• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 6, issue 2, article 37, 2005.

Received 16 September, 03;

accepted 06 February, 2005.

Communicated by:F. Qi

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NEW INEQUALITIES OF HADAMARD’S TYPE FOR LIPSCHITZIAN MAPPINGS

LIANG-CHENG WANG

School of Mathematics Scientia Chongqing Institute of Technology Xingsheng Lu 4, Yangjia Ping 400050 Chongqing City, China.

EMail:wlc@cqit.edu.cn

c

2000Victoria University ISSN (electronic): 1443-5756 123-03

(2)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

Abstract

In this paper, we study several new inequalities of Hadamard’s type for Lips- chitzian mappings.

2000 Mathematics Subject Classification: Primary 26D07; Secondary 26B25, 26D15.

Key words: Lipschitzian mappings, Hadamard inequality, Convex function.

This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.

Contents

1 Introduction. . . 3 2 Main Results . . . 5

References

(3)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

1. Introduction

Let us begin by defining some mappings that we shall need. Iff is a continuous function on a closed interval [a, b] (a < b), and for any t ∈ (0,1), let u = ta+ (1−t)b, then we can define

A(t)=4 1

t(1−t)(b−a)2 Z u

a

Z b

u

f(tx+ (1−t)y)dy

dx,

B(t)=4 1 (1−t)(b−a)2

Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

dy

dx,

C(t)=4 t (1−t)(b−a)

Z u

a

f(x)dx+ 1−t t(b−a)

Z b

u

f(y)dy.

Letf be a continuous convex function on[a, b], then

(1.1) f

a+b 2

≤ 1 b−a

Z b

a

f(x)dx≤ f(a) +f(b)

2 .

The inequalities in (1.1) are called Hadamard inequalities [1] – [7]. In [2], the author of this paper gave extensions and refinements of the inequalities in (1.1).

He obtained the following:

(1.2) f(ta+ (1−t)b)≤A(t)≤B(t)≤C(t)≤tf(a) + (1−t)f(b).

(4)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

Recently, Dragomir et al. [3], Yang and Tseng [4] and Matic and Peˇcari´c [5]

proved some results for Lipschitzian mappings related to (1.1). In this paper, we will prove some new inequalities for Lipschitzian mappings related to the mappingsA, BandC(or to (1.2)).

(5)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

2. Main Results

For the mappingA(t), we have the following theorem:

Theorem 2.1. Let f : [a, b] → R be a M-Lipschitzian mapping. For any t ∈(0,1), then

(2.1) |A(t)−f(ta+ (1−t)b)| ≤ M

3 t(1−t)(b−a).

Proof. Obviously, we have

(2.2) b−u=t(b−a), u−a= (1−t)(b−a).

From integral properties and (2.2), we have (2.3) f(ta+ (1−t)b) = 1

t(1−t)(b−a)2 Z u

a

Z b

u

f(ta+ (1−t)b)dy

dx.

Forx∈[a, u], wheny∈

u,−1−tt x+ 1−tu

, then we have (2.4) ta+ (1−t)b=u≥tx+ (1−t)y, ify∈

1−tt x+1−tu , b

, then the inequality (2.4) reverses.

Using (2.2) – (2.4) and integral properties, we obtain

|A(t)−f(ta+ (1−t)b)|

≤ 1

t(1−t)(b−a)2 Z u

a

Z b

u

|f(tx+ (1−t)y)−f(u)|dy

dx

(6)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

≤ M

t(1−t)(b−a)2 Z u

a

Z b

u

|tx+ (1−t)y−u|dy

dx

= M

t(1−t)(b−a)2 Z u

a

"

Z 1−tt x+1−tu

u

(u−(tx+ (1−t)y))dy

# dx

+ M

t(1−t)(b−a)2 Z u

a

"

Z b

1−tt x+1−tu

(tx+ (1−t)y−u)dy

# dx

= M

t(1−t)(b−a)2 Z u

a

t2

1−tx2+t

b− 1 +t 1−tu

x + 1 +t2

2(1−t)u2+ 1−t

2 b2−bu

dx

= M

t(b−a)

t2

3(1−t)(u2+ua+a2) + t 2

b−1 +t 1−tu

(u+a) + 1 +t2

2(1−t)u2+ 1−t

2 b2−bu

= M

t(b−a)

2t2−3t+ 3

6(1−t) (ta+ (1−t)b)2 +−t(t+ 3)a−3(t2−3t+ 2)b

6(1−t) (ta+ (1−t)b) + t2

3(1−t)a2 + t

2ab+ 1−t 2 b2

= M

3 t(1−t)(b−a).

This completes the proof of Theorem2.1.

(7)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

For the mappingB(t), we have the following theorem:

Theorem 2.2. Letf be defined as in Theorem2.1. For anyt∈(0,1), then

(2.5) |B(t)−A(t)| ≤ M

2 t(1−t)(b−a), and

(2.6) |B(t)−f(ta+ (1−t)b)| ≤ M

2 t(1−t)(b−a).

Proof. From t(1−t)1 = 1t +1−t1 , we have (2.7) A(t) =

1 t + 1

1−t

1 (b−a)2

Z u

a

Z b

u

f(tx+ (1−t)y)dy

dx.

LetF be defined by

F(y) = tx+ (1−t)y− (b−y)x+ (y−u)u t(b−a) .

Obviously, ifF(y)is the function of first degree fory, thenF(y)is monotone with y on [u, b]. And for any x ∈ [a, u], F(u) = tx + (1− t)u− x ≥ 0, F(b) = tx+ (1−t)b−u ≥ 0. Hence for x ∈ [a, u] andy ∈ [u, b], we get F(y)≥0, i.e.,

(2.8) tx+ (1−t)y≥ (b−y)x+ (y−u)u t(b−a) .

(8)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

LetGbe defined by

G(x) = (u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y). UsingG(x)and the same method as in the proof of (2.8), we obtain

(2.9) (u−x)u+ (x−a)y

(1−t)(b−a) ≥tx+ (1−t)y, where,x∈[a, u]andy∈[u, b].

Using (2.7) – (2.9) and (2.2), we obtain

|B(t)−A(t)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(tx+ (1−t)y)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(tx+ (1−t)y)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u

t(b−a) −(tx+ (1−t)y)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y)

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

tx+ (1−t)y− (b−y)x+ (y−u)u t(b−a)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y)

dy

dx

(9)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

= M

t(1−t)(b−a)3 Z u

a

Z b

u

(b−a)(2t−1) (tx+ (1−t)y) + 2xy−(b+u)x−(a+u)y+ 2u2

dy

dx

= M

(1−t)(b−a)2 Z u

a

1

2((b−a)(2t−1)(1−t)−(a+u)) (b+u) + (b−a)(2t−1)tx+ 2u2

dx

= M

2(b−a)

((b−a)(2t−1)(1−t)−(a+u)) (b+u) + (b−a)(2t−1)t(u+a) + 4u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.5).

From (2.3) and t(1−t)1 = 1t +1−t1 , we have (2.10) f(ta+ (1−t)b)

= 1

t + 1 1−t

1 (b−a)2

Z u

a

Z b

u

f(ta+ (1−t)b)dy

dx.

Ifx∈[a, u]andy ∈[u, b], then we have

ta+ (1−t)b=u≥ (b−y)x+ (y−u)u t(b−a) , (2.11)

(10)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

(u−x)u+ (x−a)y

(1−t)(b−a) ≥ta+ (1−t)b =u.

Using (2.10)-(2.11) and (2.2), we obtain

|B(t)−f(ta+ (1−t)b)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(u)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(u)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −u

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −u

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

u−(b−y)x+ (y−u)u t(b−a)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −u

dy

dx

= M

t(1−t)(b−a)3 Z u

a

Z b

u

(b−a)(2t−1)u

+ (2x−u−a)y−(b+u)x+ 2u2 dy

dx

= M

(1−t)(b−a)2 Z u

a

−1

2(u+a)(b+u) + (b−a)(2t−1)u+ 2u2

dx

(11)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

= M

b−a

−1

2(u+a)(b+u) + (b−a)(2t−1)u+ 2u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.6).

This completes the proof of Theorem (2.2).

For the mappingC(t), we have the following theorem:

Theorem 2.3. Letf be defined as in Theorem2.1. For anyt∈(0,1), then

(2.12) |C(t)−B(t)| ≤ M

2 t(1−t)(b−a), and

(2.13) |C(t)−(tf(a) + (1−t)f(b))| ≤M t(1−t)(b−a).

Proof. From the integral property and (2.2), we have

(2.14) C(t) = 1

(1−t)(b−a)2 Z u

a

Z b

u

f(x)dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f(y)dy

dx.

Ifx∈[a, u]andy ∈[u, b], then we have (2.15) x≤ (b−y)x+ (y−u)u

t(b−a) , (u−x)u+ (x−a)y (1−t)(b−a) ≤y.

(12)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

Using (2.14) – (2.15) and (2.2), we obtain

|C(t)−B(t)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(x)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(y)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −x

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −y

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −x

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

y−(u−x)u+ (x−a)y (1−t)(b−a)

dy

dx

= M

t(1−t)(b−a)3 Z u

a

Z b

u

(b−a) ((1−t)y−tx)

−2xy+ (b+u)x+ (a+u)y−2u2 dy

dx

= M

(1−t)(b−a)2 Z u

a

1

2((b−a)(1−t) + (a+u)) (b+u)

−(b−a)tx−2u2

dx

(13)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

= M

b−a 1

2(((b−a)(1−t) + (a+u)) (b+u)−(b−a)t(u+a))−2u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.12).

From integral property and (2.2), we have (2.16) tf(a)+(1−t)f(b) = t

(1−t)(b−a) Z u

a

f(a)dx+ 1−t t(b−a)

Z b

u

f(b)dy.

Using (2.16) and (2.2), we obtain

|C(t)−(tf(a) + (1−t)f(b))|

≤ 1 b−a

t 1−t

Z u

a

|f(x)−f(a)|dx+ 1−t t

Z b

u

|f(y)−f(b)|dy

≤ M b−a

t 1−t

Z u

a

|x−a|dx+1−t t

Z b

u

|y−b|dy

= M

b−a t

1−t Z u

a

(x−a)dx+ 1−t t

Z b

u

(b−y)dy

= M

b−a t

1−t 1

2(u2−a2)−a(u−a)

+1−t t

b(b−u)− 1

2(b2 −u2)

=M t(1−t)(b−a).

This completes the proof of inequality (2.13).

This completes the proof of Theorem2.3.

(14)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

Corollary 2.4. Letf be defined as in Theorem2.1. For anyt∈(0,1), then (2.17) |C(t)−f(ta+ (1−t)b)| ≤M t(1−t)(b−a),

(2.18) |A(t)−C(t)| ≤M t(1−t)(b−a),

(2.19) |A(t)−(tf(a) + (1−t)f(b))| ≤2M t(1−t)(b−a),

(2.20) |B(t)−(tf(a) + (1−t)f(b))| ≤ 3M

2 t(1−t)(b−a), and

(2.21) |f(ta+ (1−t)b)−(tf(a) + (1−t)f(b))| ≤2M t(1−t)(b−a).

Proof. Using (2.5) and (2.12), we get inequality (2.18):

|A(t)−C(t)| ≤ |A(t)−B(t)|+|B(t)−C(t)| ≤M t(1−t)(b−a).

Using the same method as the proof of (2.18), from (2.6) and (2.12), (2.13) and (2.18), (2.12) and (2.13), and (2.13) and (2.17), we get (2.17), (2.19), (2.20) and (2.21), respectively.

This completes the proof of Corollary2.4.

(15)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

Remark 1. If we lett= 12, then (2.13), (2.17) and (2.21) reduce to (2.22)

1 b−a

Z b

a

f(x)dx− f(a) +f(b) 2

≤ M

4 (b−a),

(2.23)

1 b−a

Z b

a

f(x)dx−f

a+b 2

≤ M

4 (b−a),

(2.24)

f

a+b 2

− f(a) +f(b) 2

≤ M

2 (b−a).

(2.22) is better than (2.2) in [3]. (2.23) and (2.24) are (2.1) and (2.4) in [3], respectively.

Corollary 2.5. Let f be a convex mapping on[a, b], withf+0 (a)andf0(b)ex- isting. For anyt∈(0,1), then we have

0≤A(t)−f(ta+ (1−t)b) (2.25)

≤ max{|f+0 (a)|,|f0 (b)|}

3 t(1−t)(b−a), 0≤B(t)−A(t)

(2.26)

≤ max{|f+0 (a)|,|f0 (b)|}

2 t(1−t)(b−a),

(16)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

0≤B(t)−f(ta+ (1−t)b) (2.27)

≤ max{|f+0 (a)|,|f0 (b)|}

2 t(1−t)(b−a), 0≤C(t)−B(t)

(2.28)

≤ max{|f+0 (a)|,|f0 (b)|}

2 t(1−t)(b−a), 0≤tf(a) + (1−t)f(b)−C(t)

(2.29)

≤max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a),

0≤C(t)−f(ta+ (1−t)b) (2.30)

≤max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a),

0≤C(t)−A(t) (2.31)

≤max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a),

0≤tf(a) + (1−t)f(b)−A(t) (2.32)

≤2 max{|f+0(a)|,|f0(b)|}t(1−t)(b−a),

(17)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

0≤tf(a) + (1−t)f(b)−B(t) (2.33)

≤ 3

2max{|f+0(a)|,|f0(b)|}t(1−t)(b−a), and

0≤tf(a) + (1−t)f(b)−f(ta+ (1−t)b) (2.34)

≤2 max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a).

Proof. For any x, y ∈ [a, b], from the properties of convex functions, we have the followingmax{|f+0(a)|,|f0(b)|}-Lipschitzian inequality (see [7]):

(2.35) |f(x)−f(y)| ≤max{|f+0 (a)|,|f0 (b)|}|x−y|.

Using (1.2), (2.35), Theorem2.1 – 2.2 and Corollary 2.4, we obtain (2.25) – (2.34).

This completes the proof of Corollary (2.5).

Remark 2. The condition in Corollary2.5is better than that in Corollary 2.2, Corollary 4.2 and Theorem 3.3 of [3]. Actually, it is that f is a differentiable convex mapping on[a, b]withM = sup

t∈[a,b]

|f0(t)|<∞.

(18)

New Inequalities of Hadamard’s Type for Lipschitzian Mappings

Liang-Cheng Wang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 6(2) Art. 37, 2005

http://jipam.vu.edu.au

References

[1] J. HADAMARD, Etude sur les propriétés des fonctions entières et en par- ticulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.

[2] L.-C. WANG, On extensions and refinements of Hermite-Hadamard in- equalities for convex functions, Math. Ineq. Appl., 6(4) (2003), 659–666.

[3] S.S. DRAGOMIR, Y.J.CHO AND S.S. KIM, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501.

[4] G.-S. YANGAND K.-L. TSENG, Inequalities of Hadamard’s type for Lip- schitzian mappings, J. Math. Anal. Appl., 260 (2001), 230–238.

[5] M. MATICANDJ. PE ˇCARI ´C, Note on inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127–130.

[6] L.-C. WANG, On some extentions of Hadamard inequalities of convex function, Math. in Practice and Theory, 32 (2002), 1027–1030. (In Chi- nese).

[7] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001, pp.55. (In Chinese).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

Refinements and extensions are presented for some inequalities of Brenner and Alzer for certain polynomial–like functions.. 2000 Mathematics Subject Classification:

[3], Yang and Tseng [4] and Matic and Peˇcari´c [5] proved some results for Lipschitzian mappings related to (1.1).. In this paper, we will prove some new in- equalities

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

In this paper we obtain a generalization of Ozaki-Nunokawa’s univalence crite- rion using the method of Loewner chains.. 2000 Mathematics Subject

In this paper, using Grüss’ and Chebyshev’s inequalities we prove several in- equalities involving Taylor’s remainder.. 2000 Mathematics Subject

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject