• Nem Talált Eredményt

HADAMARD PRODUCT VERSIONS OF THE CHEBYSHEV AND KANTOROVICH INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "HADAMARD PRODUCT VERSIONS OF THE CHEBYSHEV AND KANTOROVICH INEQUALITIES"

Copied!
13
0
0

Teljes szövegt

(1)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page

Contents

JJ II

J I

Page1of 13 Go Back Full Screen

Close

HADAMARD PRODUCT VERSIONS OF THE CHEBYSHEV AND KANTOROVICH INEQUALITIES

JAGJIT SINGH MATHARU AND JASPAL SINGH AUJLA

Department of Mathematics National Institute of Technology Jalandhar 144011, Punjab, INDIA

EMail:matharujs@yahoo.com aujlajs@nitj.ac.in

Received: 10 February, 2009

Accepted: 15 April, 2009

Communicated by: S. Puntanen

2000 AMS Sub. Class.: Primary 15A48; Secondary 15A18, 15A45.

Key words: Chebyshev inequality, Kantorovich inequality, Hadamard product

Abstract: The purpose of this note is to prove Hadamard product versions of the Chebyshev and the Kantorovich inequalities for positive real numbers. We also prove a generalization of Fiedler’s inequality.

Acknowledgements: The authors thank a referee for useful suggestions.

(2)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page2of 13 Go Back Full Screen

Close

Contents

1 Introduction 3

2 The Chebyshev and Kantorovich Inequalities: Matrix Versions 5

(3)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page3of 13 Go Back Full Screen

Close

1. Introduction

In what follows, the capital letters A, B, C, . . . denote m × m complex matrices, whereas the small letters a, b, c, . . . denote real numbers, unless mentioned other- wise. By X ≥ Y we mean that X − Y is positive semidefinite (X > Y mean X −Y is positive definite). For A = (aij)and B = (bij), A◦B = (aijbij) de- notes the Hadamard product of A and B. According to Schur’s theorem [4, Page 23] the Hadamard product is monotone in the sense thatA ≥ B, C ≥ D implies A◦C ≥B◦D. The tensor productA⊗B is them2×m2 matrix

(1.1)

a11B · · · a1mB ... ... am1B · · · ammB

.

Marcus and Khan in [10] made the simple but important observation that the Hadamard product is a principal submatrix of the tensor product. The inequality

(1.2)

n

X

i=1

wiai

! n X

i=1

wibi

!

n

X

i=1

wiaibi

holds for all a1 ≥ a2 ≥ · · · ≥ an ≥ 0, b1 ≥ b2 ≥ · · · ≥ bn ≥ 0 and weights wi ≥ 0, i = 1, . . . , n. Hardy, Littlewood and Polya [6, page 43] attribute this inequality to Chebyshev. For0< a≤ai ≤b, wi ≥0, i= 1,2, . . . , n, Kantorovich’s inequality states that

(1.3)

n

X

i=1

wiai

! n X

i=1

wi

ai

!

≤ (a+b)2 4ab

n

X

i=1

wi

!2

.

(4)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page4of 13 Go Back Full Screen

Close

In Section2, we state and prove matrix versions of inequalities (1.2) and (1.3) involv- ing the Hadamard product. A generalization of Fiedler’s inequality is also proved in this section. There are several generalizations of Kantorovich and Fiedler’s inequal- ity; see [2,3,8,9].

(5)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page5of 13 Go Back Full Screen

Close

2. The Chebyshev and Kantorovich Inequalities:

Matrix Versions

We begin with a Hadamard product version of inequality (1.2).

Theorem 2.1. LetA1 ≥ · · · ≥An≥0andB1 ≥ · · · ≥Bn ≥0. Then

(2.1)

n

X

i=1

wiAi

!

n

X

i=1

wiBi

!

n

X

i=1

wi

! n X

i=1

wi(Ai◦Bi)

! ,

wherewi ≥0, i= 1, . . . , n,are weights.

Proof. We have

n

X

i=1

wi

! n X

i=1

wi(Ai◦Bi)

!

n

X

i=1

wiAi

!

n

X

i=1

wiBi

! (2.2)

=

n

X

i,j=1

(wiwj(Aj ◦Bj)−wiwj(Ai◦Bj))

= 1 2

n

X

i,j=1

wiwj(Aj ◦Bj)−wiwj(Ai◦Bj)

+wjwi(Ai◦Bi)−wjwi(Aj◦Bi)

= 1 2

n

X

i,j=1

wiwj(Ai−Aj)◦(Bi−Bj).

Since the Hadamard product of two positive semidefinite matrices is positive semidef- inite, therefore the summand in2.2is positive semidefinite.

(6)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page6of 13 Go Back Full Screen

Close

Our next result is a Hadamard product version of inequality (1.3) .

Theorem 2.2. LetA1, . . . , An be such that 0 < aIm ≤ Ai ≤ bIm, i = 1, . . . , n (hereIm denotes them×midentity matrix). Then

(2.3)

n

X

i=1

Wi1/2AiWi1/2

!

n

X

i=1

Wi1/2A−1i Wi1/2

!

≤ a2+b2 2ab

n

X

i=1

Wi

!

n

X

i=1

Wi

!

for allWi ≥0, i= 1, . . . , n.

Proof. We first prove the inequality

(2.4) P1/2AP1/2◦Q1/2B−1Q1/2+P1/2A−1P1/2◦Q1/2BQ1/2 ≤ a2 +b2

ab (P ◦Q), when0< aIm ≤ A, B ≤bIm andP, Q≥ 0. LetA =U DU andB =VΓV with unitaryU andV, and diagonal matricesDandΓ. Then

A⊗B−1+A−1⊗B = (U ⊗V)(D⊗Γ + Γ−1⊗D)(U ⊗V)

≤(U ⊗V)

a2+b2

ab (Im⊗Im)

(U ⊗V)

= a2+b2

ab (Im⊗Im), where the inequality follows from (1.3). Thus we have

P1/2AP1/2⊗Q1/2B−1Q1/2 +P1/2A−1P1/2⊗Q1/2BQ1/2 (2.5)

(7)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page7of 13 Go Back Full Screen

Close

= (P1/2⊗Q1/2)(A⊗B−1 +A−1⊗B)(P1/2⊗Q1/2)

≤ a2+b2

ab (P ⊗Q).

Since the Hadamard product is a principal submatrix of the tensor product, the in- equality (2.4) follows from (2.5). On takingB =AandQ=P in (2.4) we see that (2.3) holds forn = 1. Further, by (2.4) we have

Wi1/2AiWi1/2◦Wj1/2A−1j Wj1/2+Wi1/2A−1i Wi1/2◦Wj1/2AjWj1/2 ≤ a2+b2

ab (Wi◦Wj) fori, j = 1, . . . , n. Summing overi, j, we have

(2.6) 2

n

X

i,j=1

h

Wi1/2AiWi1/2

Wj1/2A−1j Wj1/2i

a2+b2 ab

n X

i,j=1

(Wi◦Wj),

which implies that

n

X

i=1

Wi1/2AiWi1/2

!

n

X

i=1

Wi1/2A−1i Wi1/2

!

a2+b2 2ab

n

X

i=1

Wi

!

n

X

i=1

Wi

! .

The next corollary follows on takingWi =wiIm,i= 1, . . . , n.

Corollary 2.3. LetA1, . . . , Anbe such that0< aIm ≤Ai ≤bIm,andwi ≥0, i= 1, . . . , nbe weights. Then

n

X

i=1

wiAi

!

n

X

i=1

wiA−1i

!

a2 +b2 2ab

n X

i=1

wi

!2

Im.

(8)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page8of 13 Go Back Full Screen

Close

Remark 1. The casen= 1of Corollary2.3is proved in [7]. The example A=

2 1 1 1

, a= 3−√ 5

2 , b= 3 +√ 5 2 shows that the inequality

A◦A−1 ≤ (a+b)2 4ab I2 need not be true.

For our next result we need the following lemma.

Lemma 2.4. Let0≤r≤1. ThenAr+A−r≤A+A−1 for allA >0.

Proof. Suppose thatA=UΓUwith unitaryU and diagonal matrixΓ. Then Ar+A−r =U(Γr+ Γ−r)U

≤U(Γ + Γ−1)U =A+A−1

sincexr+x−r ≤x+x−1for any positive real numberxand0≤r ≤1.

Theorem 2.5. Let0≤α < β. Then

n

X

i=1

Wi1/2AαiWi1/2

!

n

X

i=1

Wi1/2A−αi Wi1/2

!

n

X

i=1

Wi1/2AβiWi1/2

!

n

X

i=1

Wi1/2A−βi Wi1/2

!

for allAi >0andWi ≥0,i= 1, . . . , n.

(9)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page9of 13 Go Back Full Screen

Close

Proof. We first prove the inequality

(2.7)

Wi1/2AαiWi1/2

Wj1/2A−αj Wj1/2 +

Wi1/2A−αi Wi1/2

Wj1/2AαjWj1/2

Wi1/2AβiWi1/2

Wj1/2A−βj Wj1/2 +

Wi1/2A−βi Wi1/2

Wj1/2AβjWj1/2

for0≤α < β. Let0≤r≤1. Then

Wi1/2AriWi1/2

Wj1/2A−rj Wj1/2 +

Wi1/2A−ri Wi1/2

Wj1/2ArjWj1/2

=

Wi1/2⊗Wj1/2

Ari ⊗A−rj +A−ri ⊗Arj

Wi1/2⊗Wj1/2

=

Wi1/2⊗Wj1/2 Ai⊗A−1j r

+ Ai⊗A−1j −r

Wi1/2⊗Wj1/2

Wi1/2⊗Wj1/2 Ai⊗A−1j

+ Ai⊗A−1j −1

Wi1/2⊗Wj1/2

where the inequality follows from Lemma2.4. Takingr=α/βand replacingAi by Aβi andAj byAβj, we have

Wi1/2AαiWi1/2

Wj1/2A−αj Wj1/2 +

Wi1/2A−αi Wi1/2

Wj1/2AαjWj1/2

Wi1/2AβiWi1/2

Wj1/2A−βj Wj1/2

+

Wi1/2A−βi Wi1/2

Wj1/2AβjWj1/2

. Again using the fact that the Hadamard product is a principal submatrix of the tensor

(10)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page10of 13 Go Back Full Screen

Close

product, the preceding inequality implies (2.7). Summing overi, j in (2.7), we have

n

X

i=1

Wi1/2AαiWi1/2

!

n

X

i=1

Wi1/2A−αi Wi1/2

!

n

X

i=1

Wi1/2AβiWi1/2

!

n

X

i=1

Wi1/2A−βi Wi1/2

! .

Corollary 2.6. Let0≤α < β. Then

n

X

i=1

Aαi

!

n

X

j=1

A−αj

!

n

X

i=1

Aβi

!

n

X

j=1

A−βj

!

for allAi >0,i= 1, . . . , n.

Proof. TakingWi =Im in Theorem2.5we get the desired result.

Corollary 2.7. Let0≤β. Then Im

n

X

i=1

Wi1/2AβiWi1/2

!

n

X

i=1

Wi1/2A−βi Wi1/2

!

for allAi >0andWi ≥0,i= 1, . . . , n, wherePn

i=1Wi =Im. Proof. Takingα = 0in Theorem2.5gives the desired inequality.

Remark 2. Corollary2.7is another generalization of Fiedler’s inequality [5]

A◦A−1 ≥Im.

(11)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page11of 13 Go Back Full Screen

Close

Next we prove a convexity theorem involving the Hadamard product.

Theorem 2.8. The function

f(t) =A1+t◦B1−t+A1−t◦B1+t

is convex on the interval[−1,1]and attains its minimum att= 0for allA, B >0.

Proof. Sincef is continuous we need to prove only thatf is mid-point convex. Note that forA, B >0ands, tin[−1,1]the matrices

A1+s+t A1+s A1+s A1+(s−t)

,

A1−(s+t) A1−s A1−s A1−(s−t)

, B1+s+t B1+s

B1+s B1+(s−t)

,

B1−(s+t) B1−s B1−s B1−(s−t)

are positive semidefinite. Hence the matrix X=

A1+s+t◦B1−(s+t)+A1−(s+t)◦B1+s+t A1+s◦B1−s+A1−s◦B1+s A1+s◦B1−s+A1−s◦B1+s A1+(s−t)◦B1−(s−t)+A1−(s−t)◦B1+(s−t)

is positive semidefinite. Similarly, the matrix Y=

A1+(s−t)◦B1−(s−t)+A1−(s−t)◦B1+(s−t) A1+s◦B1−s+A1−s◦B1+s A1+s◦B1−s+A1−s◦B1+s A1+(s+t)◦B1−(s+t)+A1−(s+t)◦B1+s+t

is positive semidefinite. Hence

(2.8) X+Y =

f(s+t) +f(s−t) 2f(s) 2f(s) f(s+t) +f(s−t)

is positive semidefinite, which implies that f(s)≤ 1

2[f(s+t) +f(s−t)].

(12)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page12of 13 Go Back Full Screen

Close

This proves the convexity off. Further, note that f(t) = f(−t). This together with the convexity off implies thatf attains its minimum at 0.

Corollary 2.9. The function

g(t) = At◦B1−t+A1−t◦Bt

is decreasing on [0,1/2], increasing on [1/2,1], and attains its minimum at t = 12 for allA, B >0.

Proof. The proof follows on replacingA, B byA1/2, B1/2 andtby 1+t2 in Theorem 2.8.

A norm|||·|||onm×mcomplex matrices is called unitarily invariant if|||U XV|||=

|||X|||for all unitary matricesU, V. IfAis positive semidefinite andXis any matrix, then

|||A◦X||| ≤max aii|||X|||

for all unitarily invariant norms||| · |||[1]. Thus the proof of the following corollary follows from Corollary2.9using the fact thatg(1/2)≤g(t)≤g(1) =g(0).

Corollary 2.10. Let0≤t≤1. Then,

2|||A1/2◦B1/2||| ≤ |||At◦B1−t+A1−t◦Bt||| ≤ |||A+B|||

for all unitarily invariant norms||| · |||and allA, B >0.

(13)

Hadamard Product Versions Jagjit Singh Matharu and

Jaspal Singh Aujla vol. 10, iss. 2, art. 51, 2009

Title Page Contents

JJ II

J I

Page13of 13 Go Back Full Screen

Close

References

[1] T. ANDO, R.A. HORN AND C.R. JOHNSON, The singular values of the Hadamard product: A basic inequality, Linear Multilinear Algebra, 21 (1987), 345–365.

[2] J.K. BAKSALARYAND S. PUNTANEN, Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities, Aequationes Math., 41 (1991), 103–110.

[3] R.B. BAPAT AND M.K. KWONG, A generalisation of A◦A−1 ≥ I, Linear Algebra Appl., 93 (1987), 107–112.

[4] R. BHATIA, Matrix Analysis, Springer Verlag, New York, 1997.

[5] M. FIEDLER, Über eine Ungleichung für positiv definite Matrizen, Math.

Nachrichten, 23 (1961), 197–199.

[6] G.H. HARDY, J.E. LITTLEWOOD ANDG. POLYA, Inequalities, Cambridge University Press, Cambridge, 1959.

[7] J. MI ´CI ´C, J. PECARIC ANDY. SEO, Complementary inequalities to inequal- ities of Jensen and Ando based on the Mond-Peˇcari´c method, Linear Algebra Appl., 318 (2000), 87–107.

[8] A.W. MARSHALL AND I. OLKIN, Matrix versions of the Cauchy and Kan- torovich inequalities, Aequationes Math., 40 (1990), 89–93.

[9] M. SINGH, J.S. AUJLA AND H.L. VASUDEVA, Inequalities for Hadamard product and unitarily invariant norms of matrices, Linear Multilinear Algebra, 48 (2000), 247–262.

[10] M. MARCUSANDN.A. KHAN, A note on Hadamard product, Canad. Math.

Bull., 2 (1950), 81–83.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: We prove Ostrowski inequalities (regular and weighted cases) on time scales and thus unify and extend corresponding continuous and discrete versions from the literature..

We prove Ostrowski inequalities (regular and weighted cases) on time scales and thus unify and extend corresponding continuous and discrete versions from the literature.. We also

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

Abstract: We prove a certain type of inequalities concerning the integral of the Fourier transform of a function integrable on the real line.... Hardy-Type Inequalities On The Real

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

Abstract: In this paper, we prove several inequalities in the acute triangle by means of so- called Difference Substitution.. As generalization of the method, we also consider

In this paper, we prove several inequalities in the acute triangle by means of so- called Difference Substitution.. As generalization of the method, we also consider an example that

The main purpose of this paper is to obtain time scale versions of some more fundamental inte- gral inequalities used in the theory of differential and integral equations.. The