• Nem Talált Eredményt

THREE MAPPINGS RELATED TO CHEBYSHEV-TYPE INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "THREE MAPPINGS RELATED TO CHEBYSHEV-TYPE INEQUALITIES"

Copied!
23
0
0

Teljes szövegt

(1)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page

Contents

JJ II

J I

Page1of 23 Go Back Full Screen

Close

THREE MAPPINGS RELATED TO CHEBYSHEV-TYPE INEQUALITIES

LIANG-CHENG WANG

School of Mathematics Science Chongqing Institute of Technology No.4 of Xingsheng Lu, YangjiaPing 400050 Chongqing City, P.R. of China.

EMail:wlc@cqit.edu.cn

LI-HONG LIU AND XIU-FEN MA

Chongqing Institute of Technology P.R. of China.

EMail:llh-19831017@cqit.edu.cn maxiufen86@cqit.edu.cn

Received: 22 May, 2008

Accepted: 15 October, 2008

Communicated by: F. Qi 2000 AMS Sub. Class.: 26D15.

Key words: Chebyshev-type inequality, Monotonicity, Refinement.

Abstract: In this paper, by the Chebyshev-type inequalities we define three mappings, in- vestigate their main properties, give some refinements for Chebyshev-type in- equalities, obtain some applications.

Acknowledgements: The first author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.

(2)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page2of 23 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 8

3 Proof of Theorems 11

4 Applications 17

(3)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page3of 23 Go Back Full Screen

Close

1. Introduction

Letn(≥2)be a given positive integer,A= (a1, a2, . . . , an)andB = (b1, b2, . . . , bn) be known as sequences of real numbers. Also, letpi >0andqi >0(i= 1,2, . . . , n), Pj =p1+p2+· · ·+pj andQj =q1+q2+· · ·+qj (j = 1,2, . . . , n).

IfAandBare both increasing or both decreasing, then (1.1)

n

X

i=1

ai

! n X

i=1

bi

!

≤n

n

X

i=1

aibi.

If one of the sequences A or B is increasing and the other decreasing, then the inequality (1.1) is reversed.

The inequality (1.1) is called the Chebyshev’s inequality, see [1,2].

ForAandB both increasing or both decreasing, Behdzet in [3] extended inequal- ity (1.1) to

(1.2)

n

X

i=1

piai

! n X

i=1

qibi

! +

n

X

i=1

qiai

! n X

i=1

pibi

!

≤Pn

n

X

i=1

qiaibi+Qn

n

X

i=1

piaibi. If one of the sequences A or B is increasing and the other decreasing, then the inequality (1.2) is reversed.

Forpi =qi,i= 1,2, . . . , n, the inequality (1.2) reduces to (1.3)

n

X

i=1

piai

! n X

i=1

pibi

!

≤Pn

n

X

i=1

piaibi,

(4)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page4of 23 Go Back Full Screen

Close

where,AandBare both increasing or both decreasing. If one of the sequencesAor B is increasing and the other decreasing, then the inequality (1.3) is reversed.

Let r, s : [a, b] → R be integrable functions, either both increasing or both de- creasing. Furthermore, letp, q : [a, b]→[0,+∞)be the integrable functions. Then (1.4)

Z b

a

p(t)r(t)dt Z b

a

q(t)s(t)dt+ Z b

a

q(t)r(t)dt Z b

a

p(t)s(t)dt

≤ Z b

a

p(t)dt Z b

a

q(t)r(t)s(t)dt+ Z b

a

q(t)dt Z b

a

p(t)r(t)s(t)dt.

If one of the functionsrorsis increasing and the other decreasing, then the inequal- ity (1.4) is reversed.

Whenp(t) =q(t),t ∈[a, b], the inequality (1.4) reduces to (1.5)

Z b

a

p(t)r(t)dt Z b

a

p(t)s(t)dt ≤ Z b

a

p(t)dt Z b

a

p(t)r(t)s(t)dt,

whererandsare both increasing or both decreasing. If one of the functionsr ors is increasing and the other decreasing, then the inequality (1.5) is reversed.

Inequalities (1.4) and (1.5) are the integral forms of inequalities (1.2) and (1.3), respectively (see [1,2]).

The results from other inequalities connected with (1.1) to (1.5) can be seen in [1], [3] – [8] and [2, pp. 61–65].

We define three mappingsc,CandCebyc:N+×N+→R, (1.6) c(k, n;pi, qi) =Pk

k

X

i=1

qiaibi+Qk

k

X

i=1

piaibi

(5)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page5of 23 Go Back Full Screen

Close

+

n

X

i=k+1

piai

! n X

i=1

qibi

! +

k

X

i=1

piai

! n X

i=k+1

qibi

!

+

n

X

i=k+1

qiai

! n X

i=1

pibi

! +

k

X

i=1

qiai

! n X

i=k+1

pibi

! ,

wherek = 1,2, . . . , n, and

n

X

i=n+1

qiai =

n

X

i=n+1

pibi =

n

X

i=n+1

piai =

n

X

i=n+1

qibi = 0 is assumed.

ForC : [a, b]→R, (1.7) C(x;p, q;r, s)

= Z x

a

p(t)dt Z x

a

q(t)r(t)s(t)dt+ Z x

a

q(t)dt Z x

a

p(t)r(t)s(t)dt +

Z b

x

p(t)r(t)dt Z b

a

q(t)s(t)dt+ Z x

a

p(t)r(t)dt Z b

x

q(t)s(t)dt +

Z b

x

q(t)r(t)dt Z b

a

p(t)s(t)dt+ Z x

a

q(t)r(t)dt Z b

x

p(t)s(t)dt

and forCe: [a, b]→R, (1.8) C(y;e p, q;r, s) =

Z b

y

p(t)dt Z b

y

q(t)r(t)s(t)dt+ Z b

y

q(t)dt Z b

y

p(t)r(t)s(t)dt

(6)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page6of 23 Go Back Full Screen

Close

+ Z y

a

p(t)r(t)dt Z b

a

q(t)s(t)dt+ Z b

y

p(t)r(t)dt Z y

a

q(t)s(t)dt

+ Z y

a

q(t)r(t)dt Z b

a

p(t)s(t)dt+ Z b

y

q(t)r(t)dt Z y

a

p(t)s(t)dt.

We write

c1(k, n;pi) (1.9)

= 1

2c(k, n;pi, pi)

=Pk

k

X

i=1

piaibi+

n

X

i=k+1

piai

! n X

i=1

pibi

! +

k

X

i=1

piai

! n X

i=k+1

pibi

! ,

c2(k, n) =c1(k, n; 1) (1.10)

=k

k

X

i=1

aibi+

n

X

i=k+1

ai

! n X

i=1

bi

! +

k

X

i=1

ai

! n X

i=k+1

bi

! ,

C0(x;p;r, s) (1.11)

= 1

2C(x;p, p;r, s)

= Z x

a

p(t)dt Z x

a

p(t)r(t)s(t)dt+ Z b

x

p(t)r(t)dt Z b

a

p(t)s(t)dt +

Z x

a

p(t)r(t)dt Z b

x

p(t)s(t)dt

(7)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page7of 23 Go Back Full Screen

Close

and

Ce0(y;p;r, s) (1.12)

= 1

2C(y;e p, p;r, s)

= Z b

y

p(t)dt Z b

y

p(t)r(t)s(t)dt+ Z y

a

p(t)r(t)dt Z b

a

p(t)s(t)dt

+ Z b

y

p(t)r(t)dt Z y

a

p(t)s(t)dt.

(1.10), (1.6), (1.9), (1.7) and (1.8), (1.11) and (1.12) are generated by the inequal- ities (1.1) to (1.5), respectively.

The aim of this paper is to study the monotonicity properties ofc,C andC, ande obtain some refinements of (1.1) to (1.5) using these monotonicity properties. Some applications are given.

(8)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page8of 23 Go Back Full Screen

Close

2. Main Results

The monotonicity properties of the mappingc,c1andc2are embodied in the follow- ing theorem.

Theorem 2.1. Letc,c1andc2 be defined as in the first section. IfAandB are both increasing or both decreasing, then we have the following refinements of (1.2), (1.3) and (1.1)

n

X

i=1

piai

! n X

i=1

qibi

! +

n

X

i=1

qiai

! n X

i=1

pibi

! (2.1)

=c(1, n;pi, qi)≤ · · · ≤c(k, n;pi, qi)≤c(k+ 1, n;pi, qi)≤ · · ·

≤c(n, n;pi, qi) = Pn

n

X

i=1

qiaibi+Qn

n

X

i=1

piaibi,

n

X

i=1

piai

! n X

i=1

pibi

!

=c1(1, n;pi)≤ · · · ≤c1(k, n;pi) (2.2)

≤c1(k+ 1, n;pi)≤ · · · ≤c1(n, n;pi)

=Pn

n

X

i=1

piaibi

and

n

X

i=1

ai

! n X

i=1

bi

!

=c2(1, n)≤ · · · ≤c2(k, n) (2.3)

≤c2(k+ 1, n)≤ · · · ≤c2(n, n) = n

n

X

i=1

aibi,

(9)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page9of 23 Go Back Full Screen

Close

respectively. If one of the sequencesAorB is increasing and the other decreasing, then inequalities in (2.1)–(2.3) are reversed.

The monotonicity properties of the mappingsCandC0are given in the following theorem.

Theorem 2.2. Let C and C0 be defined as in the first section. Ifr and s are both increasing or both decreasing, thenC(x;p, q;r, s)andC0(x;p;r, s)are increasing on [a, b] with x, and forx ∈ [a, b] we have the following refinements of (1.4) and (1.5)

Z b

a

p(t)r(t)dt Z b

a

q(t)s(t)dt+ Z b

a

q(t)r(t)dt Z b

a

p(t)s(t)dt (2.4)

=C(a;p, q;r, s)≤C(x;p, q;r, s)≤C(b;p, q;r, s)

= Z b

a

p(t)dt Z b

a

q(t)r(t)s(t)dt+ Z b

a

q(t)dt Z b

a

p(t)r(t)s(t)dt

and

Z b

a

p(t)r(t)dt Z b

a

p(t)s(t)dt=C0(a;p;r, s) (2.5)

≤C0(x;p;r, s)≤C0(b;p;r, s)

= Z b

a

p(t)dt Z b

a

p(t)r(t)s(t)dt,

respectively. If one of the functionsr ors is increasing and the other decreasing, thenC(x;p, q;r, s)andC0(x;p;r, s)are decreasing on[a, b]withx, and inequalities in (2.4) and (2.5) are reversed.

The monotonicity properties ofCeandCf0are given in the following theorem.

(10)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page10of 23 Go Back Full Screen

Close

Theorem 2.3. Let Ce and fC0 be defined as in the first section. Ifr and s are both increasing or both decreasing, thenC(y;e p, q;r, s)andCe0(y;p;r, s)are decreasing on [a, b] with y, and for y ∈ [a, b] we have the following refinements of (1.4) and (1.5)

Z b

a

p(t)r(t)dt Z b

a

q(t)s(t)dt+ Z b

a

q(t)r(t)dt Z b

a

p(t)s(t)dt (2.6)

=C(b;e p, q;r, s)≤C(y;e p, q;r, s)≤C(a;e p, q;r, s)

= Z b

a

p(t)dt Z b

a

q(t)r(t)s(t)dt+ Z b

a

q(t)dt Z b

a

p(t)r(t)s(t)dt

and Z b

a

p(t)r(t)dt Z b

a

p(t)s(t)dt =Ce0(b;p;r, s)≤Ce0(y;p;r, s)≤Ce0(a;p;r, s) (2.7)

= Z b

a

p(t)dt Z b

a

p(t)r(t)s(t)dt,

respectively. If one of the functionsrorsis increasing and the other decreasing, then C(y;e p, q;r, s)andCf0(y;p;r, s)are increasing on[a, b]withy, and the inequalities in (2.6) and (2.7) are reversed.

(11)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page11of 23 Go Back Full Screen

Close

3. Proof of Theorems

Proof of Theorem2.1. Fork = 2,3, . . . , n, we have c(k, n;pi, qi)−c(k−1, n;pi, qi)

(3.1)

= (Pk−1+pk)

k−1

X

i=1

qiaibi +qkakbk

!

+ (Qk−1+qk)

k−1

X

i=1

piaibi+pkakbk

!

"

Pk−1 k−1

X

i=1

qiaibi+Qk−1 k−1

X

i=1

piaibi

# +

n

X

i=k+1

piai

n

X

i=1

qibi

+ pkak+

k−1

X

i=1

piai

! n X

i=k+1

qibi− pkak+

n

X

i=k+1

piai

! n X

i=1

qibi

k−1

X

i=1

piai qkbk+

n

X

i=k+1

qibi

! +

n

X

i=k+1

qiai n

X

i=1

pibi

+ qkak+

k−1

X

i=1

qiai

! n X

i=k+1

pibi− qkak+

n

X

i=k+1

qiai

! n X

i=1

pibi

k−1

X

i=1

qiai pkbk+

n

X

i=k+1

pibi

!

=

"

pk k−1

X

i=1

qiaibi+pkakbk k−1

X

i=1

qi−pkak k−1

X

i=1

qibi−pkbk k−1

X

i=1

qiai

#

(12)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page12of 23 Go Back Full Screen

Close

+

"

qk

k−1

X

i=1

piaibi+qkakbk

k−1

X

i=1

pi−qkak

k−1

X

i=1

pibi−qkbk

k−1

X

i=1

piai

#

=pk

k−1

X

i=1

qi(ak−ai) (bk−bi) +qk

k−1

X

i=1

pi(ak−ai) (bk−bi). IfAandB are both increasing or both decreasing, then

(3.2)

ak−ai

bk−bi

≥0, (i= 1,2, . . . , k −1).

Using (1.6), (3.1) and (3.2), we obtain (2.1).

If one of the sequencesAorB is increasing and the other decreasing, then (3.2) is reversed, which implies that the inequalities in (2.1) are reversed.

For i = 1,2, . . . , n, replacing qi in (2.1) with pi and replacing pi in (2.2) with 1, we obtain (2.2) and (2.3), respectively. This completes the proof of Theorem 2.1.

Proof of Theorem2.2. For anyx1, x2 ∈[a, b], x1 < x2, we write I1 =

Z x2

x1

p(t)dt Z x2

x1

q(t)r(t)s(t)dt+ Z x2

x1

q(t)dt Z x2

x1

p(t)r(t)s(t)dt

− Z x2

x1

p(t)r(t)dt Z x2

x1

q(t)s(t)dt− Z x2

x1

q(t)r(t)dt Z x2

x1

p(t)s(t)dt.

Fort∈[a, x1],u∈[x1, x2], using the properties of double integrals, we get I2 =

Z Z

[a,x1]×[x1,x2]

p(t)q(u)

r(t)−r(u)

s(t)−s(u) dtdu

(13)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page13of 23 Go Back Full Screen

Close

= Z x1

a

p(t)dt Z x2

x1

q(t)r(t)s(t)dt+ Z x1

a

p(t)r(t)s(t)dt Z x2

x1

q(t)dt

− Z x1

a

p(t)r(t)dt Z x2

x1

q(t)s(t)dt− Z x1

a

p(t)s(t)dt Z x2

x1

q(t)r(t)dt

and I3 =

Z Z

[a,x1]×[x1,x2]

p(u)q(t)

r(t)−r(u)

s(t)−s(u) dtdu

= Z x1

a

q(t)dt Z x2

x1

p(t)r(t)s(t)dt+ Z x1

a

q(t)r(t)s(t)dt Z x2

x1

p(t)dt

− Z x1

a

q(t)r(t)dt Z x2

x1

p(t)s(t)dt− Z x1

a

q(t)s(t)dt Z x2

x1

p(t)r(t)dt.

Whenx1 =a, from (1.7), we get

C(x2;p, q;r, s)−C(x1;p, q;r, s) (3.3)

= Z x2

x1

p(t)dt Z x2

x1

q(t)r(t)s(t)dt+ Z x2

x1

q(t)dt Z x2

x1

p(t)r(t)s(t)dt

− Z x2

x1

p(t)r(t)dt Z x2

x1

q(t)s(t)dt− Z x2

x1

q(t)r(t)dt Z x2

x1

p(t)s(t)dt

=I1.

Whenx1 > a, from (1.7), we have C(x2;p, q;r, s)−C(x1;p, q;r, s) (3.4)

(14)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page14of 23 Go Back Full Screen

Close

= Z x1

a

+ Z x2

x1

p(t)dt

Z x1

a

+ Z x2

x1

q(t)r(t)s(t)dt +

Z x1

a

+ Z x2

x1

q(t)dt

Z x1

a

+ Z x2

x1

p(t)r(t)s(t)dt

− Z x1

a

p(t)dt Z x1

a

q(t)r(t)s(t)dt− Z x1

a

q(t)dt Z x1

a

p(t)r(t)s(t)dt +

Z b

x2

p(t)r(t)dt Z x1

a

+ Z x2

x1

+ Z b

x2

q(t)s(t)dt +

Z x1

a

+ Z x2

x1

p(t)r(t)dt Z b

x2

q(t)s(t)dt

− Z x2

x1

+ Z b

x2

p(t)r(t)dt Z x1

a

+ Z x2

x1

+ Z b

x2

q(t)s(t)dt

− Z x1

a

p(t)r(t)dt Z x2

x1

+ Z b

x2

q(t)s(t)dt +

Z b

x2

q(t)r(t)dt Z x1

a

+ Z x2

x1

+ Z b

x2

p(t)s(t)dt +

Z x1

a

+ Z x2

x1

q(t)r(t)dt Z b

x2

p(t)s(t)dt

− Z x2

x1

+ Z b

x2

q(t)r(t)dt Z x1

a

+ Z x2

x1

+ Z b

x2

p(t)s(t)dt

− Z x1

a

q(t)r(t)dt Z x2

x1

+ Z b

x2

p(t)s(t)dt

(15)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page15of 23 Go Back Full Screen

Close

= Z x2

x1

p(t)dt Z x2

x1

q(t)r(t)s(t)dt+ Z x2

x1

q(t)dt Z x2

x1

p(t)r(t)s(t)dt

− Z x2

x1

p(t)r(t)dt Z x2

x1

q(t)s(t)dt− Z x2

x1

q(t)r(t)dt Z x2

x1

p(t)s(t)dt

+ Z x1

a

p(t)dt Z x2

x1

q(t)r(t)s(t)dt+ Z x1

a

p(t)r(t)s(t)dt Z x2

x1

q(t)dt

− Z x1

a

p(t)r(t)dt Z x2

x1

q(t)s(t)dt− Z x1

a

p(t)s(t)dt Z x2

x1

q(t)r(t)dt

+ Z x1

a

q(t)dt Z x2

x1

p(t)r(t)s(t)dt+ Z x1

a

q(t)r(t)s(t)dt Z x2

x1

p(t)dt

− Z x1

a

q(t)r(t)dt Z x2

x1

p(t)s(t)dt− Z x1

a

q(t)s(t)dt Z x2

x1

p(t)r(t)dt

=I1+I2+I3.

(1) Ifrandsare both increasing or both decreasing, then we have

(3.5)

r(t)−r(u)

s(t)−s(u)

≥0,

i.e.,I2 ≥0andI3 ≥0. By the inequality (1.4),I1 ≥0holds . Using (3.3) and (3.4), we obtain thatC(x;p, q;r, s)is increasing on[a, b]withx. Further, from (1.11), we get thatC0(x;p;r, s)is increasing on[a, b]withx.

From (1.7) and (1.11), using the increasing properties ofC(x;p, q;r, s)andC0(x;p;r, s), we obtain (2.4) and (2.5), respectively.

(2) If one of the functions r or s is increasing and the other decreasing, then the inequality in (3.5) is reversed, which implies thatI2 ≤ 0andI3 ≤ 0. By the reverse of (1.4), I1 ≤ 0holds. From (3.3) and (3.4), (1.11), we obtain that C(x;p, q;r, s), C0(x;p;r, s)are decreasing on[a, b]withx, respectively.

(16)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page16of 23 Go Back Full Screen

Close

From (1.7) and (1.11), using the decreasing properties ofC(x;p, q;r, s)andC0(x;p;r, s), we obtain the reverse of (2.4) and (2.5), respectively.

This completes the proof of Theorem2.2.

Proof of Theorem2.3. Using the same arguments as those in the proof of Theorem 2.2, we can prove Theorem2.3.

(17)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page17of 23 Go Back Full Screen

Close

4. Applications

LetIbe a real interval andu, v, w :I→[0,+∞). For anyα, β ∈Rand anyxi ∈I (i= 1,2, . . . , n, n≥2) satisfyingx1 ≤x2 ≤ · · · ≤xn, we define

K(k, n) =

k

X

i=1

v(xi)wβ(xi)

k

X

i=1

u(xi)w−β(xi)

+

k

X

i=1

v(xi)w−α(xi)

k

X

i=1

u(xi)wα(xi) +

n

X

i=k+1

v(xi)wα(xi)

n

X

i=1

u(xi)w−α(xi)

+

k

X

i=1

v(xi)wα(xi)

n

X

i=k+1

u(xi)w−α(xi) +

n

X

i=k+1

v(xi)w−β(xi)

n

X

i=1

u(xi)wβ(xi)

+

k

X

i=1

v(xi)w−β(xi)

n

X

i=k+1

u(xi)wβ(xi), and

L(k, n) =

k

X

i=1

v(xi)wβ(xi)

k

X

i=1

u(xi)wα(xi) +

n

X

i=k+1

v(xi)wα(xi)

n

X

i=1

u(xi)wβ(xi)

+

k

X

i=1

v(xi)wα(xi)

n

X

i=k+1

u(xi)wβ(xi),

(18)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page18of 23 Go Back Full Screen

Close

where,k= 1,2, . . . , n,

n

X

i=n+1

u(xi)wβ(xi) =

n

X

i=n+1

v(xi)wα(xi) = 0,

n

X

i=n+1

u(xi)w−α(xi) =

n

X

i=n+1

v(xi)w−β(xi) = 0.

Proposition 4.1. Letwand u/v be both increasing or both decreasing. If α > β, then we have

n

X

i=1

v(xi)wα(xi)

n

X

i=1

u(xi)w−α(xi) +

n

X

i=1

v(xi)w−β(xi)

n

X

i=1

u(xi)wβ(xi) (4.1)

=K(1, n)≤ · · · ≤K(k, n)≤K(k+ 1, n)≤ · · · ≤K(n, n)

=

n

X

i=1

v(xi)wβ(xi)

n

X

i=1

u(xi)w−β(xi) +

n

X

i=1

v(xi)w−α(xi)

n

X

i=1

u(xi)wα(xi) and

n

X

i=1

v(xi)wα(xi)

n

X

i=1

u(xi)wβ(xi) (4.2)

=L(1, n)≤ · · · ≤L(k, n)≤L(k+ 1, n)≤ · · · ≤L(n, n)

=

n

X

i=1

v(xi)wβ(xi)

n

X

i=1

u(xi)wα(xi).

Ifα < β, then the inequalities in (4.1) and (4.2) are reversed.

(19)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page19of 23 Go Back Full Screen

Close

Proof. Replacingpi,qi,ai andbi in (2.1) (or the reverse of (2.1)) withv(xi)wβ(xi), v(xi)w−α(xi), wα−β(xi)and u(xi)/v(xi), respectively, we obtain (4.1) (or the re- verse of (4.1)). Replacingpi,aiandbiin (2.2) (or the reverse of (2.2)) withv(xi)wβ(xi), wα−β(xi)andu(xi)/v(xi), respectively, we obtain (4.2) (or the reverse of (4.2)).

This completes the proof of Proposition4.1.

Remark 1. (4.1) and (4.2) are generated by Proposition 1 in [4].

Let f : [a, b] → R be a continuous convex function with f+0 (a) (= f0 (a) is assumed) andf0(b),{f(x)|x∈[a, b]}= [d, e]. Also, leth : [d, e]→(0,+∞)be an integrable function, andg : [d, e]→Rbe a strict monotonic function. We define (4.3) E(g;f, h) =g−1

"

Z b

a

h(f(t))f0 (t)dt

−1Z b

a

h(f(t))g(f(t))f0(t)dt

# ,

(4.4) M(g;f, h) = g−1

"

Z b

a

h(f(t))dt

−1Z b

a

h(f(t))g(f(t))dt

# ,

(4.5) R(x;g;f, h)

=g−1

"

Z b

a

h(f(t))dt Z b

a

h(f(t))f0 (t)dt −1

C0

x;h(f);g(f), f0

#

and

(4.6) R(y;e g;f, h)

=g−1

"

Z b

a

h(f(t))dt Z b

a

h(f(t))f0 (t)dt −1

Ce0

y;h(f);g(f), f0

# .

(20)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page20of 23 Go Back Full Screen

Close

Proposition 4.2. Iff is monotone, Then we have

1. R(x;g;f, h)is increasing on[a, b]withx. Forx∈[a, b]we have M(g;f, h) = R(a;g;f, h)

(4.7)

≤R(x;g;f, h)≤R(b;g;f, h) = E(g;f, h).

2. R(y;˜ g;f, h)is decreasing on[a, b]withy. Fory∈[a, b]we have M(g;f, h) = ˜R(b;g;f, h)

(4.8)

≤R(y;˜ g;f, h)≤R(a;˜ g;f, h) =E(g;f, h).

Proof. From the convexity off, we get thatf0 (t)is increasing on[a, b]and the inte- grals inE(g;f, h),R(x;g;f, h)andR(y;e g;f, h)are valid (see [5]). Fromh(x)>0, x∈[d, e], we have

(4.9)

Z b

a

h(f(t))dt >0.

From the convexity off, whenf(a)< f(b)orf(a)> f(b), Wang in [5] proved that

(4.10)

Z b

a

h(f(t))f0 (t)dt >0 or

(4.11)

Z b

a

h(f(t))f0(t)dt <0.

(1) Let us first assume thatg is a strictly increasing function.

Case 1. From the increasing properties off, we havef(a) < f(b). Further, (4.10)

(21)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page21of 23 Go Back Full Screen

Close

holds. To prove thatR(x;g;f, h)is increasing, from (4.5), (4.9) and (4.10), we only need to prove that

(4.12) C0

x;h(f);g(f), f0

= Z b

a

h(f(t))dt Z b

a

h(f(t))f0 (t)dt

g

R(x;g;f, h) is increasing on[a, b]withx.

Indeed, since f is increasing on [a, b], we have that g(f(t))is increasing on [a, b].

By Theorem2.2,C0(x;h(f);g(f), f0 )is monotonically increasing withx∈[a, b].

Forx∈[a, b], from (4.3), (4.4), (4.5), (4.9) and (4.10), then (4.7) is equivalent to Z b

a

h(f(t))g(f(t))dt Z b

a

h(f(t))f0 (t)dt (4.13)

=C0(a;h(f);g(f), f0 )≤C0(x;h(f);g(f), f0 )≤C0(b;h(f);g(f), f0 )

= Z b

a

h(f(t))dt Z b

a

h(f(t))g(f(t))f0 (t)dt.

Replacingp(t), r(t)ands(t)in (2.5) withh(f(t)), g(f(t))andf0 (t), respectively, we obtain (4.13).

Case 2. Iff is decreasing on[a, b], then we havef(a) > f(b), i.e. (4.11) holds. To prove thatR(x;g;f, h)is increasing, from (4.5), (4.9) and (4.11), we only need to prove thatC0(x;h(f);g(f), f0)(see (4.12)) is decreasing on[a, b]withx.

Indeed, sincefis decreasing on[a, b], theng(f(t))is decreasing on[a, b]. By Theo- rem2.2,C0(x;h(f);g(f), f0 )is decreasing withx∈[a, b].

Forx∈[a, b], from (4.3), (4.4), (4.5), (4.9) and (4.11), then (4.7) is equivalent to the reverse of (4.13). Replacingp(t), r(t)ands(t)in the reverse of (2.5) withh(f(t)), g(f(t))andf0(t), respectively, we obtain the reverse of (4.13).

(22)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page22of 23 Go Back Full Screen

Close

The second case:g is a strictly decreasing function. Using the same arguments forg as a strictly increasing function, we can also prove (1).

(2) Using the same arguments as those for (1), with (2.6) and (2.7), we can prove thatR(x;˜ g;f, h)is decreasing on[a, b]withx,and (4.8) holds.

This completes the proof of Proposition4.2.

Remark 2. (4.7)–(4.8) can be generated by(∗)in [6] or Proposition 8.1 in [5].

(23)

Mappings Related to Chebyshev-type Inequalities Liang-Cheng Wang, Li-Hong Liu

and Xiu-Fen Ma vol. 9, iss. 4, art. 113, 2008

Title Page Contents

JJ II

J I

Page23of 23 Go Back Full Screen

Close

References

[1] D.S. MITRINOVI ´C, Analytic Inequalities, Springer-Verlag. Berlin, 1970.

[2] J.-C. KUANG, Applied Inequalities, Shandong Science and Technology Press, 2004. (Chinese).

[3] M. BEHDZET, Some results connected with Cebysev’s inequality, Rad. Mat., 1(2) (1985), 185–190.

[4] L.-C. WANG, On the monotonicity of difference generated by the inequalities of Chebyshev type, J. Sichuan Univ., 39(3) (2002), 398–403. (Chinese).

[5] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. (Chinese).

[6] B.-N. GUO ANDFENG QI, Inequalities for generalized weighted mean values of convex function, Math. Inequalities Appl., 4(2) (2001), 195–202.

[7] F. QI, L.-H. CUIANDS.-L. XU, Some inequalities constructed by Tchebysheff’s integral inequality, Math. Inequalities Appl., 2(4) (1999), 517–528.

[8] F. QI, S.-L. XUANDL. DEBNATH, A new proof of monotonicity for extended mean values, J. Math. Math. Sci., 22(2) (1999), 417–421.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, by the Minkowski’s inequalities we define two mappings, investigate their properties, obtain some refinements for Minkowski’s inequalities and some new inequali-

Abstract: In this paper, we present some basic results concerning an extension of Jensen type inequalities with ordered variables to functions with inflection points, and then

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

Abstract: In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp... Inequalities for Special and q-Special

In this paper, we establish some Hermite- Hadamard type inequalities involving two log-preinvex functions using essentially the technique of Pachpatte [11, 12].. This is the