• Nem Talált Eredményt

A NEW REFINEMENT OF THE HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A NEW REFINEMENT OF THE HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS"

Copied!
14
0
0

Teljes szövegt

(1)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page

Contents

JJ II

J I

Page1of 14 Go Back Full Screen

Close

A NEW REFINEMENT OF THE

HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS

G. ZABANDAN

Department of Mathematics

Faculty of Mathematical Science and Computer Engineering Teacher Training University, 599 Taleghani Avenue Tehran 15618 IRAN.

EMail:zabandan@tmu.ac.ir

Received: 13 August, 2008

Accepted: 12 February, 2009

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15, 26D10.

Key words: Hermite-Hadamard inequality.

Abstract: In this paper we establish a new refinement of the Hermite-Hadamard inequality for convex functions.

(2)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page2of 14 Go Back Full Screen

Close

Contents

1 Introduction 3

2 A Refinement Result 6

3 Applications for Special Means 12

(3)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page3of 14 Go Back Full Screen

Close

1. Introduction

Letf : [a, b]→Rbe a convex function, then the following inequality:

(1.1) f

a+b 2

≤ 1 b−a

Z b

a

f(x)dx≤ f(a) +f(b) 2 is known as the Hermite-Hadamard inequality [5].

In recent years there have been many extensions, generalizations and similar re- sults of the inequality (1.1).

In [2], Dragomir established the following theorem which is a refinement of the left side of (1.1).

Theorem 1.1. Iff : [a, b]→Ris a convex function, andHis defined on[0,1]by H(t) = 1

b−a Z b

a

f

tx+ (1−t)a+b 2

dx,

thenH is convex, increasing on[0,1], and for allt∈[0,1],we have f

a+b 2

=H(0)≤H(t)≤H(1) = 1 b−a

Z b

a

f(x)dx.

In [6] Yang and Hong established the following theorem which is a refinement of the right side of inequality (1.1).

Theorem 1.2. Iff : [a, b]→Ris a convex function, andF is defined by F(t) = 1

2(b−a) Z b

a

f

1 +t 2

a+

1−t 2

x

+f

1 +t 2

b+

1−t 2

x

dx,

(4)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page4of 14 Go Back Full Screen

Close

thenF is convex, increasing on[0,1], and for allt∈[0,1], we have 1

b−a Z b

a

f(x)dx=F(0) ≤F(t)≤F(1) = f(a) +f(b)

2 .

In this paper we establish a refinement of the both sides of inequality (1.1). For this we first define two sequences{xn}and{yn}by

xn= 1 2n

2n

X

i=1

f

a+ib−a

2n − b−a 2n+1

(1.2)

= 1 2n

2n

X

i=1

f

a+

i− 1 2

b−a 2n

,

yn= 1 2n+1

2n

X

i=1

f

1− i

2n

a+ i 2nb

+f

1−i−1 2n

a+i−1 2n b

(1.3)

= 1 2n+1

"

f(a)+f(b)+2

2n−1

X

i=1

f

1− i 2n

a+ i

2nb #

and we prove the following f

a+b 2

=x0 ≤ 1 2

f

3a+b 4

+f

a+ 3b 4

=x1 ≤ · · · ≤xn ≤ · · ·

≤ 1 b−a

Z b

a

f(x)dx≤ · · · ≤yn ≤ · · · ≤y1

(5)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page5of 14 Go Back Full Screen

Close

= 1 4

f(a) + 2f

a+b 2

+f(b)

≤y0 = f(a) +f(b)

2 ,

which is a new refinement of the Hermite-Hadamard inequality (1.1). For a similar discussion, see [1] or the monograph online [7, p. 19 – 22].

(6)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page6of 14 Go Back Full Screen

Close

2. A Refinement Result

In this section, using the terminologies of the introduction, we refine the Hermite- Hadamard inequality via the sequences{xn}and{yn}.

Theorem 2.1. Letf be a convex function on[a, b]. Then we have f

a+b 2

≤xn ≤ 1 b−a

Z b

a

f(x)dx≤yn≤ f(a) +f(b)

2 .

Proof. By the right side of Hermite-Hadamard inequality (1.1) we have 1

b−a Z b

a

f(x)dx

= 1

b−a

2n

X

i=1

Z a+ib−a2n

a+(i−1)b−a2n

f(x)dx

≤ 1 b−a

2n

X

i=1

a+ib−a

2n −a−(i−1)b−a 2n

f a+ib−a2n

+f a+ (i−1)b−a2n

2

= 1 2n+1

" 2n X

i=1

f

1− i 2n

a+ i

2nb

+f

1− i−1 2n a

+i−1 2n b

#

=yn.

By the convexity off we obtain yn ≤ 1

2n+1

2n

X

i=1

1− i

2n

f(a) + i

2nf(b) +

1− i−1 2n

f(a) + i−1 2n f(b)

(7)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page7of 14 Go Back Full Screen

Close

= 1 2n+1

"

f(a)

2n

X

i=1

2− i

2n−1 + 1 2n

+f(b)

2n

X

i=1

i

2n−1 − 1 2n

#

= 1 2n+1

f(a)

2n+1− 1 2n−1

2n(2n+ 1) 2 + 2n

2n

+f(b) 1

2n−1 · 2n(2n+ 1) 2 − 2n

2n

= 1

2n+1[f(a)(2n+1−2n) +f(b)(2n)] = f(a) +f(b)

2 ,

so

1 b−a

Z b

a

f(x)dx≤yn ≤ f(a) +f(b)

2 .

On the other hand, by the left side of inequality (1.1) we have 1

b−a Z b

a

f(x)dx= 1 b−a

2n

X

i=1

Z a+ib−a2n

a+(i−1)b−a2n

f(x)dx≥ 1 b−a

2n

X

i=1

b−a 2n ,

f a+ib−a2n +a+ (i−1)b−a2n

2

!

= 1 2n

2n

X

i=1

f

a+ib−a

2n − b−a 2n+1

=xn. By the convexity off and Jensen’s inequality we obtain

xn= 1 2n

2n

X

i=1

f

a+ib−a

2n − b−a 2n+1

≥f

"

1 2n

2n

X

i=1

a+ib−a

2n − b−a 2n+1

#

=f 1

2n

2na+b−a

2n · 2n(2n+ 1)

2 − b−a 2n+12n

(8)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page8of 14 Go Back Full Screen

Close

=f

a+b−a 2

=f

a+b 2

.

Theorem 2.2. Letf be a convex function on[a, b], then{xn}is increasing,{yn}is decreasing and

n→∞lim xn= lim

n→∞yn = 1 b−a

Z b

a

f(x)dx.

Proof. We have xn= 1

2n

2n

X

i=1

f

a+ib−a

2n − b−a 2n+1

= 1 2n

2n

X

i=1

f

(2n+1−2i+ 1)a+ (2i−1)b 2n+1

= 1 2n

2n

X

i=1

f 1

2 ·(2n+3−8i+ 4)a+ (8i−4)b 2n+2

= 1 2n

2n

X

i=1

f 1

2 ·(2n+2+ 3−4i)a+ (4i−3)b+ (2n+2+ 1−4i)a+ (4i−1)b 2n+2

≤ 1 2n+1

2n

X

i=1

f

(2n+2+ 3−4i)a+ (4i−3)b 2n+2

+ 1 2n+1

2n

X

i=1

f

(2n+2+ 1−4i)a+ (4i−1)b 2n+2

(9)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page9of 14 Go Back Full Screen

Close

setA={1,3, . . . ,2n+1−1}andB ={2,4, . . . ,2n+1}, thus we obtain

2n

X

i=1

f

(2n+2+ 3−4i)a+ (4i−3)b 2n+2

=X

A

f

(2n+2+ 1−2i)a+ (2i−1)b 2n+2

2n

X

i=1

f

(2n+2+ 1−4i)a+ (4i−1)b 2n+2

=X

B

f

(2n+2+ 1−2i)a+ (2i−1)b 2n+2

,

which implies that xn≤ 1

2n+1

"

X

A∪B

f

(2n+2+ 1−2i)a+ (2i−1)b 2n+2

#

=xn+1, so{xn}is increasing. On the other hand we have

yn+1 = 1 2n+2

"

f(a) +f(b) + 2

2n+1−1

X

i=1

f

1− i 2n+1

a+ i 2n+1b

#

= 1 2n+2

"

f(a) +f(b) + 2

2n+1−1

X

i=1

f

(2n+1−i)a+ib 2n+1

# .

SettingC ={2,4,6, . . . ,2n+1−2}, we obtain yn+1 = 1

2n+2

"

f(a) +f(b) + 2X

i∈C

f

(2n+1−i)a+ib 2n+1

+ 2X

i∈A

f

(2n+1−i)a+ib 2n+1

#

= 1 2n+2

"

f(a) +f(b) + 2

2n−1

X

i=1

f

(2n+1−2i)a+ 2ib 2n+1

(10)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page10of 14 Go Back Full Screen

Close

+ 2

2n

X

i=1

f

(2n+1−2i+ 1)a+ (2i−1)b 2n+1

#

= 1 2n+2

"

f(a) +f(b) + 2

2n−1

X

i=1

f

(2n−i)a+ib 2n

+ 2

2n

X

i=1

f 1

2 · (2n−i)a+ib+ (2n−i+ 1)a+ (i−1)b 2n

#

≤ 1 2n+2

"

f(a) +f(b) + 2

2n−1

X

i=1

f

(2n−i)a+ib 2n

+

2n

X

i=1

f

(2n−i)a+ib 2n

+

2n

X

i=1

f

(2n−i+ 1)a+ (i−1)b 2n

#

= 1 2n+2

"

f(a) +f(b) + 2

2n−1

X

i=1

f

(2n−i)a+ib 2n

+

2n−1

X

i=1

f

(2n−i)a+ib 2n

+f(b) +f(a) +

2n

X

i=2

f

(2n−i+ 1)a+ (i−1)b 2n

#

= 1 2n+2

"

2f(a) + 2f(b) + 3

2n−1

X

i=1

f

(2n−i)a+ib 2n

+

2n−1

X

i=1

f

(2n−i)a+ib 2n

#

= 1 2n+1

"

f(a) +f(b) + 2

2n−1

X

i=1

f

(2n−i)a+ib 2n

#

=yn, so{yn}is decreasing.

(11)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page11of 14 Go Back Full Screen

Close

For the proof of the last assertions, since f is continuous on [a, b], we use the following well known equality:

n→∞lim b−a

n

n

X

i=1

f

a+ib−a n

= Z b

a

f(x)dx.

So we obtain

n→∞lim xn= lim

n→∞yn = 1 b−a

Z b

a

f(x)dx.

Remark 1. Letf be a convex function on[a, b]. In conclusion, we can state that f

a+b 2

=x0 ≤ 1 2f

3a+b 4

+f

a+ 3b 4

=x1 ≤ · · · ≤xn ≤ · · ·

≤ 1 b−a

Z b

a

f(x)dx≤ · · · ≤yn ≤ · · · ≤y1

= 1 4

f(a) + 2f

a+b 2

+f(b)

≤y0 = f(a) +f(b)

2 .

(12)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page12of 14 Go Back Full Screen

Close

3. Applications for Special Means

Recall the following means a) The arithmetic mean

A(a, b) = a+b

2 (a, b > 0);

b) The geometric neam

G(a, b) =√

ab (a, b >0);

c) The harmonic mean

H(a, b) = 2

1

a+ 1b (a, b >0);

d) The logarithmic mean L(a, b) =

( b−a

lnb−lna b6=a;

a b= 0; (a, b >0).

We define the two new means by the following:

e) Then−harmonic mean Hn(a, b) = 2n+1

"

1 a + 2

2n−1

X

i=1

1 1− 2in

a+2inb + 1 b

#−1

(n= 0,1,2, . . . , a, b >0)

(13)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page13of 14 Go Back Full Screen

Close

f) Then−arithmetic mean An(a, b) = 2n

" 2n

X

i=1

1 1− 2in + 2n+11

a+ 2in2n+11

b

#−1

(n = 0,1,2, . . .;a, b >0).

It is clear thatH0(a, b) = H(a, b)andA0(a, b) = A(a, b). By the above termi- nology we have the following simple proposition:

Proposition 3.1. Let0< a < b <∞. Then we have

H(a, b)≤Hn(a, b)≤L(a, b)≤An(a, b)≤A(a, b),

n→∞lim Hn(a, b) = lim

n→∞An(a, b) =L(a, b).

Proof. Letf : [a, b] → (0,∞), f(x) = x1 and use Remark1. We omit the details.

(14)

Hermite-Hadamard Inequality G. Zabandan vol. 10, iss. 2, art. 45, 2009

Title Page Contents

JJ II

J I

Page14of 14 Go Back Full Screen

Close

References

[1] S.S. DRAGOMIR, Some remarks on Hadamard’s inequalities for convex func- tions, Extracta Math., 9(2) (1994), 88–94.

[2] S.S. DRAGOMIR, Two mappings in connection to Hadamard’s inequalities, J.

Math. Anal. Appl., 167 (1992), 42–56.

[3] S.S. DRAGOMIRANDA. McANDREW, Refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure and Appl. Math., 6(5) (2005), Art. 140. [ONLINE:http://jipam.vu.edu.au/article.php?sid=

614].

[4] S.S. DRAGOMIR, Y.J. CHOANDS.S. KIM. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501.

[5] J. HADAMARD, Étude sur les proprietes des fonctions entieres en particulier d’une fonction consi´derée par Riemann, J. Math. Pures Appl., 58 (1893), 171–

215.

[6] G.S. YANG AND M.C. HONG, A note on Hadamard’s inequality, Tamkang. J.

Math., 28(1) (1997), 33–37.

[7] S.S. DRAGOMIR AND C.E.M. PEARCE, Selected Topics on the Her- mite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000. [ONLINE: http://www.staff.vu.edu.au/RGMIA/

monographs/hermite_hadamard.html].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Qi, “Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions,” Acta Math. Qi, “On integral inequalities of Hermite-Hadamard type for s-

PEARCE, Selected Topics on the Hermite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000..

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

Unfortunately, the method fails if someone tries to use it for proving the left hand side of the Hermite–Hadamard- type inequality for a generalized 4-convex function since, by the

Abstract: Generalized form of Hermite-Hadamard inequality for (2n)-convex Lebesgue integrable functions are obtained through generalization of Taylor’s Formula....

Abstract: A generalized form of the Hermite-Hadamard inequality for convex Lebesgue integrable functions are obtained.. Acknowledgements: The authors thank to

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,

Retkes , Applications of the extended Hermite-Hadamard inequality, Journal of Inequalitites in Pure and Applied Mathematics (JIPAM) 7 (2006), article 24..