• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
16
0
0

Teljes szövegt

(1)

volume 7, issue 5, article 183, 2006.

Received 26 March, 2006;

accepted 09 October, 2006.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

HARDY’S INTEGRAL INEQUALITY FOR COMMUTATORS OF HARDY OPERATORS

QING-YU ZHENG AND ZUN-WEI FU

Department of Mathematics Linyi Normal University Linyi Shandong, 276005 People’s Republic of China EMail:zqy7336@163.com EMail:lyfzw@tom.com

c

2000Victoria University ISSN (electronic): 1443-5756 083-06

(2)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

Abstract

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.

2000 Mathematics Subject Classification:26D15, 42B25.

Key words: Hardy’s integral inequality, Commutator, Hardy operator, Lipschitz func- tion.

This paper was supported by the National Natural Science Foundation (No.10371080) of People’s Republic of China.

Contents

1 Introduction and Main Results. . . 3 2 Proof of Theorem 1.3 . . . 7

References

(3)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

1. Introduction and Main Results

Let f be a non-negative and integral function onR+, Hardy operators are de- fined by

(Hf)(x) = 1 x

Z x 0

f(t)dt, x >0, and

(Vf)(x) = Z

x

f(t)dt, x >0.

The Hardy integral inequality results are well known [9,10,11]; in particular

(1.1)

Z 0

(Hf(x))pdx 1p

≤ p p−1

Z 0

(f(x))pdx 1p

,

and (1.2)

Z 0

(Vf(x))pdx 1p

≤p Z

0

(xf(x))pdx 1p

.

In (1.1), the constant p−1p is the best possible. In (1.2), the constantpis also the best possible. The inequality (1.1) was first proved by Hardy in an attempt to give a simple proof of Hilbert’s double series theorem [12].

Letfbe a non-negative and integral function onR+, and the fractional Hardy operator be defined by

(Hαf)(x) = 1 x1−α

Z x 0

f(t)dt, x >0,

(4)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

for 1p1q =α,0< α <1. There are fractional order Hardy integral inequalities which correspond to (1.1) and (1.2):

(1.3)

Z 0

(Hαf(x))qdx 1q

≤C Z

0

(f(x))pdx 1p

,

and (1.4)

Z 0

(Vf(x))qdx 1q

≤C Z

0

(x1−αf(x))pdx 1p

. The Hardy inequality (1.3) can be found in [2], (1.4) in [13].

The Hardy integral inequalities have received considerable attention and a large number of papers have appeared which deal with its alternative proofs, various generalizations, numerous variants and applications. For earlier devel- opments of this kind of inequality and many important applications in analysis, see [11]. Among numerous papers dealing with such inequalities, we choose to refer to the papers [3], [5], [9], [10], [16] – [21] and some of the references cited therein.

Definition 1.1. Let 0 ≤ α < 1 andb(x)be a measurable, locally integrable function. Then the commutator of the Hardy operatorUbα is defined by

Hαbf(x) = 1 x1−α

Z x 0

f(t)(b(x)−b(t))dt, x >0.

Fu [7] obtained the following results.

(5)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

Theorem 1.1. For b ∈ ∧˙β(R+),0 < β < 1, Hbα is a bounded operator from Lp(R+)toLq(R+),1< p < q < ∞,0≤α <1,0< α+β <1,1p1q =α+β.

Remark 1. In Theorem 1.1, If we let α = 0, Then the result corresponds to Hardy inequality (1.3).

Definition 1.2. Letb(x)be a measurable, locally integrable function. Then the commutator of the Hardy operatorVb is defined by

Vbf(x) = Z

x

f(t)(b(x)−b(t))dt, x >0.

In Definition1.1, if we letα= 0, then we denoteHαb byHb.

It can be seen that ifb ∈∧˙β(Rn),0 < β <1, thenHb has a similar bound- edness property toHβ. A natural question regarding the boundedness property ofVb, can be answered in the affirmative by the following inequality (1.5).

Theorem 1.2. Ifb ∈∧˙β(R+), 1p1q =β,0< β <1, p >1. Then

(1.5) kVbfkq≤Ckbk˙β(R+)k(·)f(·)kp.

Theorem 1.3. Ifb ∈ ∧˙β(R+),0 < β < 1, 1p1q = α+β, 0 < α+β < 1, 0≤α <1, p >1. Then

(1.6) kVbfkq ≤Ckbk˙β(R+)k(·)1−αf(·)kp.

If we letα = 0 in Theorem1.3, then Theorem1.2 can be obtained without difficulty. Thus we just need to prove Theorem1.3. Before we prove the main theorem, let us state some lemmas and notations.

(6)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

The Besov-Lipschitz space∧˙β(R+)is the space of functionsf satisfying kfk˙β(R+)= sup

x,h∈R+,h6=0

|f(x+h)−f(x)|

|h|β <∞.

Lemma 1.4 ([8,15]). For anyx, y ∈R+, iff ∈∧˙β(R+),0< β <1, then

(1.7) |f(x)−f(y)| ≤ |x−y|βkfk˙β(R+), and given any intervalIinR+

sup

x∈I

|f(x)−fI| ≤C|I|βkfk˙β(R+),

where

fI = 1

|I|

Z

I

f.

Lemma 1.5 ([7,14]). Lets >0, q ≥p >1, then

X

i=−∞

X

k=i

2(i−k)/s

Z 2k+1 2k

|f(t)|pdt

!1p

q

≤C Z

0

|f(t)|pdt qp

,

where

C=

2p/2s 2p/2s−1

2q0/2s 2q0/2s−1

q q0

, 1

q0 +1 q = 1.

There are two different methods to prove Theorem1.3.

(7)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

2. Proof of Theorem 1.3

First Proof.

Z 0

|Vbf(x)|qdx

=

X

i=−∞

Z 2i+1 2i

Z x

(b(x)−b(t))f(t)dt

q

dx

X

i=−∞

Z 2i+1 2i

Z 2i

|(b(x)−b(t))f(t)|dt q

dx

=

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

|(b(x)−b(t))f(t)|dt

!q

dx

≤2q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

(b(x)−b(2i,2i+1])f(t) dt

!q

dx

+ 2q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

(b(t)−b(2i,2i+1])f(t) dt

!q

dx

:=I+J.

By Lemma1.4and the Hölder inequality, I = 2q/q0

X

i=−∞

Z 2i+1 2i

b(x)−b(2i,2i+1]

qdx

X

k=i

Z 2k+1 2k

|f(t)|dt

!q

(8)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

≤2q/q0

X

i=−∞

2i sup

x∈(2i,2i+1]

b(x)−b(2i,2i+1]

!q

×

X

k=i

Z 2k+1 2k

|f(t)|pdt

!1p

Z 2k+1 2k

dt

!1p

0

q

≤C2q/q0

X

i=−∞

2i(qβ+1) kbk˙β(R+)

q

×

X

k=i

Z 2k+1 2k

|f(t)|pdt

!1p

Z 2k+1 2k

dt

!p10

q

≤C2q/q0

X

i=−∞

2i(qβ+1) kbk˙β(R+)

q

×

X

k=i

2k/p0

Z 2k+1 2k

2−k(1−α)p|t1−αf(t)|pdt

!1p

q

.

Notice that 1p1q =α+β,

I ≤C2q/q0 kbk˙β(R+)

q

X

i=−∞

X

k=i

2(i−k)(1q+β)

Z 2k+1 2k

|t1−αf(t)|pdt

!1p

q

.

(9)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

By Lemma1.5

s= 1+qβq

,

(2.1) I ≤C kbk˙β(R+)

qZ 0

|t1−αf(t)|pdt pq

.

Now estimateJ, J = 2q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

(b(t)−b(2i,2i+1])f(t) dt

!q

dx

≤22q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

(b(t)−b(2k,2k+1])f(t) dt

!q

dx

+ 22q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

(b(2k,2k+1]−b(2i,2i+1])f(t) dt

!q

dx

:=J1+J2.

Notice that 1p1q =α+β, 1p + p10 = 1, by Lemma1.4, it can be inferred that

J1 ≤22q/q0

X

i=−∞

Z 2i+1 2i

X

k=i

sup

t∈(2k,2k+1]

b(t)−b(2k,2k+1]

!Z 2k+1

2k

|f(t)|dt

!q

dx

≤C22q/q0 kbk˙β(R+)

q

X

i=−∞

Z 2i+1 2i

X

k=i

2 Z 2k+1

2k

|f(t)|dt

!q

dx

(10)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

≤C22q/q0 kbk˙β(R+)

q

X

i=−∞

2i

X

k=i

2k(β+p10)

Z 2k+1 2k

|f(t)|pdt

!1p

q

≤C22q/q0 kbk˙β(R+)

q

×

X

i=−∞

2i

X

k=i

2k(β+p10)

Z 2k+1 2k

2−k(1−α)p|t1−αf(t)|pdt

!1p

q

=C22q/q0 kbk˙β(R+)

q

X

i=−∞

X

k=i

2(i−k)/q

Z 2k+1 2k

|t1−αf(t)|pdt

!1p

q

.

In the third inequality, the Hölder inequality is applied.

By Lemma1.5(s=q),

(2.2) J1 ≤C kbk˙β(R+)

qZ 0

|t1−αf(t)|pdt qp

.

To estimateJ2, fori > k, by Lemma1.4, the following result is obtained.

b(2k,2k+1]−b(2i,2i+1] ≤ 1

2i Z 2i+1

2i

b(y)−b(2k,2k+1]

dy

≤ 1 2i

1 2k

Z 2k+1 2k

Z 2i+1 2i

|b(y)−b(z)|dydz

≤ kbk˙β(R+)

1 2i

1 2k

Z 2k+1 2k

Z 2i+1 2i

|y−z|βdydz

(11)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

≤ kbk˙β(R+)

1 2i

Z 2i+1 2i

yβdy+ 1 2k

Z 2k+1 2k

zβdz

!

≤C2iβ+1kbk˙β(R+).

Notice that 1p1q =α+β, 1p+p10 = 1; by Lemma1.4and the Hölder inequality, we have

J2 ≤C22q/q0+q kbk˙β(R+)

q

X

i=−∞

Z 2i+1 2i

2

X

k=i

Z 2k+1 2k

|f(t)|dt

!q

dx

≤C22q/q0+q kbk˙β(R+)

q

X

i=−∞

2i(β+1q)

X

k=i

2k/p0

Z 2k+1 2k

|f(t)|pdt

!p1

q

≤C22q/q0+q kbk˙β(R+)

q

×

X

i=−∞

2i(β+1q)

X

k=i

2k/p0

Z 2k+1 2k

2−k(1−α)p|t1−αf(t)|pdt

!1p

q

=C22q/q0+q kbk˙β(R+)

q

X

i=−∞

X

k=i

2(i−k)(β+1q)

Z 2k+1 2k

|t1−αf(t)|pdt

!1p

q

.

In the second inequality, the Hölder inequality is applied.

By Lemma1.5

s= qβ+1q , (2.3) J2 ≤C kbk˙β(R+)

qZ 0

|t1−αf(t)|pdt qp

.

(12)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

Combining (2.1), (2.2) and (2.3), we complete the proof of Theorem1.3.

Second Proof. By inequality (1.7) and comparing the size ofxandt, we have Z

0

|Vbf(x)|qdx=

X

i=−∞

Z 2i+1 2i

Z x

f(t)|b(x)−b(x)|dt

q

dx

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

|t−x|βkbk˙β(R+)|f(t)|dt

!q

dx

≤C kbk˙β(R+)

q

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

tβ|f(t)|dt

!q

dx

=C kbk˙β(R+)

q

X

i=−∞

Z 2i+1 2i

X

k=i

Z 2k+1 2k

t1−α|f(t)|

t1−α−β dt

!q

dx

=C kbk˙β(R+)

q

X

i=−∞

2i

X

k=i

Z 2k+1 2k

t1−α|f(t)|

t1−α−β dt

!q

.

By the Hölder inequality, 1p +p10 = 1,the following estimate is obtained.

Z 2k+1 2k

t1−α|f(t)|

t1−α−β dt ≤

Z 2k+1 2k

|t1−αf(t)|pdt

!p1

Z 2k+1 2k

t(α+β−1)p0dt

!p10

.

(13)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

Notice that 1p1q =α+β, Z

0

|Vbf(x)|qdx

≤C kbk˙β(R+)

q

X

i=−∞

X

k=i

2(i−k)/q

Z 2k+1 2k

|t1−αf(t)|pdt

!1p

q

.

By Lemma1.5, the desired result is obtained.

(14)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

References

[1] C. BENNET, R.A. DEVORE ANDR. SHARPLEY, WeakL and BMO, Ann. of Math., 113 (1981), 601–611.

[2] G.A. BLISS, An integral inequality, J. London Math. Soc., 5(1930), 40- 46.

[3] T.A.A. BROADBENT, A proof of Hardy’s convergence theorem, J. Lon- don Math. Soc., 3 (1928), 242–243

[4] A.P. CALDERÓN, Space between L1 and L and the theorem of Mar- cikiewiez, Studia Math., 26 (1966), 273–299.

[5] E. COPSON, Some integral inequality, Proc. Roy. Soc. Edinburgh Sect. A.

75 (1975-76), 157–164.

[6] R.A. DEVORE AND R.C. SHARPLY, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47 (1984).

[7] Z.W. FU, Commutators of Hardy–Littlewood average operators, J. Beijing Normal University (Natural Science), 42 (2006), 342–345.

[8] Z.G. LIU AND Z.W. FU, Weighted Hardy–Littlewood average operators on Herz spaces, Acta Math. Sinica (Chinese Series), 49 (2006), 1085–

1090.

[9] G.H. HARDY, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317.

[10] G.H. HARDY, Note on some points in the integral calculus, Messenger Math., 57 (1928), 12–16.

(15)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

http://jipam.vu.edu.au

[11] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Lon- don/New York: Cambridge Univ. Press, 1934.

[12] G.H. HARDY, J.E. LITTLEWOODANDG. POLYA, Inequalities, 2nd ed., London/New York: Cambridge Univ. Press, 1952.

[13] J.C. KUANG, Applied Inequalities, 3rd ed., Shandong: Shandong Sci.

Tech. Press, 2004.

[14] S.C. LONG ANDJ. WANG, Commutators of Hardy operators, J. of Math.

Anal. Appl., 274 (2002), 626–644.

[15] S.Z. LU, Q. WU AND D.C. YANG, Boundedness of commutators on Hardy type spaces, Science in China, 8 (2002), 984–997.

[16] B.G. PACHPATTE, A note on a certain inequality related to Hardy’s in- equality, Indiana J. Pure Appl., 23 (1992), 773–776.

[17] B.G. PACHPATTE, On some integral similar to Hardy’s integral inequal- ity, J. Math. Anal. Appl., 129 (1988), 596–606.

[18] B.G. PACHPATTE, On a new Hardy type inequality, J. Math. Proc. Roy.

Soc. Edinburgh Sect. A, 105 (1987), 265–274.

[19] B.G. PACHPATTE, On some new generalizations of Hardy’s integral in- equality, J. Math. Anal. Appl., 1 (1999), 15–30.

[20] B.C. YANG, Z.H. ZENGANDL. DEBNATH, Note on new generalizations of Hardy’s integral inequality. J. Math. Anal. Appl., 2 (1998), 321–327.

(16)

Hardy’s Integral Inequality For Commutators Of Hardy

Operators

Qing-Yu Zheng and Zun-Wei Fu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of16

J. Ineq. Pure and Appl. Math. 7(5) Art. 183, 2006

[21] B.C. YANG, Z.H. ZENG AND L. DEBNATH, Generalizations of Hardy integral inequality, Internat. J. Math. Math. Sci, 3 (1999), 535–542.

[22] J. XIAO,Lpand BMO bounds of weighted Hardy–Littlewood averages, J.

Math. Anal. Appl., 262 (2001), 660–666.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor, β-function, Γ-function.. 2000 Mathematics

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

Key words and phrases: Partial sums, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close- to-convex functions, Integral operators.. 2000 Mathematics

Applications for discrete and integral inequalities including the Heisen- berg inequality for vector-valued functions in Hilbert spaces are provided.. 2000 Mathematics

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

These are sharper than some known generalizations of the Hilbert integral inequality including a recent result of Yang.. 2000 Mathematics Subject