• Nem Talált Eredményt

In this paper, we study several new inequalities of Hadamard’s type for Lipschitzian mappings

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this paper, we study several new inequalities of Hadamard’s type for Lipschitzian mappings"

Copied!
8
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 6, Issue 2, Article 37, 2005

NEW INEQUALITIES OF HADAMARD’S TYPE FOR LIPSCHITZIAN MAPPINGS

LIANG-CHENG WANG SCHOOL OFMATHEMATICSSCIENTIA

CHONGQINGINSTITUTE OFTECHNOLOGY

XINGSHENGLU4, YANGJIAPING400050 CHONGQINGCITY, CHINA.

wlc@cqit.edu.cn

Received 16 September, 03; accepted 06 February, 2005 Communicated by F. Qi

ABSTRACT. In this paper, we study several new inequalities of Hadamard’s type for Lipschitzian mappings.

Key words and phrases: Lipschitzian mappings, Hadamard inequality, Convex function.

2000 Mathematics Subject Classification. Primary 26D07; Secondary 26B25, 26D15.

1. INTRODUCTION

Let us begin by defining some mappings that we shall need. Iff is a continuous function on a closed interval[a, b] (a < b), and for anyt∈(0,1), letu=ta+ (1−t)b, then we can define

A(t)=4 1

t(1−t)(b−a)2 Z u

a

Z b

u

f(tx+ (1−t)y)dy

dx, B(t)=4 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

dy

dx, C(t)=4 t

(1−t)(b−a) Z u

a

f(x)dx+ 1−t t(b−a)

Z b

u

f(y)dy.

Letf be a continuous convex function on[a, b], then

(1.1) f

a+b 2

≤ 1 b−a

Z b

a

f(x)dx≤ f(a) +f(b)

2 .

ISSN (electronic): 1443-5756

c 2005 Victoria University. All rights reserved.

This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.

123-03

(2)

The inequalities in (1.1) are called Hadamard inequalities [1] – [7]. In [2], the author of this paper gave extensions and refinements of the inequalities in (1.1). He obtained the following:

(1.2) f(ta+ (1−t)b)≤A(t)≤B(t)≤C(t)≤tf(a) + (1−t)f(b).

Recently, Dragomir et al. [3], Yang and Tseng [4] and Matic and Peˇcari´c [5] proved some results for Lipschitzian mappings related to (1.1). In this paper, we will prove some new in- equalities for Lipschitzian mappings related to the mappingsA, B andC (or to (1.2)).

2. MAINRESULTS

For the mappingA(t), we have the following theorem:

Theorem 2.1. Letf : [a, b]→Rbe aM-Lipschitzian mapping. For anyt∈(0,1), then (2.1) |A(t)−f(ta+ (1−t)b)| ≤ M

3 t(1−t)(b−a).

Proof. Obviously, we have

(2.2) b−u=t(b−a), u−a= (1−t)(b−a).

From integral properties and (2.2), we have (2.3) f(ta+ (1−t)b) = 1

t(1−t)(b−a)2 Z u

a

Z b

u

f(ta+ (1−t)b)dy

dx.

Forx∈[a, u], wheny∈

u,−1−tt x+1−tu

, then we have

(2.4) ta+ (1−t)b =u≥tx+ (1−t)y,

ify ∈

1−tt x+ 1−tu , b

, then the inequality (2.4) reverses.

Using (2.2) – (2.4) and integral properties, we obtain

|A(t)−f(ta+ (1−t)b)|

≤ 1

t(1−t)(b−a)2 Z u

a

Z b

u

|f(tx+ (1−t)y)−f(u)|dy

dx

≤ M

t(1−t)(b−a)2 Z u

a

Z b

u

|tx+ (1−t)y−u|dy

dx

= M

t(1−t)(b−a)2 Z u

a

"

Z 1−tt x+1−tu

u

(u−(tx+ (1−t)y))dy

# dx

+ M

t(1−t)(b−a)2 Z u

a

"

Z b

1−tt x+1−tu

(tx+ (1−t)y−u)dy

# dx

= M

t(1−t)(b−a)2 Z u

a

t2

1−tx2+t

b− 1 +t 1−tu

x + 1 +t2

2(1−t)u2+1−t

2 b2−bu

dx

(3)

= M t(b−a)

t2

3(1−t)(u2 +ua+a2) + t 2

b− 1 +t 1−tu

(u+a) + 1 +t2

2(1−t)u2+1−t

2 b2−bu

= M

t(b−a)

2t2 −3t+ 3

6(1−t) (ta+ (1−t)b)2 +−t(t+ 3)a−3(t2−3t+ 2)b

6(1−t) (ta+ (1−t)b) + t2

3(1−t)a2+ t

2ab+1−t 2 b2

= M

3 t(1−t)(b−a).

This completes the proof of Theorem 2.1.

For the mappingB(t), we have the following theorem:

Theorem 2.2. Letf be defined as in Theorem 2.1. For anyt∈(0,1), then

(2.5) |B(t)−A(t)| ≤ M

2 t(1−t)(b−a), and

(2.6) |B(t)−f(ta+ (1−t)b)| ≤ M

2 t(1−t)(b−a).

Proof. From t(1−t)1 = 1t + 1−t1 , we have

(2.7) A(t) =

1 t + 1

1−t

1 (b−a)2

Z u

a

Z b

u

f(tx+ (1−t)y)dy

dx.

LetF be defined by

F(y) = tx+ (1−t)y−(b−y)x+ (y−u)u t(b−a) .

Obviously, ifF(y)is the function of first degree fory, thenF(y)is monotone withyon[u, b].

And for anyx∈[a, u],F(u) =tx+ (1−t)u−x≥0,F(b) =tx+ (1−t)b−u≥0. Hence forx∈[a, u]andy∈[u, b], we getF(y)≥0, i.e.,

(2.8) tx+ (1−t)y ≥ (b−y)x+ (y−u)u

t(b−a) . LetGbe defined by

G(x) = (u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y). UsingG(x)and the same method as in the proof of (2.8), we obtain

(2.9) (u−x)u+ (x−a)y

(1−t)(b−a) ≥tx+ (1−t)y, where,x∈[a, u]andy ∈[u, b].

(4)

Using (2.7) – (2.9) and (2.2), we obtain

|B(t)−A(t)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(tx+ (1−t)y)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(tx+ (1−t)y)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u

t(b−a) −(tx+ (1−t)y)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y)

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

tx+ (1−t)y− (b−y)x+ (y−u)u t(b−a)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y

(1−t)(b−a) −(tx+ (1−t)y)

dy

dx

= M

t(1−t)(b−a)3 Z u

a

Z b

u

(b−a)(2t−1) (tx+ (1−t)y) + 2xy−(b+u)x−(a+u)y+ 2u2

dy

dx

= M

(1−t)(b−a)2 Z u

a

1

2((b−a)(2t−1)(1−t)−(a+u)) (b+u) + (b−a)(2t−1)tx+ 2u2

dx

= M

2(b−a)

((b−a)(2t−1)(1−t)−(a+u)) (b+u) + (b−a)(2t−1)t(u+a) + 4u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.5).

From (2.3) and t(1−t)1 = 1t +1−t1 , we have

(2.10) f(ta+ (1−t)b) = 1

t + 1 1−t

1 (b−a)2

Z u

a

Z b

u

f(ta+ (1−t)b)dy

dx.

Ifx∈[a, u]andy∈[u, b], then we have

ta+ (1−t)b =u≥ (b−y)x+ (y−u)u t(b−a) , (2.11)

(u−x)u+ (x−a)y

(1−t)(b−a) ≥ta+ (1−t)b =u.

(5)

Using (2.10)-(2.11) and (2.2), we obtain

|B(t)−f(ta+ (1−t)b)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(u)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(u)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −u

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −u

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

u− (b−y)x+ (y−u)u t(b−a)

dy

dx

+ M

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −u

dy

dx

= M

t(1−t)(b−a)3 Z u

a

Z b

u

(b−a)(2t−1)u+ (2x−u−a)y−(b+u)x+ 2u2 dy

dx

= M

(1−t)(b−a)2 Z u

a

−1

2(u+a)(b+u) + (b−a)(2t−1)u+ 2u2

dx

= M

b−a

−1

2(u+a)(b+u) + (b−a)(2t−1)u+ 2u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.6).

This completes the proof of Theorem (2.2).

For the mappingC(t), we have the following theorem:

Theorem 2.3. Letf be defined as in Theorem 2.1. For anyt∈(0,1), then

(2.12) |C(t)−B(t)| ≤ M

2 t(1−t)(b−a), and

(2.13) |C(t)−(tf(a) + (1−t)f(b))| ≤M t(1−t)(b−a).

Proof. From the integral property and (2.2), we have

(2.14) C(t) = 1

(1−t)(b−a)2 Z u

a

Z b

u

f(x)dy

dx+ 1 t(b−a)2

Z u

a

Z b

u

f(y)dy

dx.

Ifx∈[a, u]andy∈[u, b], then we have (2.15) x≤ (b−y)x+ (y−u)u

t(b−a) , (u−x)u+ (x−a)y (1−t)(b−a) ≤y.

(6)

Using (2.14) – (2.15) and (2.2), we obtain

|C(t)−B(t)|

≤ 1

(1−t)(b−a)2 Z u

a

Z b

u

f

(b−y)x+ (y−u)u t(b−a)

−f(x)

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

f

(u−x)u+ (x−a)y (1−t)(b−a)

−f(y)

dy

dx

≤ M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −x

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

(u−x)u+ (x−a)y (1−t)(b−a) −y

dy

dx

= M

(1−t)(b−a)2 Z u

a

Z b

u

(b−y)x+ (y−u)u t(b−a) −x

dy

dx

+ 1

t(b−a)2 Z u

a

Z b

u

y− (u−x)u+ (x−a)y (1−t)(b−a)

dy

dx

= M

t(1−t)(b−a)3

× Z u

a

Z b

u

(b−a) ((1−t)y−tx)−2xy+ (b+u)x+ (a+u)y−2u2 dy

dx

= M

(1−t)(b−a)2 Z u

a

1

2((b−a)(1−t) + (a+u)) (b+u)−(b−a)tx−2u2

dx

= M

b−a 1

2(((b−a)(1−t) + (a+u)) (b+u)−(b−a)t(u+a))−2u2

= M

2 t(1−t)(b−a).

This completes the proof of inequality (2.12).

From integral property and (2.2), we have (2.16) tf(a) + (1−t)f(b) = t

(1−t)(b−a) Z u

a

f(a)dx+ 1−t t(b−a)

Z b

u

f(b)dy.

Using (2.16) and (2.2), we obtain

|C(t)−(tf(a) + (1−t)f(b))|

≤ 1 b−a

t 1−t

Z u

a

|f(x)−f(a)|dx+1−t t

Z b

u

|f(y)−f(b)|dy

≤ M b−a

t 1−t

Z u

a

|x−a|dx+ 1−t t

Z b

u

|y−b|dy

= M

b−a t

1−t Z u

a

(x−a)dx+1−t t

Z b

u

(b−y)dy

= M

b−a t

1−t 1

2(u2−a2)−a(u−a)

+ 1−t t

b(b−u)− 1

2(b2−u2)

=M t(1−t)(b−a).

This completes the proof of inequality (2.13).

(7)

This completes the proof of Theorem 2.3.

Corollary 2.4. Letf be defined as in Theorem 2.1. For anyt∈(0,1), then (2.17) |C(t)−f(ta+ (1−t)b)| ≤M t(1−t)(b−a),

(2.18) |A(t)−C(t)| ≤M t(1−t)(b−a),

(2.19) |A(t)−(tf(a) + (1−t)f(b))| ≤2M t(1−t)(b−a),

(2.20) |B(t)−(tf(a) + (1−t)f(b))| ≤ 3M

2 t(1−t)(b−a), and

(2.21) |f(ta+ (1−t)b)−(tf(a) + (1−t)f(b))| ≤2M t(1−t)(b−a).

Proof. Using (2.5) and (2.12), we get inequality (2.18):

|A(t)−C(t)| ≤ |A(t)−B(t)|+|B(t)−C(t)| ≤M t(1−t)(b−a).

Using the same method as the proof of (2.18), from (2.6) and (2.12), (2.13) and (2.18), (2.12) and (2.13), and (2.13) and (2.17), we get (2.17), (2.19), (2.20) and (2.21), respectively.

This completes the proof of Corollary 2.4.

Remark 2.5. If we lett= 12, then (2.13), (2.17) and (2.21) reduce to (2.22)

1 b−a

Z b

a

f(x)dx− f(a) +f(b) 2

≤ M

4 (b−a), (2.23)

1 b−a

Z b

a

f(x)dx−f

a+b 2

≤ M

4 (b−a), (2.24)

f

a+b 2

− f(a) +f(b) 2

≤ M

2 (b−a).

(2.22) is better than (2.2) in [3]. (2.23) and (2.24) are (2.1) and (2.4) in [3], respectively.

Corollary 2.6. Let f be a convex mapping on[a, b], withf+0(a) and f0 (b) existing. For any t∈(0,1), then we have

(2.25) 0≤A(t)−f(ta+ (1−t)b)≤ max{|f+0(a)|,|f0(b)|}

3 t(1−t)(b−a), (2.26) 0≤B(t)−A(t)≤ max{|f+0(a)|,|f0(b)|}

2 t(1−t)(b−a), (2.27) 0≤B(t)−f(ta+ (1−t)b)≤ max{|f+0 (a)|,|f0 (b)|}

2 t(1−t)(b−a), (2.28) 0≤C(t)−B(t)≤ max{|f+0 (a)|,|f0 (b)|}

2 t(1−t)(b−a),

(2.29) 0≤tf(a) + (1−t)f(b)−C(t)≤max{|f+0(a)|,|f0(b)|}t(1−t)(b−a),

(8)

(2.30) 0≤C(t)−f(ta+ (1−t)b)≤max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a), (2.31) 0≤C(t)−A(t)≤max{|f+0(a)|,|f0(b)|}t(1−t)(b−a),

(2.32) 0≤tf(a) + (1−t)f(b)−A(t)≤2 max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a), (2.33) 0≤tf(a) + (1−t)f(b)−B(t)≤ 3

2max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a), and

0≤tf(a) + (1−t)f(b)−f(ta+ (1−t)b) (2.34)

≤2 max{|f+0 (a)|,|f0 (b)|}t(1−t)(b−a).

Proof. For any x, y ∈ [a, b], from the properties of convex functions, we have the following max{|f+0 (a)|,|f0 (b)|}-Lipschitzian inequality (see [7]):

(2.35) |f(x)−f(y)| ≤max{|f+0(a)|,|f0(b)|}|x−y|.

Using (1.2), (2.35), Theorem 2.1 – 2.2 and Corollary 2.4, we obtain (2.25) – (2.34).

This completes the proof of Corollary (2.6).

Remark 2.7. The condition in Corollary 2.6 is better than that in Corollary 2.2, Corollary 4.2 and Theorem 3.3 of [3]. Actually, it is that f is a differentiable convex mapping on[a, b]with M = sup

t∈[a,b]

|f0(t)|<∞.

REFERENCES

[1] J. HADAMARD, Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.

[2] L.-C. WANG, On extensions and refinements of Hermite-Hadamard inequalities for convex func- tions, Math. Ineq. Appl., 6(4) (2003), 659–666.

[3] S.S. DRAGOMIR, Y.J.CHOANDS.S. KIM, Inequalities of Hadamard’s type for Lipschitzian map- pings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501.

[4] G.-S. YANG AND K.-L. TSENG, Inequalities of Hadamard’s type for Lipschitzian mappings, J.

Math. Anal. Appl., 260 (2001), 230–238.

[5] M. MATICANDJ. PE ˇCARI ´C, Note on inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127–130.

[6] L.-C. WANG, On some extentions of Hadamard inequalities of convex function, Math. in Practice and Theory, 32 (2002), 1027–1030. (In Chinese).

[7] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001, pp.55. (In Chinese).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, we establish some new retarded integral inequalities and derive explicit bounds on unknown functions, the results of which improve some known ones in [9]2. C 1 (M,

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

Abstract: In this paper, by the Chebyshev-type inequalities we define three mappings, in- vestigate their main properties, give some refinements for Chebyshev-type in-

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

Acknowledgements: This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.... Inequalities of Hadamard-type

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

Abstract: In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp... Inequalities for Special and q-Special

In this paper, we study several new inequalities of Hadamard’s type for Lips- chitzian mappings.. 2000 Mathematics Subject Classification: Primary 26D07; Secondary