• Nem Talált Eredményt

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES"

Copied!
12
0
0

Teljes szövegt

(1)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

JJ II

J I

Page1of 12 Go Back Full Screen

Close

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

SOUMIA BELARBI AND ZOUBIR DAHMANI

Department of Mathematics University of Mostaganem Algeria

EMail:soumia-math@hotmail.fr zzdahmani@yahoo.fr

Received: 23 May, 2009

Accepted: 24 June, 2009

Communicated by: G. Anastassiou 2000 AMS Sub. Class.: 26D10, 26A33.

Key words: Fractional integral inequalities, Riemann-Liouville fractional integral.

Abstract: In this paper, using the Riemann-Liouville fractional integral, we establish some new integral inequalities for the Chebyshev functional in the case of two syn- chronous functions.

Acknowledgements: The authors would like to thank professor A. El Farissi for his helpful.

(2)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page2of 12 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Description of Fractional Calculus 4

3 Main Results 5

(3)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page3of 12 Go Back Full Screen

Close

1. Introduction

Let us consider the functional [1]:

(1.1) T(f, g) := 1 b−a

Z b

a

f(x)g(x)dx

− 1 b−a

Z b

a

f(x)dx 1 b−a

Z b

a

g(x)dx

,

where f and g are two integrable functions which are synchronous on [a, b]

i.e.

(f(x)−f(y))(g(x)−g(y))≥0,for anyx, y ∈[a, b]

.

Many researchers have given considerable attention to (1.1) and a number of inequalities have appeared in the literature, see [3,4,5].

The main purpose of this paper is to establish some inequalities for the functional (1.1) using fractional integrals.

(4)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page4of 12 Go Back Full Screen

Close

2. Description of Fractional Calculus

We will give the necessary notation and basic definitions below. For more details, one can consult [2,6].

Definition 2.1. A real valued functionf(t), t≥0is said to be in the spaceCµ, µ ∈ R if there exists a real number p > µ such that f(t) = tpf1(t), where f1(t) ∈ C([0,∞[).

Definition 2.2. A function f(t), t ≥ 0 is said to be in the space Cµn, n ∈ R, if f(n) ∈Cµ.

Definition 2.3. The Riemann-Liouville fractional integral operator of orderα ≥0, for a functionf ∈Cµ,(µ≥ −1)is defined as

Jαf(t) = 1 Γ(α)

Z t

0

(t−τ)α−1f(τ)dτ; α >0, t >0, (2.1)

J0f(t) = f(t), whereΓ(α) :=R

0 e−uuα−1du.

For the convenience of establishing the results, we give the semigroup property:

(2.2) JαJβf(t) =Jα+βf(t), α ≥0, β ≥0, which implies the commutative property:

(2.3) JαJβf(t) = JβJαf(t).

From (2.1), whenf(t) =tµwe get another expression that will be used later:

(2.4) Jαtµ= Γ(µ+ 1)

Γ(α+µ+ 1)tα+µ, α >0; µ >−1, t >0.

(5)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page5of 12 Go Back Full Screen

Close

3. Main Results

Theorem 3.1. Let f and g be two synchronous functions on [0,∞[. Then for all t >0, α >0,we have:

(3.1) Jα(f g)(t)≥ Γ(α+ 1)

tα Jαf(t)Jαg(t).

Proof. Since the functionsfandgare synchronous on[0,∞[,then for allτ ≥0, ρ≥ 0,we have

(3.2)

f(τ)−f(ρ)

g(τ)−g(ρ)

≥0.

Therefore

(3.3) f(τ)g(τ) +f(ρ)g(ρ)≥f(τ)g(ρ) +f(ρ)g(τ).

Now, multiplying both sides of (3.3) by (t−τ)Γ(α)α−1, τ ∈(0, t),we get (3.4) (t−τ)α−1

Γ(α) f(τ)g(τ) + (t−τ)α−1

Γ(α) f(ρ)g(ρ)

≥ (t−τ)α−1

Γ(α) f(τ)g(ρ) + (t−τ)α−1

Γ(α) f(ρ)g(τ).

Then integrating (3.4) over(0, t), we obtain:

(3.5) 1 Γ(α)

Z t

0

(t−τ)α−1f(τ)g(τ)dτ+ 1 Γ(α)

Z t

0

(t−τ)α−1f(ρ)g(ρ)dτ

≥ 1 Γ(α)

Z t

0

(t−τ)α−1f(τ)g(ρ)dτ+ 1 Γ(α)

Z t

0

(t−τ)α−1f(ρ)g(τ)dτ.

(6)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page6of 12 Go Back Full Screen

Close

Consequently,

(3.6) Jα(f g)(t) +f(ρ)g(ρ) 1 Γ (α)

Z t

0

(t−τ)α−1

≥ g(ρ) Γ (α)

Z t

0

(t−τ)α−1f(τ)dτ + f(ρ) Γ (α)

Z t

0

(t−τ)α−1g(τ)dτ.

So we have

(3.7) Jα(f g)(t) +f(ρ)g(ρ)Jα(1)≥g(ρ)Jα(f)(t) +f(ρ)Jα(g)(t).

Multiplying both sides of (3.7) by (t−ρ)Γ(α)α−1, ρ∈(0, t),we obtain:

(3.8) (t−ρ)α−1

Γ (α) Jα(f g)(t) + (t−ρ)α−1

Γ (α) f(ρ)g(ρ)Jα(1)

≥ (t−ρ)α−1

Γ (α) g(ρ)Jαf(t) + (t−ρ)α−1

Γ (α) f(ρ)Jαg(t).

Now integrating (3.8) over(0, t),we get:

(3.9) Jα(f g)(t) Z t

0

(t−ρ)α−1

Γ(α) dρ+Jα(1) Γ(α)

Z t

0

f(ρ)g(ρ)(t−ρ)α−1

≥ Jαf(t) Γ(α)

Z t

0

(t−ρ)α−1g(ρ)dρ+ Jαg(t) Γ(α)

Z t

0

(t−ρ)α−1f(ρ)dρ.

Hence

(3.10) Jα(f g)(t)≥ 1

Jα(1)Jαf(t)Jαg(t), and this ends the proof.

(7)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page7of 12 Go Back Full Screen

Close

The second result is:

Theorem 3.2. Let f and g be two synchronous functions on [0,∞[. Then for all t >0, α >0, β >0,we have:

(3.11) tα

Γ (α+ 1)Jβ(f g)(t) + tβ

Γ (β+ 1)Jα(f g)(t)

≥Jαf(t)Jβg(t) +Jβf(t)Jαg(t).

Proof. Using similar arguments as in the proof of Theorem3.1, we can write

(3.12) (t−ρ)β−1

Γ (β) Jα(f g) (t) +Jα(1)(t−ρ)β−1

Γ (β) f(ρ)g(ρ)

≥ (t−ρ)β−1

Γ (β) g(ρ)Jαf(t) + (t−ρ)β−1

Γ (β) f(ρ)Jαg(t).

By integrating (3.12) over(0, t),we obtain (3.13) Jα(f g)(t)

Z t

0

(t−ρ)β−1

Γ (β) dρ+ Jα(1) Γ (β)

Z t

0

f(ρ)g(ρ) (t−ρ)β−1

≥ Jαf(t) Γ (β)

Z t

0

(t−ρ)β−1g(ρ)dρ+Jαg(t) Γ (β)

Z t

0

(t−ρ)β−1f(ρ)dρ, and this ends the proof.

Remark 1. The inequalities (3.1) and (3.11) are reversed if the functions are asyn- chronous on[0,∞[(i.e. (f(x)−f(y))(g(x)−g(y))≤0,for anyx, y ∈[0,∞[).

Remark 2. Applying Theorem3.2forα=β,we obtain Theorem3.1.

(8)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page8of 12 Go Back Full Screen

Close

The third result is:

Theorem 3.3. Let(fi)i=1,...,n benpositive increasing functions on[0,∞[.Then for anyt >0, α >0,we have

(3.14) Jα

n

Y

i=1

fi

!

(t)≥(Jα(1))1−n

n

Y

i=1

Jαfi(t).

Proof. We prove this theorem by induction.

Clearly, forn = 1,we haveJα(f1) (t)≥Jα(f1) (t),for allt >0, α >0.

Forn = 2,applying (3.1), we obtain:

Jα(f1f2) (t)≥(Jα(1))−1Jα(f1) (t)Jα(f2) (t), for allt >0, α >0.

Now, suppose that (induction hypothesis) (3.15) Jα

n−1

Y

i=1

fi

!

(t)≥(Jα(1))2−n

n−1

Y

i=1

Jαfi(t), t >0, α >0.

Since(fi)i=1,...,n are positive increasing functions, then Qn−1 i=1 fi

(t)is an increas- ing function. Hence we can apply Theorem 3.1 to the functions Qn−1

i=1 fi = g, fn =f.We obtain:

(3.16) Jα

n

Y

i=1

fi

!

(t) = Jα(f g) (t)≥(Jα(1))−1Jα

n−1

Y

i=1

fi

!

(t)Jα(fn) (t).

Taking into account the hypothesis (3.15), we obtain:

(3.17) Jα

n

Y

i=1

fi

!

(t)≥(Jα(1))−1((Jα(1))2−n

n−1

Y

i=1

Jαfi

!

(t))Jα(fn) (t), and this ends the proof.

(9)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page9of 12 Go Back Full Screen

Close

We further have:

Theorem 3.4. Let f and g be two functions defined on [0,+∞[, such that f is increasing,gis differentiable and there exists a real numberm:= inft≥0g0(t).Then the inequality

(3.18) Jα(f g)(t)≥(Jα(1))−1Jαf(t)Jαg(t)− mt

α+ 1Jαf(t) +mJα(tf(t)) is valid for allt >0, α >0.

Proof. We consider the functionh(t) := g(t)−mt.It is clear thathis differentiable and it is increasing on[0,+∞[. Then using Theorem3.1, we can write:

Jα

(g−mt)f(t) (3.19)

≥(Jα(1))−1Jαf(t)

Jαg(t)−mJα(t)

≥(Jα(1))−1Jαf(t)Jαg(t)− m(Jα(1))−1tα+1

Γ (α+ 2) Jαf(t)

≥(Jα(1))−1Jαf(t)Jαg(t)− mΓ (α+ 1)t

Γ (α+ 2) Jαf(t)

≥(Jα(1))−1Jαf(t)Jαg(t)− mt

α+ 1Jαf(t).

Hence

(3.20) Jα(f g)(t)≥(Jα(1))−1Jαf(t)Jαg(t)

− mt

α+ 1Jαf(t) +mJα(tf(t)), t >0, α >0.

Theorem3.4is thus proved.

(10)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page10of 12 Go Back Full Screen

Close

Corollary 3.5. Letf andgbe two functions defined on[0,+∞[.

(A) Suppose thatf is decreasing,gis differentiable and there exists a real number M := supt≥0g0(t). Then for allt >0,α >0, we have:

(3.21) Jα(f g)(t)≥(Jα(1))−1Jαf(t)Jαg(t)− M t

α+ 1Jαf(t)+M Jα(tf(t)). (B) Suppose that f and g are differentiable and there exist m1 := inft≥0f0(x),

m2 := inft≥0g0(t). Then we have

(3.22) Jα(f g)(t)−m1Jαtg(t)−m2Jαtf(t) +m1m2Jαt2

≥(Jα(1))−1

Jαf(t)Jαg(t)−m1JαtJαg(t)

−m2JαtJαf(t) +m1m2(Jαt)2 .

(C) Suppose that f and g are differentiable and there exist M1 := supt≥0f0(t), M2 := supt≥0g0(t).Then the inequality

(3.23) Jα(f g)(t)−M1Jαtg(t)−M2Jαtf(t) +M1M2Jαt2

≥(Jα(1))−1

Jαf(t)Jαg(t)−M1JαtJαg(t)

−M2JαtJαf(t) +M1M2(Jαt)2 .

is valid.

Proof.

(A): Apply Theorem3.1to the functionsf andG(t) :=g(t)−m2t.

(11)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page11of 12 Go Back Full Screen

Close

(B): Apply Theorem3.1to the functionsF andG, where:F(t) :=f(t)−m1t, G(t) :=

g(t)−m2t.

To prove(C),we apply Theorem3.1to the functions

F(t) :=f(t)−M1t, G(t) := g(t)−M2t.

(12)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ II

J I

Page12of 12 Go Back Full Screen

Close

References

[1] P.L. CHEBYSHEV, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.

[2] R. GORENFLOANDF. MAINARDI, Fractional Calculus: Integral and Differ- ential Equations of Fractional Order, Springer Verlag, Wien (1997), 223–276.

[3] S.M. MALAMUD, Some complements to the Jenson and Chebyshev inequali- ties and a problem of W. Walter, Proc. Amer. Math. Soc., 129(9) (2001), 2671–

2678.

[4] S. MARINKOVIC, P. RAJKOVIC ANDM. STANKOVIC, The inequalities for some typesq-integrals, Comput. Math. Appl., 56 (2008), 2490–2498.

[5] B.G. PACHPATTE, A note on Chebyshev-Grüss type inequalities for differen- tial functions, Tamsui Oxford Journal of Mathematical Sciences, 22(1) (2006), 29–36.

[6] I. PODLUBNI, Fractional Differential Equations, Academic Press, San Diego, 1999.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

Abstract: In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp... Inequalities for Special and q-Special

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func- tions, Integral inequalities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s type inequali-

RACHDI, Hardy type inequalities for integral trans- forms associated with Jacobi operator, International Journal Of Mathe- matics And Mathematical Sciences, 3 (2005), 329–348.

ON CHEBYSHEV TYPE INEQUALITIES INVOLVING FUNCTIONS WHOSE DERIVATIVES BELONG TO L p SPACES VIA ISOTONIC

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequali- ties for products of

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequalities for products of