• Nem Talált Eredményt

ON NEW INEQUALITIES OF HADAMARD-TYPE FOR LIPSCHITZIAN MAPPINGS AND THEIR APPLICATIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON NEW INEQUALITIES OF HADAMARD-TYPE FOR LIPSCHITZIAN MAPPINGS AND THEIR APPLICATIONS"

Copied!
22
0
0

Teljes szövegt

(1)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page

Contents

JJ II

J I

Page1of 22 Go Back Full Screen

Close

ON NEW INEQUALITIES OF HADAMARD-TYPE FOR LIPSCHITZIAN MAPPINGS AND THEIR

APPLICATIONS

LIANG-CHENG WANG

School of Mathematica Scientia, Chongqing Institute of Technology,

No. 4 of Xingsheng Lu, Yangjia Ping 400050, Chongqing City, China.

EMail:wlc@cqit.edu.cn

Received: 11 December, 2005

Accepted: 16 August, 2006

Communicated by: F. Qi

2000 AMS Sub. Class.: Primary 26D07; Secondary 26B25, 26D15.

Key words: Lipschitzian mappings, Hadamard inequality, Convex function.

Abstract: In this paper, we study some new inequalities of Hadamard’s Type for Lips- chitzian mappings. some applications are also included.

Acknowledgements: This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.

(2)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page2of 22 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 6

3 Applications 18

(3)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page3of 22 Go Back Full Screen

Close

1. Introduction

Letf : [a, b]→R(a < b) be a continuous function.

Iff is convex on[a, b], then

(1.1) f

a+b 2

≤ 1 b−a

Z b a

f(x)dx≤ f(a) +f(b)

2 .

The inequalities in (1.1) are known as the Hermite-Hadamard inequality [1].

For some recent results which generalize, improve, and extend this classic in- equality, see references of [2] – [7]. In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings. we list these notations and symbols by

Y = (y1, y2, . . . , yn)∈Rn,t= (t1, t2, . . . , tn)∈Rn,Tn=t1+t2+· · ·+tn;0= (0,0, . . . ,0),1= (1,1, . . . ,1), 1n = (n1,n1, . . . ,n1)and(1i,0) = (0, . . . ,0,1,0, . . . ,0) (1 isith component,i= 1,2, . . . , n) are special points inRn;G=

0,1n

× 0,1n

×

· · · × 0,1n

,I = [0,1]×[0,1]× · · · ×[0,1],V = [a, b]×[a, b]× · · · ×[a, b],D= [a, x1]×[x1, x2]× · · · ×[xn−1, b](xi =a+(b−a)in , i= 0,1, . . . , n;x0 =a, xn=b), H ={t∈I|Tn≤1}andL={t∈I|Tn = 1}are subsets inRn.

We list these mappings by Rn :I 7→R, Rn(t)=4

n b−a

nZ

D

f 1

n

n

X

i=1

tiyi+ (1−ti)xi−1+xi 2

! dY,

Sn :H 7→R, Sn(t)=4 1 (b−a)n

Z

V

f

n

X

i=1

tiyi+ (1−Tn)a+b 2

! dY

(4)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page4of 22 Go Back Full Screen

Close

and

Pn :L7→R, Pn(t)=4 1 (b−a)n

Z

V

f

n

X

i=1

tiyi

! dY.

We writePn+1 in the following equivalent form Pn+1 :H 7→R, Pn+1(t)=4 1

(b−a)n+1 Z

V

"

Z b a

f

n

X

i=1

tiyi+ (1−Tn)x

! dx

# dY.

Let g : A ⊆ Rn → R. For all t(j) =

t(j)1 , . . . , t(j)n

∈ A(j = 1,2) with t(1)i ≤t(2)i (i= 1,2, . . . , n), ifg(t(1))≤g(t(2)), then we callgincreasing onA.

For these mappings and if f is convex on[a, b], L.-C. Wang in [2] gave the fol- lowing properties and inequalities:

Pnis convex onL;RnandSnare convex, increasing onIandG, respectively;

f

a+b 2

=Rn(0)≤Rn(t)≤Rn(1) (1.2)

= n

b−a nZ

D

f 1

n

n

X

i=1

yi

! dY

≤ 1 b−a

Z b a

f(x)dx

for anyt∈I, (1.3) f

a+b 2

=Sn(0)≤Sn(t)≤Sn 1

n

= 1

(b−a)n Z

V

f 1

n

n

X

i=1

yi

! dY

(5)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page5of 22 Go Back Full Screen

Close

for allt∈G,

(1.4) Sn(t)≤Pn+1(t)

for allt∈H, and (1.5) Sn

1 n

=Pn 1

n

≤Pn(t)≤Pn(1i,0) = 1 b−a

Z b a

f(x)dx for allt∈L.

(1.2) – (1.5) are refinements of (1.1).

Recently, Dragomir et al. [3], Yang and Tseng [5], Matic and Peˇcari´c [6] and L.-C. Wang [7] proved some results for Lipschitzian mappings related to (1.1). In this paper, we will prove some new inequalities for Lipschitzian mappings related to the mappingsRn(or (1.2)),Sn(or (1.3)) andPn(or (1.5) and (1.4)). Finally, some applications are given.

(6)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page6of 22 Go Back Full Screen

Close

2. Main Results

A function f : [a, b] → R is called anM−Lipschitzian mapping, if for every two elementsx, y ∈[a, b]andM >0we have

|f(x)−f(y)| ≤M|x−y|.

For the mappingRn(t), we have the following theorem:

Theorem 2.1. Letf : [a, b]→Rbe anM−Lipschitzian mapping, then we have

(2.1)

Rn(t(2))−Rn(t(1)) ≤ M

4n2(b−a)

n

X

i=1

t(2)i −t(1)i

for anyt(j) =

t(j)1 , . . . , t(j)n

∈I(j = 1,2),

(2.2)

f

a+b 2

−Rn(t)

≤ M

4n2(b−a)Tn and

(2.3)

Rn(t)− n

b−a nZ

D

f 1

n

n

X

i=1

yi

! dY

≤ M

4n2(b−a) (n−Tn) for allt∈I, and

(2.4)

n b−a

nZ

D

f 1

n

n

X

i=1

yi

!

dY − 1 b−a

Z b a

f(x)dx

≤ M(n2−1)

3n2 (b−a).

(7)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page7of 22 Go Back Full Screen

Close

Proof. (1) Forxi = (b−a)in (i= 0,1, . . . , n;x0 =a, xn=b), from integral properties, we have

Rn t(2)

−Rn t(1)

≤ n

b−a nZ

D

f 1

n

n

X

i=1

t(2)i yi+ (1−t(2)i )xi−1+xi 2

!

− f 1 n

n

X

i=1

t(1)i yi+ (1−t(1)i )xi−1+xi 2

!

dY

≤ n

b−a n

· M n

Z

D

n

X

i=1

t(2)i −t(1)i

yi−xi−1+xi

2

dY

≤ n

b−a n

· M n

n

X

i=1

t(2)i −t(1)i

Z

D

yi− xi−1+xi 2

dY

= n

b−a n

· M n

n

X

i=1

t(2)i −t(1)i

b−a n

n−1Z xi

xi−1

yi− xi−1+xi 2

dyi

= M

b−a

n

X

i=1

t(2)i −t(1)i

"

Z xi−1+xi2

xi−1

xi−1+xi 2 −yi

dyi

+ Z xi

xi−1+xi 2

yi− xi−1+xi 2

dyi

#

= M

4n2(b−a)

n

X

i=1

t(2)i −t(1)i . This completes the proof of (2.1).

(8)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page8of 22 Go Back Full Screen

Close

(2) The inequalities (2.2) and (2.3) follow from (2.1) by choosingt(1) =0,t(2) =t andt(1) =1,t(2)=t, respectively. This completes the proof of (2.2) and (2.3).

(3) From integral properties, we have (2.5)

Z b a

f(x)dx =

n

X

i=1

Z xi

xi−1

f(yi)dyi = n

b−a

n−1 n

X

i=1

Z

D

f(yi)dY.

Using (2.5) and integral properties, we obtain

n b−a

nZ

D

f 1

n

n

X

i=1

yi

!

dY − 1 b−a

Z b a

f(x)dx

≤ n

b−a nZ

D

1 n

n

X

i=1

f 1

n

n

X

j=1

yj

!

− 1 n

n

X

i=1

f(yi)

dY

≤ n

b−a n

·M n

Z

D n

X

i=1

1 n

n

X

j=1

yj−yi

dY

≤ n

b−a n

·M n2

n

X

i=1

Z

D n

X

j=1

|yj−yi|dY

= n

b−a n

· M n2

n

X

i=1

Z

D

"i−1 X

j=1

(yi−yj) +

n

X

j=i+1

(yj −yi)

# dY

= n

b−a ·M n2

n

X

i=1

"i−1 X

j=1

Z xi

xi−1

yidyi− Z xj

xj−1

yjdyj

!

(9)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page9of 22 Go Back Full Screen

Close

+

n

X

j=i+1

Z xj

xj−1

yjdyj − Z xi

xi−1

yidyi

!#

= n

b−a ·M n2

n

X

i=1

"

b−a n

2 i−1

X

j=1

(i−j) +

n

X

j=i+1

(j−i)

!#

= M(n2−1)

3n2 (b−a).

This completes the proof of (2.4).

This completes the proof of Theorem2.1.

Corollary 2.2. Let f be convex on [a, b], withf+0(a) and f0 (b) existing. Then we obtain

0≤Rn(t(2))−Rn(t(1)) (2.6)

≤ max{|f+0 (a)|,|f0 (b)|}

4n2 (b−a)

n

X

i=1

t(2)i −t(1)i

for anyt(j) = (t(j)1 , . . . , t(j)n )∈I(j = 1,2)witht(2)i ≥t(1)i (i= 1,2, . . . , n), (2.7) 0≤Rn(t)−f

a+b 2

≤ max{|f+0 (a)|,|f0 (b)|}

4n2 (b−a)Tn

and

0≤ n

b−a nZ

D

f 1

n

n

X

i=1

yi

!

dY −Rn(t) (2.8)

≤ max{|f+0 (a)|,|f0 (b)|}

4n2 (b−a)(n−Tn)

(10)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page10of 22 Go Back Full Screen

Close

for allt∈I, and 0≤ 1

b−a Z b

a

f(x)dx− n

b−a nZ

D

f 1

n

n

X

i=1

yi

! dY (2.9)

≤ max{|f+0 (a)|,|f0 (b)|}(n2−1)

3n2 (b−a).

Proof. For anyx, y ∈ [a, b], from properties of convex functions, we have the fol- lowingmax{|f+0 (a)|,|f0 (b)|}−Lipschitzian inequality (see [8]):

(2.10) |f(x)−f(y)| ≤max{|f+0(a)|,|f0(b)|}|x−y|.

SinceRn is increasing onI, using (1.2), (2.10) and Theorem2.1, we obtain (2.6)- (2.9).

This completes the proof of Corollary (2.2).

For the mappingSn(t), we have the following theorem:

Theorem 2.3. Letf be defined as in Theorem2.1, then we obtain

(2.11)

Sn(t(2))−Sn(t(1)) ≤ M

4 (b−a)

n

X

i=1

t(2)i −t(1)i

for anyt(j) = (t(j)1 , . . . , t(j)n )∈H(j = 1,2), (2.12)

f

a+b 2

−Sn(t)

≤ M

4 (b−a)Tn

and (2.13)

Sn(t)− 1 (b−a)n

Z

V

f 1

n

n

X

i=1

yi

! dY

≤ M

4n(b−a)

n

X

i=1

|nti−1|

(11)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page11of 22 Go Back Full Screen

Close

for allt∈H, and (2.14)

f

a+b 2

− 1 (b−a)n

Z

V

f 1

n

n

X

i=1

yi

! dY

≤ M

4 (b−a).

Proof. (1) From integral properties, we obtain Sn t(2)

−Sn t(1)

≤ 1 (b−a)n

Z

V

f

n

X

i=1

t(2)i yi+ 1−

n

X

i=1

t(2)i

!a+b 2

!

−f

n

X

i=1

t(1)i yi+ 1−

n

X

i=1

t(1)i

!a+b 2

!

dY

≤ M

(b−a)n Z

V

n

X

i=1

t(2)i −t(1)i

yi− a+b 2

dY

≤ M

(b−a)n

n

X

i=1

t(2)i −t(1)i

Z

V

yi− a+b 2

dY

= M

b−a

n

X

i=1

t(2)i −t(1)i

Z b a

yi− a+b 2

dyi

= M

b−a

n

X

i=1

t(2)i −t(1)i

"

Z a+b2

a

a+b 2 −yi

dyi+

Z b

a+b 2

yi− a+b 2

dyi

#

= M

4 (b−a)

n

X

i=1

t(2)i −t(1)i . This completes the proof of (2.11).

(12)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page12of 22 Go Back Full Screen

Close

(2) The inequalities (2.12) and (2.13) follow from (2.11) by choosing t(1) = 0, t(2) = tand t(1) = 1n, t(2) = t, respectively. The inequalities (2.14) follow from (2.12) by choosingt(1) = n1. This completes the proof of (2.12)-(2.14).

This completes the proof of Theorem2.3.

Corollary 2.4. Letf be defined as in Corollary2.2, then we have (2.15) 0≤Sn(t(2))−Sn(t(1))≤ max{|f+0(a)|,|f0(b)|}

4 (b−a)

n

X

i=1

t(2)i −t(1)i

for anyt(j) = (t(j)1 , . . . , t(j)n )∈G(j = 1,2)witht(2)i ≥t(1)i (i= 1,2, . . . , n), (2.16) 0≤Sn(t)−f

a+b 2

≤ max{|f+0(a)|,|f0(b)|}

4 (b−a)Tn

and

0≤ 1

(b−a)n Z

V

f 1

n

n

X

i=1

yi

!

dY −Sn(t) (2.17)

≤ max{|f+0 (a)|,|f0 (b)|}

4 (b−a)(1−Tn) for allt∈G, and

0≤ 1

(b−a)n Z

V

f 1

n

n

X

i=1

yi

!

dY −f

a+b 2

(2.18)

≤ max{|f+0(a)|,|f0(b)|}

4 (b−a).

(13)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page13of 22 Go Back Full Screen

Close

Proof. SinceSnis increasing on G, using (1.3), (2.10) and Theorem2.3, we obtain (2.15) – (2.18).

This completes the proof of Corollary (2.4).

For the mappingPn(t), we have the following theorem:

Theorem 2.5. Letf be defined as in Theorem2.1. Forn≥2, then we obtain (2.19) |pn(t(2))−pn(t(1))| ≤ M

3 (b−a)

n−1

X

i=1

t(2)i −t(1)i

for anyt(j) =

t(j)1 , . . . , t(j)n

∈L(j = 1,2),

(2.20)

1 (b−a)n

Z

V

f 1

n

n

X

i=1

yi

!

dY −pn(t)

≤ M

3n(b−a)

n−1

X

i=1

|nti−1|

and (2.21)

pn(t)− 1 b−a

Z b a

f(x)dx

≤ M

3 (b−a)

n−1

X

i=1

ti

for allt∈L, and (2.22)

1 (b−a)n

Z

V

f 1

n

n

X

i=1

yi

!

dY − 1 b−a

Z b a

f(x)dx

≤ M(n−1)

3n (b−a).

Forn ≥1and allt∈H, then we have (2.23) |Sn(t)−Pn+1(t)| ≤ M

4 (b−a)(1−Tn).

(14)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page14of 22 Go Back Full Screen

Close

Proof. (1) Sincen≥2andTn =t1+· · ·+tn−1+tn = 1, we can writePn(t)in the following equivalent form

(2.24) Pn(t) = 1 (b−a)n

Z

V

f

n−1

X

i=1

tiyi+ 1−

n−1

X

i=1

ti

! yn

! dY.

Using (2.24) and integral properties, we obtain Pn t(2)

−Pn t(1)

≤ 1 (b−a)n

Z

V

f

n−1

X

i=1

t(2)i yi+ 1−

n−1

X

i=1

t(2)i

! yn

!

− f

n−1

X

i=1

t(1)i yi+ 1−

n−1

X

i=1

t(1)i

! yn

!

dY

≤ M

(b−a)n Z

V

n−1

X

i=1

t(2)i −t(1)i

(yi−yn)

dY

≤ M

(b−a)n

n−1

X

i=1

t(2)i −t(1)i

(b−a)n−2 Z b

a

Z b a

|yi−yn|dyidyn

= M

(b−a)2

n−1

X

i=1

t(2)i −t(1)i

Z b a

Z x a

(x−y)dy+ Z b

x

(y−x)dy

dx

= M

3 (b−a)

n−1

X

i=1

t(2)i −t(1)i . This completes the proof of (2.19).

(15)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page15of 22 Go Back Full Screen

Close

(2) The inequalities (2.20) and (2.21) follow from (2.19) by choosing t(1) = n1, t(2) = tand t(1) = (1n,0) = (0, . . . ,0,1), t(2) = t, respectively. The inequalities (2.22) follow from (2.21) by choosingt = 1n. This completes the proof of (2.20) – (2.22).

(3) Using integral properties, we writeSn(t)in the following equivalent form (2.25) Sn(t) = 1

(b−a)n+1 Z

V

"

Z b a

f

n

X

i=1

tiyi+ (1−Tn)a+b 2

! dx

# dY.

Using (2.25) and integral properties, we obtain

|Sn(t)−Pn+1(t)|

≤ 1

(b−a)n+1 Z

V

"

Z b a

f

n

X

i=1

tiyi+ (1−Tn)a+b 2

!

−f

n

X

i=1

tiyi+ (1−Tn)x

!

dx

# dY

≤ M

(b−a)n+1(1−Tn) Z

V

Z b a

a+b 2 −x

dx

dY

= M

b−a(1−Tn)

"

Z a+b2

a

a+b 2 −x

dx+

Z b

a+b 2

x− a+b 2

dx

#

= M

4 (b−a)(1−Tn).

This completes the proof of (2.23).

This completes the proof of Theorem2.5.

(16)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page16of 22 Go Back Full Screen

Close

Corollary 2.6. Letf be defined as in Corollary2.2. Forn ≥2, then we have (2.26)

Pn(t(2))−Pn(t(1))

≤ max{|f+0 (a)|,|f0 (b)|}

3 (b−a)

n−1

X

i=1

t(2)i −t(1)i

for anyt(j) = (t(j)1 , . . . , t(j)n )∈L(j = 1,2), 0≤Pn(t)− 1

(b−a)n Z

V

f 1

n

n

X

i=1

yi

! dY (2.27)

≤ max{|f+0 (a)|,|f0 (b)|}

3n (b−a)

n−1

X

i=1

|nti −1|

and

(2.28) 0≤ 1 b−a

Z b a

f(x)dx−Pn(t)≤ max{|f+0(a)|,|f0(b)|}

3 (b−a)

n−1

X

i=1

ti

for allt∈L, and 0≤ 1

b−a Z b

a

f(x)dx− 1 (b−a)n

Z

V

f 1

n

n

X

i=1

yi

! dY (2.29)

≤ max{|f+0 (a)|,|f0 (b)|}(n−1)

3n (b−a).

Forn ≥1and allt∈H, we have

(2.30) 0≤Pn+1(t)−Sn(t)≤ max{|f+0 (a)|,|f0 (b)|}

4 (b−a)(1−Tn).

(17)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page17of 22 Go Back Full Screen

Close

Proof. Using (1.5), (1.4), (2.10) and Theorem2.5, we obtain (2.26) – (2.30).

This completes the proof of Corollary (2.6).

Remark 1. The condition in Corollary2.2(or Corollary2.4or2.6) is better than the condition in Corollary 2.2 (or Corollary 4.2 or Theorem 3.3) of [3]. This is due to the fact thatf is a differentiable convex function on[a, b]withM = sup

t∈[a,b]

|f0(t)|<∞.

Remark 2. When n = 1, (2.1) and (2.11), (2.2) and (2.12), (2.3) and (2.13) and (2.23) reduce to (3.4), (3.2), (3.1) and (4.3) of [3], respectively. Whenn = 2, (2.19), (2.20), and (2.21) reduce to (4.6), (4.1) and (4.2) of [3], respectively.

(18)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page18of 22 Go Back Full Screen

Close

3. Applications

In this section, we agree that whenti = 0, 1

ti

"

b a

2nti2

−a b

ti

2n2

#

= lnb−lna

n2 and bti −ati ti

= lnb−lna.

Forb > a >0,1≥t(2)i ≥t(1)i ≥0and1≥ti ≥0 (i= 1,2, . . . , n), we have 0≤

n

Y

i=1

1 t(2)i

 b

a

t(2) i 2n2

−a b

t(2) i 2n2

−

n

Y

i=1

1 t(1)i

 b

a

t(1) i 2n2

−a b

t(1) i 2n2

 (3.1) 

≤ 1 4

lnb−lna n2

n+1 b a

12 n

X

i=1

t(2)i −t(1)i ,

0≤

n2 lnb−lna

n n

Y

i=1

1 ti

"

b a

ti

2n2 a b

ti

2n2

#

−1 (3.2)

≤ lnb−lna 4n2

b a

12 Tn

and

0≤

n

Y

i=1

"

b a

2n12

−a b

1

2n2

#

n

Y

i=1

1 ti

"

b a

2nti2

−a b

ti

2n2

# (3.3)

≤ 1 4

lnb−lna n2

n+1 b a

12

(n−Tn).

(19)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page19of 22 Go Back Full Screen

Close

Forb > a >0, 1n ≥t(2)i ≥t(1)i ≥0and n1 ≥ti ≥0 (i= 1,2, . . . , n), we have 0≤(ab)

1−Pn i=1t(2)

i 2

n

Y

i=1

1 t(2)i

bt(2)i −at(2)i (3.4)

−(ab)

1−Pn i=1t(1)

i 2

n

Y

i=1

1 t(1)i

bt(1)i −at(1)i

≤ b(lnb−lna)n+1 4

n

X

i=1

t(2)i −t(1)i ,

0≤ 1

(lnb−lna)n(ab)

1−Pn i=1ti 2

n

Y

i=1

1

ti bti −ati

−(ab)12 (3.5)

≤ b(lnb−lna)

4 Tn

and

0≤

nb1n −nan1 n

−(ab)

1−Pn i=1ti 2

n

Y

i=1

1

ti bti −ati (3.6)

≤ b(lnb−lna)n+1

4 (1−Tn).

Forb > a >0,1≥t(j)i ≥0 (i= 1,2, . . . , n;n≥2)andt(j)1 +t(j)2 +· · ·+t(j)n = 1

(20)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page20of 22 Go Back Full Screen

Close

(j = 1,2), we have

(3.7)

n

Y

i=1

1 t(2)i

bt(2)i −at(2)i

n

Y

i=1

1 t(1)i

bt(1)i −at(1)i

≤ b(lnb−lna)n+1 3

n−1

X

i=1

t(2)i −t(1)i .

Forb > a >0,1≥ti ≥0 (i= 1,2, . . . , n; n ≥2)andTn = 1, we have (3.8) 0≤

n

Y

i=1

1

ti bti −ati

nbn1 −nan1n

≤ b(lnb−lna)n+1 3n

n−1

X

i=1

|nti−1|

and

(3.9) 0≤ b−a

lnb−lna − 1 (lnb−lna)n

n

Y

i=1

1

ti bti−ati

≤ b(lnb−lna) 3

n−1

X

i=1

ti.

Forb > a >0, we have 0≤ b−a

lnb−lna −

n2 lnb−lna

n

(ab)12

n

Y

i=1

"

b a

1

2n2

−a b

1

2n2

# (3.10)

≤ b(n2−1)

3n2 (lnb−lna),

(3.11) 0≤ nbn1 −nan1 lnb−lna

!n

−(ab)12 ≤ b(lnb−lna) 4

(21)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page21of 22 Go Back Full Screen

Close

and

(3.12) 0≤ b−a

lnb−lna −

 n

bn1 −an1 lnb−lna

n

≤ b(n−1)

3n (lnb−lna). Indeed, (3.1) – (3.12) follow from (2.6) – (2.8), (2.15) – (2.17), (2.26) – (2.28), (2.9), (2.18) and (2.29) applied to the convex functionf : [lna,lnb]7→[a, b],f(x) = ex, with some simple manipulations, respectively.

(22)

Inequalities of Hadamard-type for Lipschitzian Mappings

Liang-Cheng Wang vol. 8, iss. 1, art. 30, 2007

Title Page Contents

JJ II

J I

Page22of 22 Go Back Full Screen

Close

References

[1] J. HADAMARD, Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–

215.

[2] L.-C. WANG, Three mapping related of Hermite-Hadamard inequalities, J.

Sichuan Univ., 39 (2002), 652–656. (Chinese).

[3] S.S. DRAGOMIR, Y.J. CHOANDS.S. KIM, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501.

[4] L.-C. WANG, On extensions and refinements of Hermite-Hadamard inequalities for convex functions, Math. Inequal. & Applics., 6(4) (2003), 659–666.

[5] G.-S. YANG AND K.-L. TSENG, Inequalities of Hadamard’s type for Lips- chitzian mappings, J. Math. Anal. Appl., 260 (2001), 230–238.

[6] M. MATI ´CANDJ. PE ˇCARI ´C, Note on inequalities of Hadamard’s type for Lip- schitzian mappings, Tamkang J. Math., 32(2) (2001), 127–130.

[7] L.-C. WANG, New inequalities of Hadamard’s type for Lipschitzian map- pings, J. Inequal. Pure Appl. Math., 6(2) (2005), Art. 37. [ONLINE: http:

//jipam.vu.edu.au/article.php?sid=506].

[8] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. (Chinese).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Acknowledgements: This work was supported by the Science Research Foundation of Nanjing Univer- sity of Information Science and Technology and the Natural Science Foundation of

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

Acknowldgement: The author was supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province, China.... Inequalities

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

Acknowledgements: The first author was supported by the Science Research Foundation of NUIST and the Natural Science Foundation of Jiangsu Province Education Department under

WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. WANG, Inequalities of the Rado-Popoviciu type for functions and their