued functions in Hilbert spaces are provided.. 2000 Mathematics

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

These are sharper than some known generalizations of the Hilbert integral inequality including a recent result of Yang.. 2000 Mathematics Subject

Some interesting inequalities proved by Dragomir and van der Hoek are gener- alized with some remarks on the results.. 2000 Mathematics Subject

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject

PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J.Math.. PACHPATTE, On some new inequalities similar to Hilbert’s