• Nem Talált Eredményt

In this work, firstly, we established Hermite-Hadamard’s inequalities for harmonically convex functions via Katugampola fractional integrals

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this work, firstly, we established Hermite-Hadamard’s inequalities for harmonically convex functions via Katugampola fractional integrals"

Copied!
16
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 409–424 DOI: 10.18514/MMN.2019.2722

HERMITE-HADAMARD TYPE INEQUALITIES FOR

HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS

˙ILKER MUMCU, ERHAN SET, AND AHMET OCAK AKDEMIR Received 25 October, 2018

Abstract. In this work, firstly, we established Hermite-Hadamard’s inequalities for harmonically convex functions via Katugampola fractional integrals. Then we give some Hermite-Hadamard type inequalities of these classes functions.

2010Mathematics Subject Classification: 26A33; 26A51; 26D10

Keywords: Hermite-Hadamard inequality, Riemann-Liouville fractional integrals, Katugampola fractional integrals

1. INTRODUCTION AND PRELIMINARIES

We will start with a definition of mathematical analysis that has a high degree precedence for the inequality theory.

A function f WI R!Ris said to be convex if the inequality f .uC.1 / v/f .u/C.1 / f .v/

holds for allu; v2I and2Œ0; 1.

This definition has been used in the celebrated Hermite-Hadamard inequality;

Let f WIR!Rbe a convex function anda; b2I witha < b, then f

aCb 2

1

b a Z b

a

f .x/ dx f .a/Cf .b/

2 : (1.1)

In addition to giving upper and lower bounds for the mean value of a convex function, this double inequality has many applications.

Convexity plays an important role in different fields of pure and applied sciences.

In recent years we have noticed that theory of convexity developed rapidly. Con- sequently several new generalizations of convex functions have been proposed in the literature. Recently Is¸can [4] introduced the notion of harmonic convex function.

c 2019 Miskolc University Press

(2)

Definition 1. LetI R=f0gbe a real interval. A functionf WI!Ris said to be harmonically convex, if

f

xy txC.1 t /y

tf .y/C.1 t /f .x/ (1.2) for allx; y2I andt2Œ0; 1.

The following theorem involve a different variant of Hadamard’s inequality for harmonically convex functions.

Theorem 1 ([4]). Let I R=f0g !R be a harmonically convex function and a; b2I witha < b. Iff 2LŒa; bthen the following inequalities hold.

f 2ab

aCb

ab b a

Z b a

f .x/

x2 dx f .a/Cf .b/

2 :

To prove our results, we will use the following concepts and definitions.

The Beta function [11, p.18]:

B .a; b/D .a/ .b/

.aCb/ D Z 1

0

ta 1.1 t /b 1dt; a; b > 0;

where .˛/DR1

0 e tu˛ 1duis Gamma function.

The hypergeometric function [7]:

2F1.a; bIcI´/D 1 ˇ.b; c b/

Z 1 0

tb 1.1 t /c b 1.1 ´t / adt; c > b > 0; ´ < 1:

Lemma 1([10]). For0 < ˛1and0a < b, we have ja˛ b˛j .b a/˛:

Definition 2. Letf 2L1Œa; b. The Riemann-Liouville integralsJaCf andJb f of order˛ > 0are defined by

JaCf .x/D 1 ./

Z x a

.x t / 1f .t /dt; x > a and

Jb f .x/D 1 ./

Z b x

.t x/ 1f .t /dt; x < b respectively where ./DR1

0 e tu 1du:HereJa0Cf .x/DJb0 f .x/Df .x/

In the case ofD1, the fractional integral reduces to classical integral.

The great impact of fractional calculus in pure and applied sciences can not be denied.

Resultantly many researchers used the techniques of fractional calculus intensively to get the new refinements of the previously known results. For example, we refer the reader to [1–3] and references cited therein. In [12], Sarıkaya et. al. proved a new

(3)

version of Hermite-Hadamard’s inequalities in Riemann-Liouville fractional integral form as follows:

Theorem 2. Letf WŒa; b!Rbe a positive function with 0a < b andf 2 L1Œa; b:Iff is a convex function onŒa; b, then the following inequalities for frac- tional integrals holds:

f

aCb 2

.˛C1/

2.b a/˛ŒJa˛Cf .b/CJb˛ f .a/f .a/Cf .b/

2 (1.3)

with˛ > 0.

For further results related to Hermite-Hadamard type inequalities involving frac- tional integrals on can see [8,9,12–19].

In [5], Iscan et al. gave a generalization of (1.3) for harmonically convex functions as follows:

Theorem 3. Letf WI .0;1/!Rbe a function such thatf 2LŒa; b, where a; b2Iwitha < b. Iff is a harmonically convex function onŒa; b, then the follow- ing inequalities for fractional integrals hold:

f 2ab

aCb

.˛C1/

2

ab b a

˛

n

J1=a˛ .f ıg/.1=b/CJ1=b˛ C.f ıg/.1=a/

o

f .a/Cf .b/

2 (1.4)

whereg.x/D1=x:

Katugampola gave a new fractional integral that generalizes the Riemann-Liouville and the Hadamard fractional integrals into a single form.

Definition 3([6]). LetŒa; bRbe a finite interval. Then, the left- and right-side Katugampola fractional integrals of order.˛ > 0/off 2Xcp.a; b/are defined:

Ia˛Cf .x/D 1 ˛ .˛/

Z x a

t 1

.x t/1 ˛f .t /dt and

Ib˛ f .x/D 1 ˛ .˛/

Z b x

t 1

.t x/1 ˛f .t /dt witha < x < band > 0, if the integral exist.

Theorem 4([6]). Let˛ > 0and > 0. Then forx > a, 1.lim!1Ia˛Cf .x/DJa˛Cf .x/,

2.lim!0CI˛aCf .x/DHa˛Cf .x/.

Similar results also hold for right-sided operators.

The main purpose of this paper is to establish Hermite-Hadamard’s inequalities for harmonically convex functions via Katugampola fractional integral. We also obtain Hermite-Hadamard type inequalities of these classes functions.

(4)

2. HERMITE-HADAMARD INEQUALITIES FOR HARMONICALLY CONVEXITY VIA

KATUGAMPOLA FRACTIONAL INTEGRALS

Consider the spaceXcp.a; b/ .c2R,1p 1/consist of those complex-valued Lebesque measurable functions' on.a; b/for whichk'kXcp <1, with

k'kXcp D Z b

a jxc'.x/jpdx x

!1=p

.1p <1/ and

k'kXcp Desssupx2.a;b/Œxcj'.x/j:

Hermite-Hadamard’s inequalities for harmonically convex functions can be repres- ented in Katugampola fractional integral forms as follows:

Theorem 5. Let˛ > 0and > 0. Letf WI .0;1/!Rbe a function such that f 2Xcp.a; b/, wherea; b2I witha < b. Iff is a harmonically convex function onŒa; b, then the following inequalities hold:

f

2ab aCb

˛ .˛C1/

2

ab b a

˛

nI1=a˛ .f ıg/.1=b/CI˛1=bC.f ıg/.1=a/o f .a/Cf .b/

2 :

(2.1)

whereg.x/D1=x:

Proof. Lett2Œ0; 1. Considerx; y2Œa; b; a0, choosingxDtbCa.1 tb/a, yD taCa.1 tb /b. Since f is harmonically convex function onŒa; b, and from definition, we can write

f

2xy xCy

f .x/Cf .y/ 2 Then we have

f

2ab aCb

f .tbCa.1 tb/a/Cf .taCa.1 tb /b/

2 (2.2)

Multiplying both sides of (2.2) byt˛ 1, then integrating the resulting inequality with respect totoverŒ0; 1, we obtain

f

2ab aCb

(5)

˛ 2

Z 1 0

t˛ 1f

ab tbC.1 t/a

dtC

Z 1 0

t˛ 1f

aa tbC.1 t/b

dt

D˛ 2

ab b a

˛ Z 1=a 1=b

x 1 x b1

1 ˛f 1

x

dx C

Z 1=b 1=a

x 1

1

a x1 ˛f 1

x

dx

D˛ .˛C1/

2

ab b a

˛

nI1=a˛ .f ıg/.1=b/CI1=b˛ C.f ıg/.1=a/o whereg.x/D1=x. So the first inequality is proved.

For the proof of the second inequality in (2.1), we first note that that for a harmonic- ally convex functionf, we have

f

ab tbC.1 t/a

tf .a/C.1 t/b and

f

ab taC.1 t/b

tf .b/C.1 t/a: By adding these inequalities, we have

f

ab tbC.1 t/a

Cf

ab taC.1 t/b

f .a/Cf .b/: (2.3) Then multiplying both sides of (2.3) byt˛ 1, and integrating the resulting inequality with respect totoverŒ0; 1, we get

Z 1 0

f

ab tbC.1 t/a

t˛ 1dtC Z 1

0

f

ab taC.1 t/b

t˛ 1dt Œf .a/Cf .b/

Z 1 0

t˛ 1dt i.e.

˛ .˛C1/

2

ab b a

˛

n

I˛1=a .f ıg/.1=b/CI1=b˛ C.f ıg/.1=a/

o

f .a/Cf .b/

2 :

The proof is completed.

Remark1. In Theorem5, taking limit!1we obtain inequality of (1.4).

(6)

3. HERMITE-HADAMARD TYPE INEQUALITIES FORKATUGAMPOLA FRACTIONAL INTEGRALS

Let f W I .0;1/!R be a differentiable function on Iı, the interior of I, throughout this section we will take

If.gI˛; a; b/Df .a/Cb 2

˛ .˛C1/

2

ab b a

˛

nI1=a˛ .f ıg/.1=b/CI1=b˛ C.f ıg/.1=a/o

; wherea; b2I witha < b.g.x/D1=xand is Euler Gamma function.

Lemma 2. Let ˛ > 0 and > 0. Let f W I .0;1/!R be a differentiable function such thatf 2Xcp.a; b/, wherea; b2I witha < b. Then the following equality holds:

If.gI˛; a; b/Dab.b a/ 2

Z 1 0

Œt˛ .1 t/˛t 1 ŒtaC.1 t/b2f0

ab taC.1 t/b

dt:

(3.1) Proof. LetAtDtaC.1 t/bandBtDtbC.1 t/a. It suffices to note that

If.gI˛; a; b/Dab.b a/ 2

Z 1 0

Œt˛ .1 t/˛t 1 ŒtaC.1 t/b2f0

ab taC.1 t/b

dt Dab.b a/

2

Z 1 0

t˛t 1 A2t f0

ab At

dt ab.b a/

2

Z 1 0

.1 t/˛t 1 A2t f0

ab At

dt

DI1CI2: (3.2)

By integrating by part, we get I1D1

2

"

t˛f

ab At

ˇ ˇ ˇ ˇ

1 0

˛ Z 1

0

t˛ 1f

ab At

dt

#

D1 2

"

f .b/ ˛

ab b a

˛Z 1=a 1=b

x 1 x b1

1 ˛f 1

x

dx

#

D1 2

f .b/ ˛ .˛C1/

ab b a

˛

I˛1=a .f ıg/.1=b/

(3.3)

(7)

and similarly we get I2D 1

2

"

.1 t/˛f

ab At

ˇ ˇ ˇ ˇ

1 0

C˛ Z 1

0

.1 t/˛ 1t 1f

ab At

dt

#

D1 2

f .a/ ˛ Z 1

0

u˛ 1f

ab Bt

du

D1 2

"

f .a/ ˛

ab b a

˛Z 1=b 1=a

x 1

1

a x1 ˛f 1

x

dx

#

D1 2

f .a/ ˛ .˛C1/

ab b a

˛

I˛1=bC.f ıg/.1=a/

(3.4) Using (3.3) and (3.4) in (3.2), we get equality (3.1).

Remark2. In Lemma2, taking limit!1we obtain inequality Lemma 3 in [5].

Theorem 6. Let˛ > 0and > 0. Letf WI.0;1/!Rbe a differentiable func- tion such thatf 2Xcp.a; b/, wherea; b2Iwitha < b. Ifjfjqis a harmonically convex function onŒa; bfor some fixedq1, then the following inequalities holds:

jIf.gI˛; a; b/j ab.b a/

2 1 1=q1 .˛Ia; b/

2.˛Ia; b/jf0.b/jqC3.˛Ia; b/jf0.a/jq1=q (3.5) where

1.˛Ia; b/D b 2 .˛C1/

2F1

2; ˛C1I˛C2I1 a b

C2F1

2; 1I˛C2I1 a b

; 2.˛Ia; b/D b 2

.˛C2/

2F1

2; ˛C2I˛C3I1 a b

C 1

˛C12F1

2; 2I˛C3I1 a b

; 3.˛Ia; b/D b 2

.˛C2/

1

˛C12F1

2; ˛C1I˛C3I1 a b

C2F1

2; 1I˛C3I1 a b

:

Proof. Let At DtaC.1 t/b. From Lemma2, using the property of the modulus, the power mean inequality and the harmonically convexity ofjfjq, we get

jIf.gI˛; a; b/j

(8)

ab.b a/ 2

Z 1 0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt ab.b a/

2

Z 1 0

jt˛ .1 t/˛jjt 1j

A2t dt

1 1=q

Z 1

0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt 1=q

ab.b a/ 2

Z 1 0

jt˛C.1 t/˛jjt 1j

A2t dt

1 1=q

Z 1

0

jt˛C.1 t/˛jjt 1j A2t

tjf0.b/jqC.1 t/jf0.a/jq dt

1=q

ab.b a/

2 1 1=q1 .˛Ia; b/

2.˛Ia; b/jf0.b/jqC3.˛Ia; b/jf0.a/jq1=q

: (3.6) Calculating1.˛Ia; b/,2.˛Ia; b/and3.˛Ia; b/, we have

1.˛Ia; b/

D Z 1

0

Œt˛C.1 t/˛t 1

A2t dt (3.7)

Db 2 Z 1

0

.u˛C.1 u/˛/

1

1 a b

u

2

dt D b 2

.˛C1/

2F1

2; ˛C1I˛C2I1 a b

C2F1

2; 1I˛C2I1 a b

: Similarly, we get

2.˛Ia; b/

D Z 1

0

Œt˛C.1 t/˛t 1

A2t tdt (3.8)

D b 2 .˛C2/

2F1

2; ˛C2I˛C3I1 a b

C 1

˛C12F1

2; 2I˛C3I1 a b

and

3.˛Ia; b/

D Z 1

0

Œt˛C.1 t/˛t 1

A2t tdt (3.9)

(9)

D b 2 .˛C2/

1

˛C12F1

2; ˛C1I˛C3I1 a b

C2F1

2; 1I˛C3I1 a b

So, if we use (3.7)-(3.9) in (3.6), we obtain the inequality of (3.5). This completes the proof.

Remark3. In Theorem6, taking limit!1we obtain Theorem 5 in [5].

Theorem 7. Let˛ > 0 and > 0. Let f WI .0;1/!Rbe a differentiable function such thatf 2Xcp.a; b/, wherea; b2I witha < b. Ifjfjl is a harmon- ically convex function onŒa; bfor some fixedl 1, then the following inequalities holds:

jIf.gI˛; a; b/j ab.b a/

2 1 1=q4 .˛Ia; b/

5.˛Ia; b/jf0.b/jqC6.˛Ia; b/jf0.a/jq1=q (3.10) where

4D b 2 .˛C1/

2F1

2; ˛C1I˛C2I1 a b

2F1

2; 1I˛C2I1 a b

C2F1

2; 1I˛C2I1 2

1 a

b

5D b 2 .˛C2/

2F1

2; ˛C2I˛C3I1 a b

1

˛C12F1

2; 2I˛C3I1 a b

C 1

2.˛C1/2F1

2; 2I˛C3I1 2

1 a

b

6D b 2 .˛C2/

1

˛C12F1

2; ˛C1I˛C3I1 a b

2F1

2; 1I˛C3I1 a b

C2F1

2; 1I˛C3I1 2

1 a

b

:

Proof. Let At DtaC.1 t/b. From Lemma2, using the property of the modulus, the power mean inequality and the harmonically convexity of jfjq, we have

jIf.gI˛; a; b/j ab.b a/

2

Z 1 0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt ab.b a/

2

Z 1 0

jt˛ .1 t/˛jjt 1j

A2t dt

1 1=q

(10)

Z 1

0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt 1=q

ab.b a/ 2

Z 1 0

jt˛ .1 t/˛jjt 1j

A2t dt

1 1=q

Z 1

0

jt˛ .1 t/˛jjt 1j A2t

tjf0.b/jqC.1 t/jf0.a/jq dt

1=q

ab.b a/

2 K11 1=q.˛Ia; b/

K2.˛Ia; b/jf0.b/jqCK3.˛Ia; b/jf0.a/jq1=q

: (3.11) CalculatingK1,K2andK3, by Lemma1, we get

K1D Z 1

0

jt˛ .1 t/˛jjt 1j

A2t dt

D Z 1=2

0

..1 t/˛ t˛/t 1 A2t dtC

Z 1 1=2

.t˛ .1 t/˛/t 1 A2t dt D

Z 1 0

.t˛ .1 t/˛/t 1 A2t dtC2

Z 1=2 0

..1 t/˛ t˛/t 1 A2t dt

Z 1 0

u˛Au2du Z 1

0

.1 u/˛Au2duC2 Z 1=2

0

.1 2u/˛Au2du D b 2

.˛C1/

2F1

2; ˛C1I˛C2I1 a b

2F1

2; 1I˛C2I1 a b

C2F1

2; 1I˛C2I1 2

1 a

b

: (3.12)

and similarly we obtain K2D

Z 1 0

jt˛ .1 t/˛jjt 1j A2t tdt

Z 1 0

u˛C1Au2du Z 1

0

.1 u/˛uAu2duC2 Z 1=2

0

.1 2u/˛uAu2du D b 2

.˛C2/

2F1

2; ˛C2I˛C3I1 a b

1

˛C12F1

2; 2I˛C3I1 a b

C 1

2.˛C1/2F1

2; 2I˛C3I1 2

1 a

b

; (3.13)

(11)

and K3D

Z 1 0

jt˛ .1 t/˛jjt 1j

A2t .1 t /dt

Z 1 0

t˛.1 u/Au2du Z 1

0

.1 u/˛C1Au2duC2 Z 1=2

0

.1 2u/˛.1 u/Au2du D b 2

.˛C2/

1

˛C12F1

2; ˛C1I˛C3I1 a b

2F1

2; 1I˛C3I1 a b

C2F1

2; 1I˛C3I1 2

1 a

b

: (3.14)

So, if we use (3.12)-(3.14) in (3.11), we get the inequality (3.10).

Remark4. In Theorem7, taking limit!1we obtain Theorem 6 in [5].

Theorem 8. Let˛ > 0 and > 0. Let f WI .0;1/!Rbe a differentiable function such thatf 2Xcp.a; b/, wherea; b2I witha < b. Ifjfjl is a harmon- ically convex function onŒa; bfor some fixedl > 1,1=kC1= lD1, then the following inequalities holds:

jIf.gI˛; a; b/j Da.b a/ 2b

1=k7 C1=k8 jf0.a/jlC jf0.b/jl C1

!1= l

(3.15) where

7DB

k kC1

p ; ˛kC1

2F1

2k;k kC1

I˛kCkC1C1 k

I1 a b

8D 1

˛kCkC1 k 2F1

2k; ˛kCkC1 k

I˛kCkC1C1 k

I1 a b

Proof. LetAt DtaC.1 t/b. From Lemma 2, H¨older inequality and the harmonically convexity ofjfjq, we have

jIf.gI˛; a; b/j ab.b a/

2

Z 1 0

t˛t 1 A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dtC Z 1

0

.1 t/˛t 1 A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt

ab.b a/ 2

Z 1 0

t˛ktk. 1/

A2kt dt

!1=k

Z 1 0

ˇ ˇ ˇ ˇ

f0 ab A2kt

!ˇ ˇ ˇ ˇ

l!1= l

C Z 1

0

.1 t/˛ktk. 1/

A2kt dt

!1=k

Z 1 0

ˇ ˇ ˇ ˇ

f0 ab A2kt

!ˇ ˇ ˇ ˇ

l!1= l

(12)

ab.b a/ 2

K41=kCK51=kZ 1 0

h

tjf0.b/jlC.1 t/jf0.a/jli dt

1= l

ab.b a/ 2

K41=kCK51=k jf0.a/jlC jf0.b/jl C1

!1= l

: (3.16)

CalculatingK4andK5, we obtain K4D

Z 1 0

.1 t/˛ktk. 1/

A2kt dt D b 2k

B.k kpC1; ˛kC1/2F1

2k;k kC1

I˛kCkC1C1 k

I1 a b

(3.17)

K5D Z 1

0

t˛ktk. 1/

A2kt dt D

˛kCkC1 k

b 2k2F1

2k; ˛kCkC1 k

I˛kCkC1C1 k

I1 a b

(3.18) So, if we use (3.17) and (3.18) in (3.16), we get the inequality of (3.15). This com-

pletes the proof.

Remark5. In Theorem8, taking limit!1we obtain Theorem 7 in [5].

Theorem 9. Let˛ > 0 and > 0. Let f WI .0;1/!Rbe a differentiable function such that f 2Xcp.a; b/, wherea; b 2I with a < b. Ifjfjl is a har- monically convex function onŒa; b for some fixedl > 1, 1=kC1= l D1, then the following inequalities holds:

jIf.gI˛; a; b/j ab.b a/ 2 1=k9

10jf0.b/jlC11jf0.a/jl1= l

(3.19) where

9Db 2k2F1

2k;1

IC1

I1 a b

(3.20) 10D 1

2C1 B

C1

; ˛lC1

C˛lC1 2 2F1

1

; 1I˛lC2I1 2

(3.21) 11D 1

21 B

1

; ˛lC1

2F1

1;1

I˛lC1 C1I1

2

C.˛lC1/.˛lC2/

22

2F1

1

; 2I˛lC3I1 2

: (3.22)

(13)

Proof. LetAt DtaC.1 t/b. From Lemma1, Lemma2, H¨older inequality and the harmonically convexity ofjfjq, we have

jIf.gI˛; a; b/j ab.b a/ 2

Z 1 0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt

ab.b a/ 2

Z 1 0

1 A2kt dt

!1=k

Z 1

0 jt˛ .1 t/˛jljt 1jl ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

l

dt

!1= l

ab.b a/ 2

Z 1 0

1 A2kt dt

!1=k

Z 1

0 j1 2tj˛lh

tjf0.b/jlC.1 t/jf0.a/jli dt

1= l

ab.b a/ 2 K61=k

K7jf0.b/jlCK8jf0.a/jl1= l

: (3.23) where

9D Z 1

0

1

A2kt dtDb 2k2F1

2k;1

IC1

I1 a b

(3.24) 10D

Z 1

0 j1 2tj˛ltdt D

Z 1=21=

0

.1 2t/˛ltdtC Z 1

1=21=

.2t 1/˛ltdt D 1

2C1 B

C1

; ˛lC1

C˛lC1 2 2F1

1

; 1I˛lC2I1 2

(3.25)

11D Z 1

0 j1 2tj˛l.1 t/dt D

Z 1=21=

0

.1 2t/˛l.1 t/dtC Z 1

1=21=

.2t 1/˛l.1 t/dt D 1

21 B

1

; ˛lC1

2F1

1;1

I˛lC1 C1I1

2

C.˛lC1/.˛lC2/

22

2F1

1

; 2I˛lC3I1 2

: (3.26)

So, if we use (3.24)-(3.26) in (3.23), we get desired result.

(14)

Remark6. In Theorem9, taking limit!1we obtain Theorem 8 in [5].

Theorem 10. Let˛ > 0and > 0. Letf WI .0;1/!Rbe a differentiable function such thatf 2Xcp.a; b/, wherea; b2I with a < b. If jfjq is a har- monically convex function on Œa; bfor some fixed q > 1, 1=kC1= l D1, then the following inequalities holds:

jIf.gI˛; a; b/j Dab.b a/ 2 1=k12

13jf0.b/jlC14jf0.a/jl1= l

(3.27) where

12D 1

2.k kC1/=B

k kC1

; ˛kC1

C 1 2 2F1

kC k 1

; 1I˛kC2I1 2

13D 1

.C1/b2l 2F1

2l;C1

I2C1

I1 a b

14D

.C1/b2l 2F1

2l;1

I2C1

I1 a b

:

Proof. LetAt DtaC.1 t/b. From Lemma1, Lemma2, H¨older inequality and the harmonically convexity ofjfjq, we have

jIf.gI˛; a; b/j ab.b a/ 2

Z 1 0

jt˛ .1 t/˛jjt 1j A2t

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

dt ab.b a/

2

Z 1

0 jt˛ .1 t/˛jkjt 1jkdt 1=k

Z 1

0

1 A2lt

ˇ ˇ ˇ ˇ

f0 ab

At

ˇ ˇ ˇ ˇ

l

dt

!1= l

ab.b a/ 2

Z 1

0 j.2t 1/j˛ktk. 1/dt 1=k

Z 1

0

1 A2lt

h

tjf0.b/jlC.1 t/jf0.a/jli dt

!1= l

ab.b a/ 2 K61=k

K7jf0.b/jlCK8jf0.a/jl1= l

: (3.28) where

12D Z 1

0 j.2t 1/j˛ktk. 1/dt

(15)

D

Z 1=21=

0

.1 2t/˛ktk. 1/dtC Z 1

1=21=

.2t 1/˛ktk. 1/dt

D 1

2.k kC1/=B

k kC1

; ˛kC1

(3.29) C 1

2 2F1

kC k 1

; 1I˛kC2I1 2

; (3.30)

13D Z 1

0

tAt2ldt

D 1

.C1/b2l 2F1

2l;C1

I2C1

I1 a b

(3.31) 14D

Z 1 0

.1 t/At2ldt

D

.C1/b2l 2F1

2l;1

I2C1

I1 a b

(3.32) So, if we use (3.30)-(3.32) in (3.28), we obtain desired result.

Remark7. In Theorem10, taking limit!1we obtain Theorem 9 in [5].

REFERENCES

[1] S. Belarbi and Z. Dahmani, “On some new fractional integral inequalities,”J. Inequal. Pure Appl.

Math., vol. 10, no. 3, p. 5, 2009.

[2] Z. Dahmani, “New inequalities in fractional integrals,”IJNS, International Journal of Nonlinear Sciences,, vol. 9, no. 4, pp. 493–497, 2010.

[3] Z. Dahmani, L. Tabharit, and S. Taf, “New generalisations of gruss inequality using riemann- liouville fractional integrals,”Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 93–99, 2010.

[4] I. Iscan, “Hermite-hadamard type inequalities for harmonically convex functions,”Hacet. J. Math.

Stat., 2014.

[5] I. Iscan and S. Wu, “Hermite-hadamard type inequalities for harmonically convex functions via fractional integrals,”Applied Mathematics and Computation, vol. 238, pp. 237–244, 2014, doi:

10.1016/j.amc.2014.04.020.

[6] U. Katugampola, “New approach to generalized fractional derivatives,”Bull. Math. Anal. Appl., vol. 6, no. 4, pp. 1–15, 2014.

[7] A. Kilbas, H. Srivastava, and J. Trujillo,Theory and applications of fractional differential equa- tions. Amsterdam: Elsevier, 2006.

[8] M. A. Noor, M. U. Awan, and K. I. Noor, “On some inequalities for relative semi-convex func- tions,”Journal of Inequalities and Applications, vol. 332, 2013.

[9] M. A. Noor, K. I. Noor, and M. U. Awan, “Generalized convexity and integral inequalit- ies,” Applied Mathematics and Information Sciences, vol. 9, no. 1, pp. 233–243, 2015, doi:

10.12785/amis/090129.

[10] A. Prudnikov, Y. Brychkov, and O. Marichev,Integral and series In: Elementary Functions. vol.

1. Nauka, Moscow, 1981.

[11] E. Rainville,Special Functions. The Mcmillan Company, New York, 1960.

(16)

[12] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-hadamard’s inequalities for fractional integrals and related fractional inequalities,”Math. Comput. Model., vol. 57, pp. 2403–2407, 2013, doi:10.1016/j.mcm.2011.12.048.

[13] E. Set, A. Akdemir, and B. C¸ elik, “On generalization of fej´er type inequalities via fractional integral operator,”Filomat, vol. 32, no. 16, pp. 5537–5547, 2018, doi:10.2298/FIL1816537S.

[14] E. Set, A. Akdemir, and I. Mumcu, “Ostrowski type inequalities involving special functions via conformable fractional integrals,”J. Adv. Math. Stud., vol. 10, no. 3, pp. 386–395, 2017.

[15] E. Set, A. Akdemir, and I. Mumcu, “Hadamard’s inequality and its extensions for conformable fractional integrals of any order˛ > 0,”Creat. Math. Inform., vol. 27, no. 2, pp. 197–206, 2018.

[16] E. Set and B. C¸ elik, “Fractional hermite-hadamard type inequalities for quasi-convex functions,”

Ordu Univ. J. Sci. Tech., vol. 6, no. 1, pp. 137–149, 2016.

[17] E. Set, I. Iscan, and F. Zehir, “On some new inequalities of hermite–hadamard type involving harmonically convex functions via fractional integrals,”Konuralp J. Math., vol. 3, no. 1, pp. 42–

55, 2015.

[18] E. Set, M. Noor, M. Awan, and A. G¨ozpınar, “Generalized hermite-hadamard type inequalities involving fractional integral operators,”Journal of Inequalities and Applications, vol. 2107, no.

169, pp. 1–10, 2017, doi:10.1186/s13660-017-1444-6.

[19] E. Set, M. Z. Sarikaya, M. E. Ozdemir, and H. Yildirim, “The hermite-hadamard’s inequality for some convex functions via fractional integrals and related results,”JAMSI, vol. 10, no. 2, pp.

69–83, 2014, doi:10.2478/jamsi-2014-0014.

Authors’ addresses

˙Ilker Mumcu

Ordu University, Department of Mathematics, Faculty of Science and Arts, Ordu, Turkey E-mail address:mumcuilker@msn.com

Erhan Set

Ordu University, Department of Mathematics, Faculty of Science and Arts, Ordu, Turkey E-mail address:erhanset@yahoo.com

Ahmet Ocak Akdemir

Aˇgrı ˙Ibrahim C¸ ec¸en, Department of Mathematics, Faculty of Science and Arts, Aˇgrı, Turkey E-mail address:ahmetakdemir@agri.edu.tr

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

PEARCE, Selected Topics on the Her- mite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000.

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

The main purpose of this paper is to establish new inequalities like those given in Theorems A, B and C, but now for the classes of m-convex functions (Section 2) and (α,

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

Abstract: Generalized form of Hermite-Hadamard inequality for (2n)-convex Lebesgue integrable functions are obtained through generalization of Taylor’s Formula....

Some trapezoid and mid-point type inequalities with new bounds for Hermite-Hadamard inequality related to Riemann-Liouville integrals of order ˛ &gt; 0 are obtained.. Also a

In this paper, by combining the definition of convex functions with the definition of coordinated convex functions, we introduce the concept “r-mean convex function on coordinates”

Qi, “Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions,” Acta Math. Qi, “On integral inequalities of Hermite-Hadamard type for s-