• Nem Talált Eredményt

PROVING INEQUALITIES IN ACUTE TRIANGLE WITH DIFFERENCE SUBSTITUTION

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PROVING INEQUALITIES IN ACUTE TRIANGLE WITH DIFFERENCE SUBSTITUTION"

Copied!
20
0
0

Teljes szövegt

(1)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang vol. 8, iss. 3, art. 81, 2007

Title Page

Contents

JJ II

J I

Page1of 20 Go Back Full Screen

Close

PROVING INEQUALITIES IN ACUTE TRIANGLE WITH DIFFERENCE SUBSTITUTION

YU-DONG WU ZHI-HUA ZHANG

Xinchang High School Zixing Educational Research Section

Xinchang City, Zhejiang Province 312500 Chenzhou City, Hunan Province 423400

P.R. China. P. R. China.

EMail:zjxcwyd@tom.com EMail:zxzh1234@163.com

YU-RUI ZHANG

Xinchang High School

Xinchang City, Zhejiang Province 312500 P. R. China.

EMail:xczxzyr@163.com

Received: 09 October, 2006

Accepted: 04 April, 2007

Communicated by: B. Yang 2000 AMS Sub. Class.: 26D15.

Key words: Inequalities, Acute Triangle, Difference Substitution, Linear transformation.

Abstract: In this paper, we prove several inequalities in the acute triangle by means of so- called Difference Substitution. As generalization of the method, we also consider an example that the greatest interior angle is less than or equal to120in the triangle.

Acknowledgements: The authors would like to thank Professor Lu Yang for his enthusiastic help.

(2)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page2of 20 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Some Problems and their Proofs 8

2.1 The Problems . . . 8

2.2 The Proof of Inequality (2.1) . . . 8

2.3 The Proof of Inequality (2.2) . . . 11

2.4 Remarks . . . 16

3 Generalization of the Method 17

(3)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page3of 20 Go Back Full Screen

Close

1. Introduction

In [1, 2], L. Yang suggested the use of Difference Substitution to prove asymmetric polynomial inequalities, as it had been used previously to deal with symmetric ones.

Ifx1 ≤x2 ≤x3 ≤ · · · ≤xnwithn∈N, then we set

(1.1)













x1 =t1, x2 =t1+t2, x3 =t1+t2+t3,

· · · ·

xn=t1+t2+t3+· · ·+tn, whereti ≥0for2≤i≤nandi∈N.

The expansion (1.1) is so-called a “splitting” transformation, and{t1, t2, . . . , tn} is simply the difference sequence of{x1, x2, . . . , xn}.

In general, for then-variant polynomials, there aren!different orders of{x1, x2, . . . , xn}, sorting by size. In the instance ofn= 3, we letx≤y ≤z, and take

(1.2)





x=u, y=u+v, z =u+v+w, wherev ≥0,w≥0.

Analogously, ify≤x≤z, then its “splitting” transformation is

(1.3)





y=u, x=u+v, z =u+v+w,

(4)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page4of 20 Go Back Full Screen

Close

wherev ≥0,w≥0.

Sequentially, for y ≤ z ≤ xorz ≤ x ≤ yorz ≤ y ≤ xorx ≤ z ≤ y, we set four similar linear transformations.

For a 3-variant polynomial F(x, y, z), by using the six linear transformations above, we obtain 6 membersPi(u, v, w)with1≤i≤6, and call the set{P1, P2, . . . , P6} the Difference Substitution of F(x, y, z) and denote this byDS(F). If all the co- efficients of these membersDS(F)are nonnegative, then F ≥ 0whenever x, y, z all are nonnegative. In other words, F is positive semi-definite on R3+. Difference substitution is a very valid method for proving inequalities. For more information on Difference Substitution, please refer to [3] and [4].

In this paper, by using Difference Substitution, the authors prove several inequal- ities in acute triangles.

Throughout the paper we denoteA, B, C as the interior angles,a, b, cas the side- lengths, S as the area, sas the semi-perimeter, R as the circumradius, r as the in- radius, ha, hb, hc as the altitudes, ma, mb, mc as the medians, and ra, rb, rc as the radii of the described circles of triangleABC respectively. Moreover, we will cus- tomarily use the cyclic sum symbol, that is: P

f(a) = f(a) +f(b) +f(c), and Pf(a, b) =f(a, b) +f(b, c) +f(c, a), etc.

Let us begin with the well-known Walker’s inequality [5]. In the acute triangle, show that

(1.4) s2 ≥2R2+ 8Rr+ 3r2,

or

(1.5) −2a3b3+a4b2−a4bc+a5b+ab5+b5c+b4c2

−2b3c3+b2c4 −2c3a3+c4a2+c5a+c5b+c2a4

+a5c−ab4c+a2b4−b6−c6−a6−abc4 ≥0.

(5)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page5of 20 Go Back Full Screen

Close

Let

(1.6)









x= b+c−a2 >0, y = c+a−b2 >0, z = a+b−c2 >0.

Then inequality (1.4) or (1.5) is equivalent to

(1.7) F(x, y, z) = 6xyz4+ 2xy2z3+ 2xy3z2 + 6xy4z+ 2x2yz3+ 2x2y3z + 2x3yz2+ 2x3y2z+ 6x4yz−x4y2−x2z4 −2x3z3−x4z2

−2x3y3−y4z2−y4x2−2y3z3−y2z4−18x2y2z2 ≥0.

There is no harm in supposingx ≤ y ≤ z since inequality (1.7) is symmetric for x, y, z. Then, by using (1.2), for the acute triangle, it follows that

b2+c2−a2 = (z+x)2+ (x+y)2−(y+z)2 = 2[x2+ (y+z)x−yz]

(1.8)

= 2{u2+ [(u+v) + (u+v+w)]u−(u+v)(u+v+w)}

= 2(2u2−v2 −vw)>0, andF(x, y, z)in (1.7) is transformed into

F(x, y, z) (1.9)

=P(u, v, w)

= 2u2−v2−vw 4v2+ 4w2+ 4vw u2 + 8v3+ 20vw2+ 12v2w+ 8w3

u+ 4v4+ 8v3w+ 2w4 +18vw3+ 22v2w2

+ 24v3w2+ 36v2w3+ 12vw4 u + 34v3w3+ 19v2w4+ 2vw5+ 17v4w2.

(6)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page6of 20 Go Back Full Screen

Close

Obviously F(x, y, z) = P(u, v, w) ≥ 0 from (1.8) and u > 0, v ≥ 0, w ≥ 0, i.e., inequality (1.4) or (1.5) is true.

Now, let us consider another semi-symmetric inequality [6] in the acute triangle

(1.10) cos(B −C)≤ ha

ma. It is equivalent to

(1.11) −a4+ 3b2+ 3c2

a2−2 (b−c)2(b+c)2 ≥0, and from (1.6), this equals

(1.12) F(x, y, z)

= −y2−z2+ 14yz

x2−(y+z) z2−14yz+y2

x+yz(y+z)2 ≥0.

Calculating DS(F), it consists of 3 polynomials with u > 0, v ≥ 0, w ≥ 0 as follows

(1.13) P1(u, v, w)

= 40u4+ 112u3v + 108u2v2+ 56u3w+ 14u2w2 + 40uv3+ 20uvw2 + 60uv2w+ 108u2vw+ 8v3w+ 5v2w2+vw3+ 4v4,

(1.14) P2(u, v, w)

= 2u2−v2−vw

20u2+ (24w+ 52v)u+ 53v2+ 6w2+ 52vw + 72v3+ 36vw2+ 108v2w

u+ 57v2w2 + 51v4+ 6vw3+ 102v3w,

(7)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page7of 20 Go Back Full Screen

Close

and

(1.15) P3(u, v, w)

= 2u2−v2−vw

20u2+ (52v + 28w)u+ 53v2+ 54vw+ 7w2 + 72v3+ 36vw2+ 108v2w

u+ 57v2w2 + 51v4+ 6vw3+ 102v3w.

By (1.8), we immediately obtain Pi(u, v, w) ≥ 0for1 ≤ i ≤ 3. Hence, inequality (1.10) is proved.

(8)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page8of 20 Go Back Full Screen

Close

2. Some Problems and their Proofs

2.1. The Problems

In 2004-2005, J. Liu [7,8] posed the following conjectures for the inequality in the acute triangle.

Problem 1. Let4ABC be an acute triangle. Prove the following inequalities

(2.1) X

sin 2A sinB+ sinC

2

≤ 3 4, and

(2.2) sinA

2 ≤

√mbmc 2ma . 2.2. The Proof of Inequality (2.1)

Proof. Usingsin 2α= 2 sinαcosα, we find that inequality (2.1) is equivalent to 4a10b2 −10a5b5c2 −24b6c5a+ 16a9b3+ 4a8b4−5b4c6a2

(2.3)

−8a11b−5a4b6c2+ 8a9c2b+ 4a8b2c2−16a10cb+ 8a9cb2−5a6b4c2 + 32a8b3c+ 8a7b4c+ 8a7c4b−5a6c4b2+ 32a8c3b+ 4a10c2−8a11c

−4a12−4b12−4c12+ 4a8c4+ 16a9c3−8a7b5−8a6b6 −8a6c6

−8a7c5−8a5b7 + 4a4b8−24a6b5c−24a5b6c+ 2a5b3c4 + 6a4b4c4 + 4c10b2−26a6b3c3+ 2a5b4c3−24a5c6b−5a4c6b2−24a6c5b

−10a5c5b2+ 8a4b7c−8c11b+ 32b8a3c+ 8b9a2c+ 4b8a2c2 + 2b5c3a4−26b6c3a3+ 2b5c4a3−5b6c4a2−16b10ca+ 8b9c2a

(9)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page9of 20 Go Back Full Screen

Close

+ 32b8c3a+ 8b7c4a−10b5c5a2+ 16b9a3+ 4b10a2−8b11a

−8b11c+ 4b10c2+ 16b9c3+ 4b8c4−8b7c5−8b6c6+ 4a4c8

−8a5c7−24b5c6a+ 8a4c7b+ 2c5b4a3−26c6b3a3+ 2c5b3a4

+ 4c8b2a2+ 8c9a2b+ 32c8a3b+ 8b4c7a−8c11a+ 32c8b3a+ 8c9b2a

−16c10ab+ 4c10a2+ 16c9a3−8b5c7+ 4b4c8+ 16c9b3 ≥0.

From (1.6), inequality (2.3) equals F(x, y, z)

(2.4)

=−4576x7z5−5590x6z6−116x10z2−2453x4z8−2453x8z4

−4576x5z7−788x3z9−788x9z3−2453x8y4−4576y7z5

−2453y8z4−2453x4y8 −788x9y3−788x3y9−5590x6y6

−4576x7y5−4576x5y7 −2453y4z8−4576y5z7−5590y6z6

−116y10z2−788y9z3−116y10x2−788y3z9−116y2z10 + 13448x6y5z+ 8176x7yz4+ 13448x6yz5 + 13448x5yz6 + 8176x4yz7+ 6448x2y3z7+ 1220xy9z2+ 6448x2y7z3 + 6448x3y7z2+ 1220x9yz2+ 10862x4y6z2+ 14288x2y5z5 + 10862x2y4z6+ 14288x5y2z5+ 10862x6y2z4+ 6448x7y2z3

−28248x3y5z4−28248x4y5z3+ 14288x5y5z2−57474x4y4z4

−28248x3y4z5−8672x3y3z6+ 6448x3y2z7+ 10862x2y6z4

−8672x3y6z3−28248x5y4z3+ 10862x6y4z2−28248x4y3z5

−28248x5y3z4−8672x6y3z3+ 6448x7y3z2+ 10862x4y2z6

+ 3420x8yz3+ 3420x8y3z+ 1220x2yz9+ 280xy10z+ 4066x2y2z8

(10)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page10of 20 Go Back Full Screen

Close

+ 3420x3yz8+ 3420x3y8z+ 4066x8y2z2+ 4066x2y8z2 + 1220xy2z9+ 8176x7y4z+ 3420xy3z8+ 3420xy8z3

+ 1220x2y9z+ 280xyz10+ 280x10yz+ 1220x9y2z+ 8176xy4z7 + 13448xy5z6+ 13448xy6z5+ 8176x4y7z+ 8176xy7z4

+ 13448x5y6z−116x10y2 −116x2z10≥0.

Since (2.4) is symmetric for x, y, z, there is no harm in supposing that x ≤ y ≤ z.

Using the transformation (1.2), thenF(x, y, z)in (2.4) becomes F(x, y, z)

(2.5)

=P(u, v, w)

=(2u2 −v2−vw)[(180224w2+ 180224v2+ 180224vw)u8 + (1794048v2w+ 1810432vw2+ 606208w3+ 1196032v3)u7 + (4360192vw3+ 7030784v3w+ 771072w4+ 7875584v2w2 + 3515392v4)u6+ (6049280v5+ 520704w5+ 19394048v3w2 + 13967872v2w3+ 4689152vw4+ 15123200v4w)u5

+ (2838144vw5+ 6838400v6+ 12647648v2w4 + 30324704v4w2 + 210048w6+ 26457408v3w3+ 20515200v5w)u4 + (19291776v6w + 52480w7 + 1074176vw6+ 5511936v7+ 32787968v5w2

+ 33740480v4w3+ 20662912v3w4+ 6899776v2w5)u3

+ (32727200v5w3+ 7968w8+ 2528912w6v2+ 24395856v4w4 + 27385760v6w2+ 14122880v7w+ 268096w7v+ 3530720v8

+ 10723072v3w5)u2+ (9558576v8w+ 4185944v3w6+ 13383144v4w5 + 676240v2w7 + 2124128v9+ 672w9+ 24737624v5w4+ 45200vw8

(11)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page11of 20 Go Back Full Screen

Close

+ 20832112v7w2+ 28305704v6w3)u+ 15686836v5w5+ 6092840v4w6 + 1326664v3w7+ 139150v2w8+ 24651416v6w4+ 24921352v7w3 + 1378920v10+ 6894600v9w+ 16572238v8w2+ 5112vw9+ 24w10] + (27659640v9w2+ 10558592v10w+ 689380v3w8+ 4642800v4w7 + 36001700v6w5+ 45278940v8w3+ 16715660v5w6 + 720vw10 + 49540936v7w4+ 1919744v11+ 44048v2w9)u+ 5020v2w10 + 49008067v8w4+ 142314v3w9+ 23121662v10w2+ 8144784v11w + 1451049v4w8+ 40947790v9w3 + 24vw11+ 7353016v5w7

+ 1357464v12+ 39938152v7w5+ 21582818v6w6.

This impliesF(x, y, z) =P(u, v, w)≥0from (1.8). Hence, inequality (2.1) holds.

The proof is completed.

2.3. The Proof of Inequality (2.2) Proof. Inequality (2.2) is equivalent to

(2.6) sin4 A

2 ≤ m2bm2c 16m4a.

By using the formulacosα = 1−2 sin2α2, the law of cosines and the formulas of the medians, we find that (2.6) is simply the following inequality

(2.7) −a8−4b8 + 6a6c2−34b2c6+ 20b3a4c+ 12a2c6−32b5a2c−32c5a2b

−34b6c2−51b4c4−4c8−4a6bc+ 20c3a4b−26a4b2c2+ 54a2b4c2

(12)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page12of 20 Go Back Full Screen

Close

+ 54a2b2c4−13a4b4−13a4c4 + 12a2b6 + 6a6b2+ 16b7c+ 16c7b

−64b3c3a2+ 48b5c3+ 48b3c5 ≥0.

Considering (1.6), inequality (2.7) is transformed into F(x,y, z)

(2.8)

=x8+ (4z+ 4y)x7+ (2z2+ 40yz+ 2y2)x6 + (−8z3+ 84yz2 −8y3 + 84y2z)x5

+ (−20y2z2+ 76yz3+ 76y3z−7z4−7y4)x4

+ (4z5+ 48y4z−248y3z2−248y2z3+ 4y5 + 48yz4)x3

+ (4y6−234y4z2−234y2z4+ 28y5z+ 4z6 + 28yz5+ 32y3z3)x2 + (−84z5y2+ 8z6y−84y5z2+ 256y3z4+ 256y4z3+ 8y6z)x + 84z5y3−63z4y4−12y6z2−12z6y2+ 84y5z3 ≥0.

It it easy to see that inequality (2.8) is symmetric fory, z. Therefore, we only need to prove that inequality (2.8) holds whenx≤y≤z,y≤x≤zandy≤z ≤x.

Calculating DS(F), it consists of 3 polynomials with u > 0, v ≥ 0, w ≥ 0 as follows

P1(u, v, w) (2.9)

=(2u2−v2−vw)[(192w2+ 768v2+ 768vw)u4 + (256w3+ 2112vw2+ 4800v2w+ 3200v3)u3

+ (5808v4+ 80w4+ 7376v2w2+ 11616v3w+ 1568vw3)u2

+ (6336v5+ 15840v4w+ 13440v3w2+ 16w5+ 4320v2w3+ 416vw4)u + 5112v6+ 15336v5w+ 48vw5+ 16560v4w2+ 7560v3w3

(13)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page13of 20 Go Back Full Screen

Close

+ 1272v2w4] + (7344v7+ 432w5v2+ 25704v6w+ 33912v5w2 + 20520v4w3+ 5400v3w4)u+ 20772v7w+ 5193v8+ 36w6v2 + 1332w5v3+ 32418v6w2+ 24552v5w3+ 9009v4w4

forx≤y≤z, P2(u, v, w) (2.10)

=(2u2−v2−vw)[(−384vw+ 192v2+ 192w2)u4 + (−192vw2+ 896v3−960v2w+ 256w3)u3

+ (−976v2w2+ 1776v4+ 80w4+ 224vw3−288v3w)u2

+ (2032v5−480v3w2+ 16w5+ 1328v4w+ 128v2w3+ 240vw4)u + 1640v6+ 2128v5w+ 544v4w2+ 328v3w3+ 416v2w4+ 80vw5] + (2064v5w2+ 32w6v+ 4176v6w+ 776v4w3+ 2320v7

+ 416v2w5+ 968v3w4)u+ 1640v8+ 2708w2v6 + 817w4v4 + 524w5v3+ 956w3v5+ 84w6v2+ 3768wv7

fory≤x≤z, and P3(u,v, w) (2.11)

=384u6v2+ 11072w2u2v4+ 20992w2u3v3+ 19552w2u4v2 + 8832w2u5v+ 2008w4uv3+ 5296w4u2v2+ 5376w4u3v + 36w2v6+ 1536w2u6 + 2792w3uv4+ 10400w3u2v3 + 15744w3u3v2+ 10816w3u4v+ 2368w2uv5+ 840w5uv2 + 1344w5u2v+ 2816w3u5+ 132w3v5+ 1888w4u4+ 193w4v4

(14)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page14of 20 Go Back Full Screen

Close

+ 184w6uv+ 144w5v3+ 640w5u3+ 1200wuv6+ 13120wu3v4 + 6256wu2v5+ 13824wu4v3+ 58w6v2 + 128w6u2+ 7296wu5v2 + 3360u4v4+ 1792u5v3+ 288uv7+ 1504u2v6+ 3168u3v5 + 1536wu6v+ 12w7v+w8+ 16w7u

fory≤z ≤x.

It is not difficult to see that P1(u, v, w) ≥ 0 and P3(u, v, w) ≥ 0 because u >

0, v ≥0, w ≥0and2u2 −v2−vw >0.

In order to proveP2(u, v, w)≥0, we only need prove the following inequality p(u,v, w)

(2.12)

=(−384vw+ 192v2 + 192w2)u4

+ (−192vw2+ 896v3−960v2w+ 256w3)u3

+ (−976v2w2+ 1776v4+ 80w4+ 224vw3−288v3w)u2

+ (2032v5−480v3w2 + 16w5+ 1328v4w+ 128v2w3+ 240vw4)u + 1640v6+ 2128v5w+ 544v4w2+ 328v3w3+ 416v2w4+ 80vw5

≥0,

whereu >0,v ≥0andw≥0.

(i)Foru >0, v ≥w≥0, takingv =w+twitht ≥0, then we have

p(u, v, w) =192t2u4+ (576tw2+ 1728t2w+ 896t3)u3+ (816w4+ 4512w3t + 8816w2t2+ 6816wt3+ 1776t4)u2+ (2032t5+ 11488wt4 + 3264w5+ 14528w4t+ 26976w3t2+ 25152w2t3)u+ 50544w4t2

+ 56584w3t3+ 5136w6+ 24552w5t+ 1640t6+ 35784w2t4+ 11968wt5. It obviously follows thatp(u, v, w)≥0, i.e., inequality (2.12) holds.

(15)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page15of 20 Go Back Full Screen

Close

(ii)Whenu >0, w ≥v ≥0, settingw=v+tfort≥0, we get p(u, v, w) =(2u+ 10v)t5 + (10u2+ 40uv+ 102v2)t4

+ (156uv2+ 32u3+ 349v3+ 68u2v)t3

+ (24u4 + 188uv3+ 22u2v2+ 72u3v + 603v4)t2 +v2(783v3−72u3+ 224uv2−156u2v)t

+ 6v4(17u2 + 68uv+ 107v2)

=p1(u, v, t) +p2(u, v, t), where

p1(u, v, t) = (2u+ 10v)t5+ (10u2+ 40uv+ 102v2)t4

+ (156uv2+ 32u3+ 349v3+ 68u2v)t3 ≥0, and

(2.13) p2(u, v, t) = (24u4+ 188uv3+ 22u2v2 + 72u3v+ 603v4)t2 +v2(783v3−72u3+ 224uv2−156u2v)t

+ 6v4(17u2+ 68uv+ 107v2).

It is easy to see that 24u4 + 188uv3 + 22u2v2 + 72u3v + 603v4 > 0, and the discriminant of the quadratic function (2.13) with respect totis

(2.14) ∆(u, v) =−v4(935415v6+ 480144u3v3+ 1116096uv5

+ 803456u2v4+ 4608u6+ 196032u4v2+ 46080u5v)≤0.

This is to say thatp2(u, v, t)≥0.

Hence,P2(u, v, w)≥0. From the proof above, the required result (2.6) is proved.

(16)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page16of 20 Go Back Full Screen

Close

2.4. Remarks

Remark 1. By the same argument as above, we also prove the following inequalities conjectures [9,10,11] in the acute triangle

(2.15) X

m2ah2a ≥X m2ara2,

(2.16) X

sin8A≥X

cos8 A 2,

(2.17) X

(b−c)2 ≥X a b+c

2

(rb−rc)2, and

(2.18) X

(hb+hc −ha)3 ≥3mambmc.

Remark 2. The operations in this paper were performed using mathematical software Maple 9.0.

(17)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page17of 20 Go Back Full Screen

Close

3. Generalization of the Method

In fact, Difference Substitution can go even further. Now, we consider the following inequality [12]. In4ABC, ifmax (A, B, C)≤ 3 , then

(3.1) s2 ≥R2+ 10Rr+ 3r2.

Utilizing the known formulasR = abc4S, r = Ss andS = p

s(s−a)(s−b)(s−c), from (1.6), inequality (3.1) is equivalent to

(3.2) 3c2a2b2−a2bc3−a3bc2−a3b2c−a2b3c−ab2c3−ab3c2 −2b3c3

−2a3c3+c4b2−2a3b3+c5b+a4c2+b4c2+b5a+a5c+c5a

−a6+a4b2+a5b−b6−c6+a2b4+b5c+a2c4 ≥0, or

(3.3) F(x, y, z)

=−42x2y2z2+ 14y4zx+ 14xyz4+ 2xy2z3 + 2x2y3z+ 2xy3z2 + 14x4yz+ 2x3yz2+ 2x2yz3+ 2x3y2z−x4y2−x2z4

−2x3z3−x4z2−2x3y3−y4z2 −y4x2−2y3z3−y2z4 ≥0, wherex >0, y >0, z >0.

Since inequality (3.3) is symmetric with x, y, z, there is no harm in supposing thatx≤y≤z. From (1.2),F(x, y, z)in (3.3) is transformed into

F(x, y, z) =P(u, v, w) (3.4)

=(8u2+ 4uv+ 2uw−v2−vw)(8uvw2+ 12uv2w+ 4u2vw + 4v4+ 4u2v2+ 2uw3+ 8uv3+ 8v3w+ 7v2w2+ 3vw3) + 2w2(v+ 2u)2(v+ 2u+w)2 ≥0,

(18)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page18of 20 Go Back Full Screen

Close

and formax (A, B, C)≤ 3 andy = cosxdecreasing inx∈(0, π), we have b2+c2+bc−a2 =b2+c2− 1

2bccos2π 3 −a2 (3.5)

= 3x2+ 3(y+z)x−yz

= 8u2+ 4uv+ 2uw−v2−vw

≥b2+c2−1

2bccosA−a2 = 0.

SinceF(x, y, z) = P(u, v, w) ≥ 0foru > 0, v ≥ 0andw ≥ 0, inequality (3.1) is obtained.

(19)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page19of 20 Go Back Full Screen

Close

References

[1] L. YANG, Difference substitution and automated inequality proving, J.

Guangzhou Univ. (Natural Sciences Edition), 5(2) (2006), 1–7. (in Chinese) [2] L. YANG, Solving harder problems with lesser mathematics, Proceedings of

the 10th Asian Technology Conference in Mathematics, ATCM Inc., 2005, 37–

46.

[3] B.-Q. LIU, The generating operation and its application in the proof of the symmetric inequality in n variables, J. Guangdong Edu. Inst., 25(3) (2005), 10–14. (in Chinese)

[4] Y.-D. WU, On one of H.Alzer’s problems, J. Ineq. Pure Appl. Math., 7(2) (2006), Art. 71. [ONLINE:http://jipam.vu.edu.au/article.

php?sid=688].

[5] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C ANDV. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989, 248.

[6] X.-G. CHUAND J. LIU, Some semi-symmetric inequalities in triangle, High- School Mathematics Monthly, 3(1999), 23–25. (in Chinese)

[7] J. LIU, CIQ.51, Communication in Research of Inequalities (2003), no. 6, 94.

(in Chinese)

[8] J. LIU, Nine sine inequality, Manuscript, 2005.

[9] X.-G. CHU, On several inequalities with respect to medians in acute triangle, Research in Inequalities, Tibet People’s Press, 2000, 296. (in Chinese)

[10] B.-Q. LIU, 110 interesting inequalities problems, Research in Inequalities. Ti- bet People’s Press, 2000, 389–405. (in Chinese)

(20)

Proving Inequalities with Difference Substitution Yu-Dong Wu, Zhi-Hua Zhang

and Yu-Rui Zhang

vol. 8, iss. 3, art. 81, 2007

Title Page Contents

JJ II

J I

Page20of 20 Go Back Full Screen

Close

[11] B.-Q. LIU, Private Communication, 2003.

[12] X.-G. CHU, Two Geometric inequalities with the Fermat problem, J. Beijing Union Univ. (Natural Sciences), 18(3) (2004), 62–64. (in Chinese)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, we show the triangle inequality and its reverse inequality in quasi- Banach spaces.... Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin

Abstract: In this note, we describe a method for establishing trigonometric inequalities that involve symmetric functions in the cosines of the angles of a triangle.. The method

In this note, we describe a method for establishing trigonometric inequalities that involve symmetric functions in the cosines of the angles of a triangle.. The method is based

In this paper, we prove several inequalities in the acute triangle by means of so- called Difference Substitution.. As generalization of the method, we also consider an example that

In the present paper a class of geometric inequalities concerning the angle bisectors and the sides of a triangle are establishedJ. Moreover an interesting open problem

In the present paper a class of geometric inequalities concerning the angle bisectors and the sides of a triangle are established.. Moreover an interesting open problem

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality