• Nem Talált Eredményt

After this, a new fractional Hermite-Hadamard inequality which is not a result of Hermite-Hadamard- Fej´er inequality and better than given in [9] by Sarıkaya et al

N/A
N/A
Protected

Academic year: 2022

Ossza meg "After this, a new fractional Hermite-Hadamard inequality which is not a result of Hermite-Hadamard- Fej´er inequality and better than given in [9] by Sarıkaya et al"

Copied!
11
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 19 (2018), No. 2, pp. 1007–1017 DOI: 10.18514/MMN.2018.2441

IMPROVEMENT OF FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITY FOR CONVEX FUNCTIONS

MEHMET KUNT, ˙IMDAT ˙IS¸CAN, SERCAN TURHAN, AND D ¨UNYA KARAPINAR Received 02 November, 2017

Abstract. In this paper, it is proved that fractional Hermite-Hadamard inequality and fractional Hermite-Hadamard-Fej´er inequality are just results of Hermite-Hadamard-Fej´er inequality. After this, a new fractional Hermite-Hadamard inequality which is not a result of Hermite-Hadamard- Fej´er inequality and better than given in [9] by Sarıkaya et al. is obtained. Also, a new equality is proved and some new fractional midpoint type inequalities are given. Our results generalizes the results given in [5] by Kırmacı.

2010Mathematics Subject Classification: 26A51; 26A33; 26D10

Keywords: convex functions, Hermite-Hadamard inequalities, Riemann-Liouville fractional in- tegrals, midpoint type inequalities

1. INTRODUCTION

Letf WI R!Rbe a convex function defined on the intervalIof real numbers anda; b2I witha < b. The inequality

f

aCb 2

1

b a

Z b a

f .x/dx f .a/Cf .b/

2 (1.1)

is well known in the literature as Hermite-Hadamard’s inequality [2,3].

The most well-known inequalities related to the integral mean of a convex func- tion f are the Hermite Hadamard inequality or its weighted versions, the so-called Hermite-Hadamard-Fej´er inequality.

In [1], Fej´er established the following Fej´er inequality which is the weighted gen- eralization of Hermite-Hadamard inequality (1.1):

Theorem 1. Letf WŒa; b!Rbe convex function. Then, the inequality f

aCb 2

Z b a

g.x/dx Z b

a

f .x/g.x/dxf .a/Cf .b/

2

Z b a

g.x/dx (1.2) holds, where g WŒa; b!R is nonnegative, integrable and symmetric to aC2b (i.e.

g .x/Dg .aCb x/for allx2Œa; b).

c 2018 Miskolc University Press

(2)

In [5], Kırmacı used the following equality to obtain midpoint type inequalities and some applications:

Lemma 1. Leta; b2I witha < b andf WIı!Ris a differentiable mapping (Iıthe interior ofI). Iff02L Œa; b, then we have

1

b a

Z b a

f .u/ du f

aCb 2

D.b a/

Z 1=2 0

tf0.t aC.1 t / b/ dtC Z 1

1=2

.t 1/ f0.t aC.1 t / b/ dt:

(1.3)

Following definitions of the left and right side Riemann-Liouville fractional integ- rals are well known in the literature.

Definition 1. Leta; b2Rwitha < bandf 2L Œa; b. The left and right Riemann- Liouville fractional integralsRaCf andRb f of order > 0are defined by

RaCf .x/D 1 . /

Z x a

.x t / 1f .t /dt; x > a

and

Rb f .x/D 1 . /

Z b x

.t x/ 1f .t /dt; x < b

respectively, where . /is the Gamma function defined by . /D R1 0

e tt 1dt (see [6, page 69] and [10, page 4]).

In [9], Sarıkaya et al. proved the following fractional Hermite-Hadamard type inequality:

Theorem 2. Letf WŒa; b!Rbe a positive function with 0a < b andf 2 LŒa; b. Iff is a convex function onŒa; b, then the following inequalities for frac- tional integrals holds:

f

aCb 2

.C1/

2 .b a/

h

RaCf .b/CRb f .a/

i

f .a/Cf .b/

2 (1.4)

with > 0.

Remark1. In Theorem2, it is not necessary supposing thatf be a positive func- tion anda; bare positive real numbers. From the Definition1, it is clear thata; bare any real numbers such asa < b.

In [4], ˙Is¸can proved the following fractional Hermite-Hadamard-Fej´er type in- equality:

(3)

Theorem 3. Letf WŒa; b!Rbe a convex function witha < bandf 2LŒa; b.

IfgWŒa; b!Ris nonnegative, integrable and symmetric to aC2b, then the following inequality for fractional integrals holds:

f

aCb 2

h

RaCg.b/CRb g.a/i h

RaC.fg/ .b/CRb .fg/ .a/i

f .a/Cf .b/

2 h

RaCg.b/CRb g.a/i (1.5)

with > 0.

In [7], Kunt et al. proved the following left Riemann-Liouville fractional Hermite- Hadamard type inequality and next equality:

Theorem 4. Leta; b2Rwitha < bandf WŒa; b!Rbe a convex function. If f 2L Œa; b, then the following inequality for the left Riemann-Liouville fractional integral holds:

f

aCb C1

.C1/

.b a/ RaCf .b/ f .a/Cf .b/

C1 (1.6)

with > 0.

Lemma 2. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on.a; b/. Iff02LŒa; b, then the following equality for the left Riemann-Liouville fractional integrals holds:

.C1/

.b a/ RaCf .b/ f

aCb C1

D.b a/

2 4

R

C1

0 tf0.t aC.1 t / b/ dt CR1

C1

t 1

f0.t aC.1 t / b/ dt 3 5

(1.7)

with > 0.

In [8], Kunt et al. proved the following right Riemann-Liouville fractional Hermite- Hadamard type inequality and next equality:

Theorem 5. Leta; b2Rwitha < bandf WŒa; b!Rbe a convex function. If f 2L Œa; b, then the following inequality for the right Riemann-Liouville fractional integral holds:

f

aCb C1

.C1/

.b a/ Rb f .a/f .a/Cf .b/

C1 (1.8)

with > 0.

(4)

Lemma 3. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on.a; b/. Iff02LŒa; b, then the following equality for the right Riemann-Liouville fractional integrals holds:

.C1/

.b a/ Rb f .a/ f

aCb C1

D.b a/

2 4

R

C1

0 tf0.t bC.1 t / a/ dt CR1

C1

1 t

f0.t bC.1 t / a/ dt 3 5

(1.9)

with > 0.

In our studies we noticed that fractional Hermite-Hadamard type inequality given in Theorem2and fractional Hermite-Hadamard-Fej´er type inequality given in The- orem3are just result of Hermite-Hadamard-Fej´er inequality (given in Theorem1), with a special selection of the weighted function. This show how strong the Hermite- Hadamard-Fej´er inequality is. However, we will prove new fractional Hermite-Ha- damard type inequality which is not a result of Theorem1. Also, we will have new fractional midpoint type inequalities.

2. RESULTS OFHERMITE-HADAMARD-FEJER INEQUALITY´ Proposition 1. Theorem2is a result of Theorem1.

Proof. In Theorem1, let we chooseg .x/D.x a/ 1C.b x/ 1 for > 0, a; b2RandgWŒa; b!R(It is clearg .x/nonnegative, integrable and symmetric to

aCb

2 ). Computing the following integrals, we have Z b

a

g.x/dxD Z b

a

.x a/ 1C.b x/ 1dxD2 .b a/

; (2.1)

Z b a

f .x/g.x/dxD Z b

a

h

.x a/ 1C.b x/ 1 i

f .x/dx (2.2)

D Z b

a

.x a/ 1f .x/dxC Z b

a

.b x/ 1f .x/dx

D . /h

RaCf .b/CRb f .a/i :

Combining.1:2/,.2:1/and.2:2/we have.1:4/. This completes the proof.

Proposition 2. Theorem3is a result of Theorem1.

Proof. In Theorem1, let we choosew .x/Dh

.x a/ 1C.b x/ 1i

g .x/for > 0,a; b2R, gWŒa; b!Randg .x/nonnegative, integrable and symmetric to

(5)

aCb

2 (It is clearw .x/ nonnegative, integrable and symmetric to aC2b). Computing the following integrals, we have

Z b a

w .x/ dxD Z b

a

h

.x a/ 1C.b x/ 1 i

g .x/ dx (2.3)

D Z b

a

.x a/ 1g .x/ dxC Z b

a

.b x/ 1g .x/ dx

D . /h

RaCg.b/CRb g.a/i

;

Z b a

f .x/w.x/dxD Z b

a

h

.x a/ 1C.b x/ 1 i

f .x/g .x/ dx (2.4)

D Z b

a

.x a/ 1f .x/g .x/ dxC Z b

a

.b x/ 1f .x/g .x/ dx

D . /h

RaC.fg/ .b/CRb .fg/ .a/i :

Combining.1:2/,.2:3/and.2:4/we have.1:5/. This completes the proof.

Remark2. Theorem4and Theorem5are not results of Theorem1.

3. IMPROVEMENT OF FRACTIONALHERMITE-HADAMARD TYPE INEQUALITY

We will use Theorem4and Theorem5to have new fractional Hermite-Hadamard type inequality better than.1:4/.

Theorem 6. Leta; b2Rwitha < bandf WŒa; b!Rbe a convex function. If f 2L Œa; b, then the following inequality for fractional integral holds:

f

aCb C1

Cf

aCb C1

2 .C1/

2 .b a/

h

RaCf .b/CRb f .a/i

f .a/Cf .b/

2

(3.1) with > 0.

Proof. If .1:6/ and .1:8/ gather side by side and dividing into 2, it is hold the

desired result.

Remark 3. Since, f is a convex function on Œa; b, it is clear f aCb

2

f aCb

C1

Cf

aCb C1

2 for > 0. It means that (1) Theorem6is better than Theorem2,

(2) In Theorem6if one takesD1, one has.1:1/, (3) Theorem6is not a result of Theorem1.

(6)

4. NEW FRACTIONAL MIDPOINT TYPE INEQUALITIES

We will now prove an equality to have new fractional midpoint type inequalities.

Lemma 4. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on .a; b/. If f0 2LŒa; b, then the following equality for the fractional integrals holds:

.C1/

2 .b a/

h

RaCf .b/CRb f .a/

i f

aCb C1

Cf

aCb C1

2 (4.1)

Db a 2

2 6 6 6 6 6 6 4

R

C1

0 tf0.t aC.1 t / b/ dt CR1

C1

t 1

f0.t aC.1 t / b/ dt CR

C1

0 tf0.t bC.1 t / a/ dt CR1

C1

1 t

f0.t bC.1 t / a/ dt 3 7 7 7 7 7 7 5

Proof. If .1:7/ and .1:9/ gather side by side and dividing into 2, it is hold the

desired result.

Corollary 1. In Lemma4, if one takesD1, one has Lemma1.

Theorem 7. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on .a; b/. If jf0j is convex on Œa; b, then the following fractional midpoint type inequality holds:

ˇ ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

(4.2)

.b a/ C1 .C1/C2

ˇˇf0.a/ˇ ˇCˇ

ˇf0.b/ˇ ˇ

with > 0.

Proof. Using Lemma4and the convexity ofjf0j, we have ˇ

ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/

i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

b a

2 2 6 6 6 6 6 6 4

R

C1

0 tjf0.t aC.1 t / b/jdt CR1

C1

1 t

jf0.t aC.1 t / b/jdt CR

C1

0 tjf0.t bC.1 t / a/jdt CR1

C1

1 t

jf0.t bC.1 t / a/jdt 3 7 7 7 7 7 7 5

(7)

b a 2

2 6 6 6 6 6 6 4

R

C1

0 tŒtjf0.a/j C.1 t /jf0.b/j dt CR1

C1

1 t

Œtjf0.a/j C.1 t /jf0.b/j dt CR

C1

0 tŒtjf0.b/j C.1 t /jf0.a/j dt CR1

C1

1 t

Œtjf0.b/j C.1 t /jf0.a/j dt 3 7 7 7 7 7 7 5

Db a 2

2 4

R

C1

0 tŒjf0.a/j C jf0.b/j dt CR1

C1

1 t

Œjf0.a/j C jf0.b/j dt 3 5

Db a 2

"

Z C1

0

tdtC Z 1

C1

1 t

dt

#

ˇˇf0.a/ˇ ˇCˇ

ˇf0.b/ˇ ˇ

D.b a/ C1 .C1/C2

ˇˇf0.a/ˇ ˇCˇ

ˇf0.b/ˇ ˇ :

This completes the proof.

Corollary 2. In Theorem7, if one takesD1, one has [5, Theorem 2.2].

Theorem 8. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on.a; b/. Ifjf0jqis convex onŒa; bforq1, then the following fractional midpoint type inequality holds:

ˇ ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

(4.3)

b a 2

C1 .C1/C2

2 6 6 6 6 6 6 6 6 6 4

C2jf0.a/jqCC22jf0.b/jqq1 C.

C1/C2C1

2.C2/ jf0.a/jqC42..CC2/1/jf0.b/jq1q C

C2jf0.b/jqCC22jf0.a/jqq1 C.

C1/C2C1

2.C2/ jf0.b/jqC42..CC2/1/jf0.a/jq1q 3 7 7 7 7 7 7 7 7 7 5

with > 0.

Proof. Using Lemma 4, power mean inequality and the convexity ofjf0jq, we have

ˇ ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

(8)

b a 2

2 6 6 6 6 6 6 4

R

C1 0 tˇ

ˇf0.t aC.1 t / b/ˇ ˇdt CR1

C1

1 tˇ

ˇf0.t aC.1 t / b/ˇ ˇdt CR

C1 0 tˇ

ˇf0.t bC.1 t / a/ˇ ˇdt CR1

C1

1 tˇ

ˇf0.t bC.1 t / a/ˇ ˇdt

3 7 7 7 7 7 7 5

b a 2

2 6 6 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 tdt

1 1q R

C1 0 tˇ

ˇf0.t aC.1 t / b/ˇ ˇ

qdt 1q

C

R1 C1

1 t

dt 1 q1

R1 C1

1 t

ˇˇf0.t aC.1 t / b/ˇ ˇ

qdt 1q

C

R

C1 0 tdt

1 q1 R

C1 0 tˇ

ˇf0.t bC.1 t / a/ˇ ˇ

qdt

1 q

C

R1 C1

1 t

dt 1 q1

R1 C1

1 tˇ

ˇf0.t bC.1 t / a/ˇ ˇ

qdt 1q

3 7 7 7 7 7 7 7 7 7 7 7 7 7 5

b a 2

C1 .C1/C2

!1 1q

2 6 6 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 th

tˇ ˇf0.a/ˇ

ˇ

qC.1 t /ˇ ˇf0.b/ˇ

ˇ

qi dt

1 q

C

R1 C1

1 t h

tˇ ˇf0.a/ˇ

ˇ

qC.1 t /ˇ ˇf0.b/ˇ

ˇ

qi dt

1q

C

R

C1 0 th

tˇ ˇf0.b/ˇ

ˇ

qC.1 t /ˇ ˇf0.a/ˇ

ˇ

qi dt

1q

C

R1 C1

1 t h

tˇ ˇf0.b/ˇ

ˇ

qC.1 t /ˇ ˇf0.a/ˇ

ˇ

qi dt

1q 3 7 7 7 7 7 7 7 7 7 7 7 7 7 5

b a 2

C1 .C1/C2

2 6 6 6 6 6 6 6 6 6 6 6 4

C2

ˇˇf0.a/ˇ ˇ

qCC22ˇ ˇf0.b/ˇ

ˇ

q1q

C

.C1/C2C1 2.C2/

ˇˇf0.a/ˇ ˇ

qC42..CC2/1/

ˇˇf0.b/ˇ ˇ

q1q

C

C2

ˇ ˇf0.b/ˇ

ˇ

qCC22ˇ ˇf0.a/ˇ

ˇ

q1q

C

.C1/C2C1 2.C2/

ˇˇf0.b/ˇ ˇ

qC4 .C1/

2.C2/

ˇˇf0.a/ˇ ˇ

q1q 3 7 7 7 7 7 7 7 7 7 7 7 5 :

This completes the proof.

Corollary 3. In Theorem8, if one takes D1, one has the following midpoint type inequality,

ˇ ˇ ˇ ˇ ˇ

1

b a

Z b a

f .u/ du f

aCb 2

ˇ ˇ ˇ ˇ ˇ

b a 8

2 4

1 3

ˇˇf0.a/ˇ ˇ

qC23ˇ ˇf0.b/ˇ

ˇ

qq1

C

2 3

ˇ ˇf0.a/ˇ

ˇ

qC13ˇ ˇf0.b/ˇ

ˇ

q1q

3 5:

(4.4) Theorem 9. Leta; b2Rwitha < bandf WŒa; b!Rbe a differentiable function on.a; b/. Ifjf0jqis convex onŒa; bforq > 1, then the following fractional midpoint

(9)

type inequality holds:

ˇ ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

(4.5)

b a 2

2 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 tpdt

p1

2

2.C1/2jf0.a/jqC2.2C2

C1/2jf0.b/jq1q

C R1

C1 1 tp dtp1

2C1

2.C1/2jf0.a/jqC2.1

C1/2jf0.b/jq1q C

R

C1 0 tpdt

1p

2

2.C1/2jf0.b/jqC2.2C2

C1/2jf0.a/jq1q CR1

C1 1 tp

dtp1

2C1

2.C1/2jf0.b/jqC2.1

C1/2jf0.a/jq1q

3 7 7 7 7 7 7 7 7 7 7 7 5

with p1C1q D1and > 0.

Proof. Using Lemma4, Holder inequality and the convexity ofjf0jq, we have ˇ

ˇ ˇ ˇ ˇ ˇ

.C1/

2 .b a/

h

RaCf .b/CRb f .a/i f

aCb C1

Cf

aCb C1

2

ˇ ˇ ˇ ˇ ˇ ˇ

b a 2

2 6 6 6 6 6 4

R

C1

0 tjf0.t aC.1 t / b/jdt CR1

C1 1 t

jf0.t aC.1 t / b/jdt CR

C1

0 tjf0.t bC.1 t / a/jdt CR1

C1 1 t

jf0.t bC.1 t / a/jdt 3 7 7 7 7 7 5

b a 2

2 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 tpdt

p1 R

C1

0 jf0.t aC.1 t / b/jqdt 1q

C R1

C1 1 tp dtp1

R1

C1jf0.t aC.1 t / b/jqdt1q C

R

C1 0 tpdt

p1 R

C1

0 jf0.t bC.1 t / a/jqdt 1q

CR1

C1 1 tp

dtp1R1

C1jf0.t bC.1 t / a/jqdt1q

3 7 7 7 7 7 7 7 7 7 7 7 5

b a 2

2 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 tpdt

p1 R

C1 0

tjf0.a/jqC.1 t /jf0.b/jq dt

1q

CR1

C1 1 tp

dtp1 R1 C1

tjf0.a/jqC.1 t /jf0.b/jq dt1q

C

R

C1 0 tpdt

p1 R

C1 0

tjf0.b/jqC.1 t /jf0.a/jq dt

1q

C R1

C1 1 tp dtp1

R1 C1

tjf0.b/jqC.1 t /jf0.a/jq dt1q

3 7 7 7 7 7 7 7 7 7 7 7 5

(10)

b a 2

2 6 6 6 6 6 6 6 6 6 6 6 4

R

C1 0 tpdt

1p 2

2.C1/2jf0.a/jqC2.2C2

C1/2jf0.b/jq1q

C R1

C1 1 tp dtp1

2C1

2.C1/2jf0.a/jqC2.1

C1/2jf0.b/jqq1 C

R

C1 0 tpdt

p1

2

2.C1/2jf0.b/jqC2.2C2

C1/2jf0.a/jq1q CR1

C1 1 tp

dtp1

2C1

2.C1/2jf0.b/jqC2.1

C1/2jf0.a/jqq1

3 7 7 7 7 7 7 7 7 7 7 7 5 :

This completes the proof.

Corollary 4. In Theorem9, if one takesD1, one has [5, Theorem 2.3].

5. COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

[1] L. Fej´er, “Uber die Fourierreihen, II,”Math. Naturwise. Anz. Ungar. Akad., Wiss, no. 24, pp.

369–390, 1906.

[2] J. Hadamard, “ ´Etude sur les propri´et´es des fonctions enti`eres et en particulier d’une fonction consid´er´ee par Riemann,”J. Math. Pures Appl., no. 58, pp. 171–215, 1893.

[3] C. Hermite, “Sur deux limites d’une int´egrale d´efinie,”Mathesis, no. 3, pp. 82–83, 1883.

[4] I. ˙Is¸can, “Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals,”

Stud. Univ. Babes¸-Bolyai Math., vol. 60, no. 3, pp. 355–366, 2015.

[5] U. S. Kırmacı, “ Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula,”Appl. Math. Comp., no. 147, pp. 137–146, 2004.

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.

[7] M. Kunt, D. Karapınar, S. Turhan, and I. ˙Is¸can, “The left Rieaman-Liouville fractional Hermite- Hadamard type inequalities for convex functions,” RGMIA Res. Rep. Coll., vol. 20, no. Art- icle:101, pp. 1–8, 2017.

[8] M. Kunt, D. Karapınar, S. Turhan, and I. ˙Is¸can, “The right Rieaman-Liouville fractional Hermite- Hadamard type inequalities for convex functions,” RGMIA Res. Rep. Coll., vol. 20, no. Art- icle:102, pp. 1–8, 2017.

[9] M. Sarıkaya, E. Set, H. Yaldız, and N. Bas¸ak, “ Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,”Math. Computer Model., vol. 57, no. 9, pp. 2403–

2407, 2013.

[10] Y. Zhou,Basic theory of fractional differential equations. New Jersey: World Scientific, 2014.

Authors’ addresses

Mehmet Kunt

Karadeniz Technical University, Department of Mathematics, 61080 Trabzon, Turkey E-mail address:mkunt@ktu.edu.tr

˙Imdat ˙Is¸can

Giresun University, Department of Mathematics, 28200 Giresun, Turkey E-mail address:imdati@yahoo.com;imdat.iscan@giresun.edu.tr

(11)

Sercan Turhan

Giresun University, Department of Mathematics, 28200 Giresun, Turkey E-mail address:sercan.turhan@giresun.edu.tr

D ¨unya Karapınar

Karadeniz Technical University, Department of Mathematics, 61080 Trabzon, Turkey E-mail address:dunyakarapinar@ktu.edu.tr

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Retkes , Applications of the extended Hermite-Hadamard inequality, Journal of Inequalitites in Pure and Applied Mathematics (JIPAM) 7 (2006), article 24..

Qi, “Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions,” Acta Math. Qi, “On integral inequalities of Hermite-Hadamard type for s-

PEARCE, Selected Topics on the Her- mite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000.

PEARCE, Selected Topics on the Hermite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000..

Unfortunately, the method fails if someone tries to use it for proving the left hand side of the Hermite–Hadamard- type inequality for a generalized 4-convex function since, by the

Abstract: Generalized form of Hermite-Hadamard inequality for (2n)-convex Lebesgue integrable functions are obtained through generalization of Taylor’s Formula....

Abstract: A generalized form of the Hermite-Hadamard inequality for convex Lebesgue integrable functions are obtained.. Acknowledgements: The authors thank to

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,