• Nem Talált Eredményt

ON SOME NEW MEAN VALUE INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON SOME NEW MEAN VALUE INEQUALITIES"

Copied!
17
0
0

Teljes szövegt

(1)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page

Contents

JJ II

J I

Page1of 17 Go Back Full Screen

Close

ON SOME NEW MEAN VALUE INEQUALITIES

LIANG-CHENG WANG CAI-LIANG LI

School of Mathematics Science Chengdu Electromechanical College Chongqing Institute of Technology Chengdu 610031,

No. 4 of Xingsheng Lu, Yangjia Ping 400050 Sichuan Province

Chongqing, The People’s Republic of China. The People’s Republic of China.

EMail:wangliangcheng@163.com EMail:dzlcl@163.com

Received: 04 March, 2007

Accepted: 27 April, 2007

Communicated by: P.S. Bullen 2000 AMS Sub. Class.: 26D15.

Key words: Mean value inequality, Hölder’s inequality, Continuous positive function, Exten- sion.

Abstract: In this paper, using the arithmetic-geometric mean inequality, we obtain some new mean value inequalities. Finally, some applications are given, they are ex- tension of Hölder’s inequalities.

Acknowledgements: The first author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004DZ94.

(2)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page2of 17 Go Back Full Screen

Close

Contents

1 Introduction and Main Results 3

2 Proof of Theorem and Corollary 7

3 Applications 11

(3)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page3of 17 Go Back Full Screen

Close

1. Introduction and Main Results

Let a > 0, b > 0 and t ∈ (0,1). It is well-known that the following arithmetic- geometric mean inequality holds

(1.1) atb1−t≤ta+ (1−t)b.

The arithmetic-geometric mean inequality is a classical inequality with many appli- cations. Also, there exist extensive works devoted to generalizing or improving the arithmetic-geometric mean inequality. In this respect, we refer the reader to [1] – [7]

and the references cited therein for updated results.

In this paper, by (1.1), we obtain some new mean value inequalities. Finally, some applications are given.

In this paper, we agree

q

X

i=q+1

bi = 0, (bi ∈R, q∈N).

Theorem 1.1. Letxi >0 (i= 1,2, . . . , n; n≥2)andt∈(0,1).

1. For the following

B(k) 4 1 n2

"

k

k

X

i=1

xi+

n

X

i=1

xti

! n X

i=k+1

x1−ti

!

+

n

X

i=k+1

xti

! k X

i=1

x1−ti

!#

, (k = 1,2, . . . , n)

(4)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page4of 17 Go Back Full Screen

Close

C(j) 4 1 n2

"

(n−j+ 1)

n

X

i=j

xi+

n

X

i=1

xti

! j−1 X

i=1

x1−ti

!

+

j−1

X

i=1

xti

! n X

i=j

x1−ti

!#

, (j = 1,2, . . . , n), we have

(1.2) 1 n

n

X

i=1

xti

! 1 n

n

X

i=1

x1−ti

!

=B(1)≤B(2) ≤ · · · ≤B(k)≤B(k+ 1)≤ · · · ≤B(n) = 1 n

n

X

i=1

xi

and

(1.3) 1 n

n

X

i=1

xti

! 1 n

n

X

i=1

x1−ti

!

=C(n)≤C(n−1)≤ · · · ≤C(j)≤C(j −1)≤ · · · ≤C(1) = 1 n

n

X

i=1

xi.

2. For1≤j < k < l ≤n(n≥3), we have (1.4) (k−j+ 1)

k

X

i=j

xi+ (l−k+ 1)

l

X

i=k

xi+

l

X

i=j

xti

! l X

i=j

x1−ti

!

(5)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page5of 17 Go Back Full Screen

Close

≤(l−j + 1)

l

X

i=j

xi+

k

X

i=j

xti

! k X

i=j

x1−ti

! +

l

X

i=k

xti

! l X

i=k

x1−ti

! .

Corollary 1.2. Let xi > 0 (i = 1,2, . . . , n, n ≥ 2) andp, q be any two positive numbers.

1. For

D(k) 4 1 n2

"

k

k

X

i=1

xp+qi +

n

X

i=1

xpi

! n X

i=k+1

xqi

!

+

n

X

i=k+1

xpi

! k X

i=1

xqi

!#

, (k = 1,2, . . . , n) and

E(j) 4 1 n2

"

(n−j+ 1)

n

X

i=j

xp+qi +

n

X

i=1

xpi

! j−1 X

i=1

xqi

!

+

j−1

X

i=1

xpi

! n X

i=j

xqi

!#

, (j = 1,2, . . . , n), we have

(1.5) 1 n

n

X

i=1

xpi

! 1 n

n

X

i=1

xqi

!

=D(1) ≤D(2)≤ · · · ≤D(k)≤D(k+ 1)≤ · · · ≤D(n) = 1 n

n

X

i=1

xp+qi

(6)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page6of 17 Go Back Full Screen

Close

(1.6) 1 n

n

X

i=1

xpi

! 1 n

n

X

i=1

xqi

!

=E(n)≤E(n−1)≤ · · · ≤E(j)≤E(j−1)≤ · · · ≤E(1) = 1 n

n

X

i=1

xp+qi .

2. For1≤j < k < l ≤n(n≥3), we have (1.7) (k−j+ 1)

k

X

i=j

xp+qi + (l−k+ 1)

l

X

i=k

xp+qi +

l

X

i=j

xpi

! l X

i=j

xqi

!

≤(l−j+ 1)

l

X

i=j

xp+qi +

k

X

i=j

xpi

! k X

i=j

xqi

! +

l

X

i=k

xpi

! l X

i=k

xqi

! .

(7)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page7of 17 Go Back Full Screen

Close

2. Proof of Theorem and Corollary

Proof of Theorem1.1. (1) Two equalities are clear in (1.2). To complete the proof of (1.2), we only need to prove thatB(k) ≤B(k+ 1)(1≤ k ≤n−1). Indeed, from (1.1) we have

(2.1) xtk+1

k

X

i=1

x1−ti =

k

X

i=1

xtk+1x1−ti

k

X

i=1

(txk+1+ (1−t)xi), and

(2.2) x1−tk+1

k

X

i=1

xti =

k

X

i=1

x1−tk+1xti

k

X

i=1

((1−t)xk+1+txi). Using (2.1) and (2.2), after a simple manipulation we get

(2.3) xtk+1

k

X

i=1

x1−ti +x1−tk+1

k

X

i=1

xti ≤kxk+1+

k

X

i=1

xi.

Fork = 1,2, . . . , n−1, by (2.3) we get B(k) = 1

n2

"

k

k

X

i=1

xi+

n

X

i=1

xti

! n X

i=k+1

x1−ti

! +

n

X

i=k+1

xti

! k X

i=1

x1−ti

!#

= 1 n2

"

k

k

X

i=1

xi+xk+1 +

n

X

i=1

xti

! n X

i=k+2

x1−ti

!

+

k

X

i=1

xti+

n

X

i=k+2

xti

!

x1−tk+1+

n

X

i=k+2

xti

! k X

i=1

x1−ti

!

+xtk+1

k

X

i=1

x1−ti

#

(8)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page8of 17 Go Back Full Screen

Close

= 1

n2 kX

i=1

xi+xk+1 +xtk+1X

i=1

x1−ti +x1−tk+1X

i=1

xti

+

n

X

i=1

xti

! n X

i=k+2

x1−ti

! +

n

X

i=k+2

xti

! k+1 X

i=1

x1−ti

!#

≤ 1 n2

"

k

k

X

i=1

xi+xk+1 +kxk+1+

k

X

i=1

xi

+

n

X

i=1

xti

! n X

i=k+2

x1−ti

! +

n

X

i=k+2

xti

! k+1 X

i=1

x1−ti

!#

= 1 n2

"

(k+ 1)

k+1

X

i=1

xi+

n

X

i=1

xti

! n X

i=k+2

x1−ti

! +

n

X

i=k+2

xti

! k+1 X

i=1

x1−ti

!#

=B(k+ 1).

By same arguments of proof for (1.2), we can also get inequalities in (1.3).

(2) For1≤j < k < l ≤n, from (1.1) we have

k−1

X

i=j

xti

! l X

i=k+1

x1−ti

!

=

k−1

X

i=j l

X

s=k+1

xtix1−ts (2.4)

k−1

X

i=j l

X

s=k+1

(txi+ (1−t)xs)

= (l−k)

k−1

X

i=j

txi+ (k−j)

l

X

i=k+1

(1−t)xi

(9)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page9of 17 Go Back Full Screen

Close

and (2.5)

l

X

i=k+1

xti

! k−1 X

i=j

x1−ti

!

≤(l−k)

k−1

X

i=j

(1−t)xi+ (k−j)

l

X

i=k+1

txi.

Using (2.4) and (2.5), after a simple manipulation we have (2.6)

k−1

X

i=j

xti

! l X

i=k+1

x1−ti

! +

l

X

i=k+1

xti

! k−1 X

i=j

x1−ti

!

≤(l−k)

k−1

X

i=j

xi+ (k−j)

l

X

i=k+1

xi.

From (2.6) we obtain (k−j+ 1)

k

X

i=j

xi+ (l−k+ 1)

l

X

i=k

xi+

l

X

i=j

xti

! l X

i=j

x1−ti

!

= (k−j+ 1)

k

X

i=j

xi+ (l−k+ 1)

l

X

i=k+1

xi+ (l−k)xk

+

k

X

i=j

xti

! k X

i=j

x1−ti

! +

l

X

i=k+1

xti

! l X

i=k+1

x1−ti

!

+xtk

l

X

i=k+1

x1−ti +x1−tk

l

X

i=k+1

xti +xk

+

k−1

X

i=j

xti

! l X

i=k+1

x1−ti

! +

l

X

i=k+1

xti

! k−1 X

i=j

x1−ti

!

(10)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page10of 17 Go Back Full Screen

Close

≤(k−j + 1)X

i=j

xi+ (l−k+ 1) X

i=k+1

xi+ (l−k)xk

+

k

X

i=j

xti

! k X

i=j

x1−ti

! +

l

X

i=k

xti

! l X

i=k

x1−ti

!

+ (l−k)

k−1

X

i=j

xi+ (k−j)

l

X

i=k+1

xi

= (l−j+ 1)

l

X

i=j

xi+

k

X

i=j

xti

! k X

i=j

x1−ti

! +

l

X

i=k

xti

! l X

i=k

x1−ti

! ,

which implies (1.4).

This completes the proof of Theorem1.1.

Proof of Corollary1.2. Replacet,1−tandxiin Theorem1.1by p+qp , p+qq andxp+qi , respectively. We obtain Corollary1.2.

(11)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page11of 17 Go Back Full Screen

Close

3. Applications

Proposition 3.1. Letxir >0 (i= 1,2, . . . , n,n ≥2;r = 1,2, . . . , m,m ≥2)and t∈(0,1). For

F(k) 4 1 n2

k

k

X

i=1 m

X

r=1

xir

! +

n

X

i=1 m

X

r=1

xir

!t!

n

X

i=k+1 m

X

r=1

xir

!1−t

+

n

X

i=k+1 m

X

r=1

xir

!t!

k

X

i=1 m

X

r=1

xir

!1−t

, (k = 1,2, . . . , n) and

G(h) 4 1 n2

n

X

i=1 n

X

j=1

h

X

r=1

xir

!t h X

r=1

xjr

!1−t +

m

X

r=h+1

xtirx1−tjr

,

(h= 1,2, . . . , m), we have

1 n2

n

X

i=1 n

X

j=1 m

X

r=1

xtirx1−tjr

! (3.1)

=G(1)≤G(2)≤ · · · ≤G(h)≤G(h+ 1) ≤ · · · ≤G(m)

= 1

n

n

X

i=1 m

X

r=1

xir

!t!

 1 n

n

X

i=1 m

X

r=1

xir

!1−t

(12)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page12of 17 Go Back Full Screen

Close

=F(1)≤F(2)≤ · · · ≤F(k)≤F(k+ 1) ≤ · · · ≤F(n)

= 1 n

n

X

i=1 m

X

r=1

xir.

Proof. For xir > 0, xjr > 0(1 ≤ i, j ≤ n, r = 1,2, . . . , m) andt ∈ (0,1). We write

P(i, j;h) 4

h

X

r=1

xir

!t h X

r=1

xjr

!1−t +

m

X

r=h+1

xtirx1−tjr (h= 1,2, . . . , m).

The first named author of this paper showed in [8] that the following chain of Hölder’s inequalities holds

m

X

r=1

xtirx1−tjr (3.2)

=P(i, j; 1)

≤P(i, j; 2) ≤ · · · ≤P(i, j;h)≤P(i, j;h+ 1)≤ · · · ≤P(i, j;m)

=

m

X

r=1

xir

!t m

X

r=1

xjr

!1−t

.

From the properties of inequality and (3.2), we have 1

n2

n

X

i=1 n

X

j=1 m

X

r=1

xtirx1−tjr

! (3.3)

= 1 n2

n

X

i=1 n

X

j=1

P(i, j; 1)

(13)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page13of 17 Go Back Full Screen

Close

≤ 1 n2

n

X

i=1 n

X

j=1

P(i, j; 2)

≤ · · · ≤ 1 n2

n

X

i=1 n

X

j=1

P(i, j;h)

≤ 1 n2

n

X

i=1 n

X

j=1

P(i, j;h+ 1) ≤ · · ·

≤ 1 n2

n

X

i=1 n

X

j=1

P(i, j;m)

= 1 n2

n

X

i=1 n

X

j=1 m

X

r=1

xir

!t m

X

r=1

xjr

!1−t

= 1

n

n

X

i=1 m

X

r=1

xir

!t!

 1 n

n

X

i=1 m

X

r=1

xir

!1−t

.

It is easy to see that

(3.4) G(h) = 1

n2

n

X

i=1 n

X

j=1

P(i, j;h), h= 1,2, . . . , m.

(3.3) and (3.4) imply inequalities between the first equality and the second equality in (3.1).

Replacingxiin (1.2) byPm

r=1xir, we obtain inequalities between the third equal- ity and the fourth equality in (3.1).

This completes the proof of Proposition3.1.

(14)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page14of 17 Go Back Full Screen

Close

Proposition 3.2. Letfi : [a, b] 7→ (0,+∞) (a < b) be continuous functions(i = 1,2, . . . , n, n≥2)andt ∈(0,1). For

H(k) = 1 n2

"

k

k

X

i=1

Z b a

fi(x)dx

+

n

X

i=1

Z b a

fi(x)dx

t! n X

i=k+1

Z b a

fi(x)dx 1−t!

+

n

X

i=k+1

Z b a

fi(x)dx

t! k X

i=1

Z b a

fi(x)dx

1−t!#

, (k = 1,2, . . . , n) and anyy∈[a, b], we have

1 n2

n

X

i=1 n

X

j=1

Z b a

(fi(x))t(fj(x))1−tdx (3.5)

≤ 1 n2

" n X

i=1 n

X

j=1

Z y a

fi(x)dx

tZ y a

fj(x)dx 1−t

+ Z b

y

(fi(x))t(fj(x))1−tdx #

≤ 1 n

n

X

i=1

Z b a

fi(x)dx t!

1 n

n

X

i=1

Z b a

fi(x)dx 1−t!

(15)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page15of 17 Go Back Full Screen

Close

=H(1) ≤H(2)≤ · · · ≤H(k)≤H(k+ 1)≤ · · · ≤H(n)

= 1 n

n

X

i=1

Z b a

fi(x)dx.

Proof. For1≤i, j ≤n, t∈ (0,1),y∈ [a, b]and continuous functionsfi : [a, b]7→

(0,+∞)(i = 1,2, . . . , n;n ≥ 2), in [8], Wang also obtained the following refine- ment for the integral form of Hölder’s inequalities:

Z b a

(fi(x))t(fj(x))1−tdx (3.6)

≤ Z y

a

fi(x)dx

tZ y a

fj(x)dx 1−t

+ Z b

y

(fi(x))t(fj(x))1−tdx

≤ Z b

a

fi(x)dx

tZ b a

fj(x)dx 1−t

. Using the properties of inequality and (3.6), we have

1 n2

n

X

i=1 n

X

j=1

Z b a

(fi(x))t(fj(x))1−tdx

≤ 1 n2

n

X

i=1 n

X

j=1

Z y a

fi(x)dx

tZ y a

fj(x)dx 1−t

+ Z b

y

(fi(x))t(fj(x))1−tdx

!

≤ 1 n2

n

X

i=1 n

X

j=1

Z b a

fi(x)dx

tZ b a

fj(x)dx 1−t

= 1

n

n

X

i=1

Z b a

fi(x)dx t!

1 n

n

X

i=1

Z b a

fi(x)dx 1−t!

,

(16)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page16of 17 Go Back Full Screen

Close

Replacing xi in (1.2) by Rb

a fi(x)dx, we obtain inequalities between the two equalities in (3.2).

This completes the proof of Proposition3.2.

Remark 1. (3.1) and (3.2) are extensions of Hölder’s inequalities.

(17)

Some New Mean Value Inequalities

Liang-Cheng Wang and Cai-Liang Li vol. 8, iss. 3, art. 87, 2007

Title Page Contents

JJ II

J I

Page17of 17 Go Back Full Screen

Close

References

[1] D.S. MITRINOVI ´C AND P.M. VASI ´C, Sredine, Matematiˇcka Biblioteka, Beograd, 40 (1969).

[2] D.S. MITRINOVI ´C, Analytic Inequalities, Springer-Verlag, Berlin/New York, 1970.

[3] J.-C. KUANG, Applied Inequalities, Shandong Science and Technology Press, 2004. (Chinese).

[4] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. (Chinese).

[5] C.L. WANG, Inequalities of the Rado-Popoviciu type for functions and their applications, J. Math. Anal. Appl., 100 (1984), 436–446.

[6] G.H. HARDY, J.E. LITTLEWOODANDG PÓLYA, Inequalities, 2nd ed., Cam- bridge, 1952.

[7] FENG QI, Generalized weighted mean values with two parameters , Proc. R.

Soc. Lond. A., 454 (1998), 2723–2732.

[8] L.C. WANG, Two mappings related to Hölder’s inequalities, Univ. Beograd.

Publ. Elektrotehn. Fak. Ser. Mat., 15 (2004), 92–97.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, by the Minkowski’s inequalities we define two mappings, investi- gate their properties, obtain some refinements for Minkowski’s inequalities and some

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

Acknowledgements: This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.... Inequalities of Hadamard-type

Key words: Analytic functions; Univalent functions; Coefficient inequalities and coefficient estimates; Starlike functions; Convex functions; Close-to-convex functions; k-

Abstract: In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp... Inequalities for Special and q-Special

In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp. q-integral) representations and a technique developed by

Classical inequalities like Jensen and its reverse are used to obtain some el- ementary numerical inequalities for convex functions.. Furthermore, imposing restrictions on the

Classical inequalities like Jensen and its reverse are used to obtain some elemen- tary numerical inequalities for convex functions.. Furthermore, imposing restrictions on the