• Nem Talált Eredményt

Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor,β-function,Γ-function

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor,β-function,Γ-function"

Copied!
10
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 92, 2005

ON HARDY-HILBERT INTEGRAL INEQUALITIES WITH SOME PARAMETERS

YONG HONG

DEPARTMENT OFMATHEMATICS

GUANGDONGBUSINESSCOLLEGE, GUANGZHOU510320 PEOPLESREPUBLIC OFCHINA

hongyong59@sohu.com

Received 07 April, 2005; accepted 06 June, 2005 Communicated by B. Yang

ABSTRACT. In this paper, we give a new Hardy-Hilbert’s integral inequality with some param- eters and a best constant factor. It includes an overwhelming majority of results of many papers.

Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor,β-function,Γ-function.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION ANDMAINRESULT

Let 1p + 1q = 1(p > 1), f ≥ 0, g ≥ 0, 0 < R

0 fp(x)dx < +∞,0 < R

0 gq(x)dx < +∞, then we have the well known Hardy-Hilbert inequality

(1.1)

Z 0

Z 0

f(x)g(x)

x+y dxdy < π sin

π p

Z

0

fp(x)dx

1pZ 0

gq(x)dx 1q

;

and an equivalent form as:

(1.2)

Z 0

Z 0

f(x) x+ydx

p

dy <

 π sin

π p

p

Z 0

fp(x)dx.

In recent years, many results have been obtained in the research of these two inequalities (see [1] – [13]). Yang [1] and [2] gave:

(1.3) Z

0

Z 0

f(x)g(y)

(x+y)λdxdy < B

p+λ−2

p ,p+λ−2 q

× Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

,

ISSN (electronic): 1443-5756

c 2005 Victoria University. All rights reserved.

109-05

(2)

whereB(r, s)is theβ-function; and Kuang [3] gave:

(1.4) Z

0

Z 0

f(x)g(x) xλ+yλ dxdy

< π

λsinp1

π

sin1q

π

Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

.

Recently, Hong [4] gave:

(1.5) Z

0

Z 0

f(x)g(x) px2+y2dxdy

≤ 1 2√

πΓ 1

2p

Γ 1

2q

Z 0

fp(x)dx

1pZ 0

gq(x)dx 1q

. And Yang [5] gave:

(1.6) Z

0

Z 0

f(x)g(x) xλ+yλ dxdy

< π λsin

π p

Z

0

x(p−1)(1−λ)fp(x)dx

1pZ 0

x(q−1)(1−λ)gq(x)dx 1q

;

(1.7)

Z 0

yλ−1 Z

0

f(x) xλ+yλdx

p

dy <

 π λsin

π p

p

Z 0

x(p−1)(1−λ)fp(x)dx.

These results generalize and improve (1.1) and (1.2) in a certain degree.

In this paper, by introducing a few parameters, we obtain a new Hardy-Hilbert integral in- equality with a best constant factor, which is a more extended inequality, and includes all the results above and the overwhelming majority of results of many recent papers.

Our main result is as follows:

Theorem 1.1. If 1p + 1q = 1 (p > 1), α > 0, λ > 0, m, n ∈ R, such that 0 <1−mp < αλ, 0<1−nq < αλ, andf ≥0,g ≥0, satisfy

(1.8) 0<

Z 0

x(1−αλ)+p(n−m)

fp(x)dx <∞,

(1.9) 0<

Z 0

y(1−αλ)+q(m−n)

gq(y)dy <∞, then

(1.10) Z

0

Z 0

f(x)g(x)

(xα+yα)λdxdy < Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx 1p

× Z

0

y(1−αλ)+q(m−n)

gq(y)dy 1q

;

(3)

and (1.11)

Z 0

y

(1−αλ)+q(m−n) 1−q

Z 0

f(x) (xα+yα)λdx

p

dy

<Heλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx, where

Hλ,α(m, n, p, q) = 1 αB1p

1−mp

α , λ− 1−mp α

B1q

1−nq

α , λ− 1−nq α

and

Heλ,α(m, n, p, q) = 1 αpB

1−mp

α , λ− 1−mp α

Bp−1

1−nq

α , λ−1−nq α

. Theorem 1.2. Ifp > 1, 1p + 1q = 1, α > 0, λ > 0, m, n ∈ R, such that0 < 1−mp < αλ, mp+nq = 2−αλ, andf(x)≥0,g(y)≥0, satisfy

(1.12) 0<

Z 0

xn(p+q)−1fp(x)dx <∞,

(1.13) 0<

Z 0

ym(p+q)−1gq(y)dy <∞, then

(1.14) Z

0

Z 0

f(x)g(x)

(xα+yα)λdxdy < 1 αB

1−mp

α , λ− 1−mp α

× Z

0

xn(p+q)−1fp(x)dx

1pZ 0

ym(p+q)−1gq(y)dy 1q

;

(1.15) Z

0

y

m(p+q)−1 1−q

Z 0

f(x) (xα+yα)λdx

p

dy

< 1 αpBp

1−mp

α , λ− 1−mp α

Z 0

xn(p+q)−1fp(x)dx, where the constant factorsα1B 1−mpα , λ− 1−mpα

in (1.14) andα1pBp 1−mpα , λ−1−mpα

in (1.15) are the best possible.

2. WEIGHTFUNCTION ANDLEMMAS

The weight function is defined as follows ωλ,α(m, n, y) =

Z 0

1

(xα+yα)λ · yn

xmdx, y∈(0,+∞).

Lemma 2.1. Ifα >0,λ >0,m ∈R,0<1−m < αλ, then (2.1) ωλ,α(m, n, y) = 1

αy(1−αλ)+(n−m)

B

1−m

α , λ− 1−m α

.

(4)

Proof. Settingt= xyαα, then

ωλ,α(m, n, y) = 1 α

Z 0

1

(1 +t)λy(1−αλ)+(n−m)

t1−mα −1dt

= 1

αy(1−αλ)+(n−m)

Z 0

1

(1 +t)λt1−mα −1dt

= 1

αy(1−αλ)+(n−m)

B

1−m

α , λ− 1−m α

.

Hence (2.1) is valid. The lemma is proved.

Lemma 2.2. Ifα >0, λ >0, β <1, a∈R, then (2.2)

Z 1

1 x1+ε

Z 1

0

1

(1 +t)λt1−βα −1−aεdtdx=O(1), (ε→0+).

Proof. Since(1−β)/α >0,forεsmall enough, such that 1−βα −aε >0,then Z

1

1 x1+ε

Z 1

0

1

(1 +t)λt1−βα −1−aεdtdx <

Z 1

1 x

Z 1

0

t(1−βα −aε)−1dtdx

= 1

1−β−aεα Z

1

xβ+aεα−2dx

= 1

(1−β−aεα)2.

Hence (2.2) is valid.

3. PROOFS OF THETHEOREMS

Proof of Theorem 1.1. By Hölder’s inequality and Lemma 2.1, we have G=

Z 0

Z 0

f(x)g(y) (xα+yα)λdxdy

= Z

0

Z 0

f(x) (xα+yα)λ/p

xn ym

g(y) (xα+yα)λ/q

ym xn

dxdy

≤ Z

0

Z 0

fp(x) (xα+yα)λ

xnp ymp

1pZ 0

Z 0

gq(x) (xα+yα)λ

ymq xnqdxdy

1q , (3.1)

according to the condition of taking equality in Hölder’s inequality, if (3.1) takes equality, then there exists a constantC, such that

fp(x) (xα+yα)λ

xnp ymp

gq(y) (xα+yα)λ

ymq xnq

≡C, a.e. (x, y)∈(0,+∞)×(0,+∞) it follows that

fp(x)xn(p+q) ≡Cgq(y)ym(p+q) ≡C1 (constant), a.e. (x, y)∈(0,+∞)×(0,+∞)

(5)

hence Z

0

x(1−αλ)+p(n−m)

fp(x)dx= Z

0

x(1−αλ)+n(p+q)−nq−mp

fp(x)dx

=C1 Z

0

x(1−αλ)−np−mq

dx

=C1 Z 1

0

x(1−αλ)−np−mq

dx+C1 Z

1

x(1−αλ)−np−mq

dx

= +∞,

which contradicts (1.8) and (1.9). Hence, by (3.1), we have G <

Z 0

Z 0

1 (xα+yα)λ

xnp ympdy

fp(x)dx 1p

× Z

0

Z 0

1 (xα+yα)λ

ymq xnqdy

gq(y)dy 1q

= 1

α Z

0

x(1−αλ)+p(n−m)

B

1−mp

α , λ− 1−mp α

fp(x)dx 1p

× 1

α Z

0

y(1−αλ)+q(m−n)B

1−nq

α , λ− 1−nq α

gq(y)dy 1q

=Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx

p1 Z 0

y(1−αλ)+q(m−n)

gq(y)dy 1q

. Hence (1.10) is vaild.

Letβ = [(1−αλ) +q(m−n)]/(1−q),and

eg(y) = yβ Z

0

f(x) (xα+yα)λdx

pq . By (1.10), we have

Z 0

y(1−αλ)+q(m−n)

egq(y)dy

= Z

0

yβ(1−q)egq(y)dy

= Z

0

yβ Z

0

f(x) (xα+yα)λdx

p

dy

= Z

0

yβ Z

0

f(x) (xα+yα)λdx

pq Z 0

f(x) (xα+yα)λdx

dy

= Z

0

Z 0

f(x)eg(y) (xα+yα)λdxdy

< Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx 1p

× Z

0

y(1−αλ)+q(m−n)

egq(y)dy|

1q ,

(6)

It follows that Z

0

y

(1−αλ)+q(m−n) 1−q

Z 0

f(x) (xα+yα)λdx

p

dy

<Heλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx.

Hence, (1.11) is valid.

Proof of Theorem 1.2. Since0<1−mp < αλ, mp+nq = 2−αλ,then 0<1−nq < αλ,

(1−αλ) +p(n−m) = n(p+q)−1, (1−αλ) +q(m−n) = m(p+q)−1,

1−mp

α =λ− 1−nq α . By Theorem 1.1, (1.14) and (1.15) are valid.

Forε >0,setting

f0(x) =

( x[−n(p+q)−ε]/p, x≥1;

0, 0≤x <1,

and

g0(y) =

( y[−m(p+q)−ε]/q, y ≥1;

0, 0≤y <1.

We have

(3.2) 0<

Z 0

xn(p+q)−1f0p(x)dx= Z

1

x−1−εdx= 1 ε <∞,

(3.3) 0<

Z 0

ym(p+q)−1g0q(y)dy = Z

1

y−1−εdy= 1 ε <∞.

Z 0

Z 0

f0(x)g0(y) (xα+yα)λdxdy

= Z

1

Z 1

1

(xα+yα)λxn(p+q)+εp ym(p+q)+εq dxdy

= Z

1

xn(p+q)+εp Z

1

1

(xα+yα)λym(p+q)+εq dydx

= 1 α

Z 1

1 x1+ε

Z

1

1

(1 +t)λt1−mpα −1−ε dtdx

= 1 α

Z 1

1 x1+ε

Z 0

1

(1 +t)λt1−mtα −1−ε dtdx

− Z

1

1 x1+ε

Z 1

0

1

(1 +t)λt1−mtα −1−ε dtdx

# . By Lemma 2.2, whenε →0,we have

Z 1

1 x1+ε

Z 1

0

1

(1 +t)λt1−mpα −1−ε dtdx=O(1).

(7)

Since

Z 0

1

(1 +t)λt1−mpα −1−ε dt =B

1−mp

α , λ− 1−mp α

+o(1), we have

Z 0

Z 0

f0(x)g0(y)

(xα+yα)λdxdy= 1 α

1 ε

B

1−mp

α , λ− 1−mp α

+o(1)

−O(1)

= 1 ε

1 αB

1−mp

α , λ−1−mp α

−o(1)

= 1 εαB

1−mp

α , λ− 1−mp α

(1−o(1)).

(3.4)

If the constant α1B 1−mpα , λ− 1−mpα

in (1.14) is not the best possible, then there exists aK <

1

αB 1−mpα , λ−1−mpα

,such that (1.14) still is valid when we replace α1B 1−mpα , λ−1−mpα by K. By (3.2), (3.3) and (3.4), we find

1 εαB

1−mp

α , λ− 1−mp α

(1−o(1))

< K Z

0

xn(p+q)−1f0p(x)dx

1pZ 0

ym(p+q)−1gq0(y)dy 1q

=K1 ε. For ε → 0+, we have α1B 1−mpα , λ− 1−mpα

≤ K, which contradicts the fact that K <

1

αB 1−mpα , λ−1−mpα

. It follows that α1B 1−mpα , λ−1−mpα

in (1.14) is the best possible.

Since (1.14) is equivalent to (1.15), then the constantα1pBp 1−mpα , λ− 1−mpα

in (1.15) is the

best possible. The theorem is proved.

4. SOMECOROLLARIES

When we take the appropriate parameters, many new inequalities can be obtained as follows:

Corollary 4.1. If 1p +1q = 1 (p > 1), α > 0, λ > 0, f ≥ 0, g ≥ 0, andx(1−αλ)(p−1)/pf(x) ∈ Lp(0,+∞),x(1−αλ)(q−1)/qg(x)∈Lq(0,+∞), then

(4.1) Z

0

Z 0

f(x)g(y) (xα+yα)λdxdy

<

Γ

λ p

Γ

λ q

αΓ(λ)

Z 0

x(1−αλ)(p−1)

fp(x)dx

p1 Z 0

x(1−αλ)(q−1)

gq(x)dx 1q

;

(4.2)

Z 0

yα−1 Z

0

f(x) (xα+yα)λdx

p

dy <

 Γ

λ p

Γ

λ q

αΓ(λ)

p

Z 0

x(1−αλ)(p−1)fp(x)dx,

where the constants Γ

λ p

Γ

λ q

.

(αΓ(λ))in (4.1) and h Γ

λ p

Γ

λ q

.

(αΓ(λ))ip

in (4.2) are the best possible.

Proof. If we takem = 1pαλp2, n= 1qαλq2 in Theorem 1.2, (4.1) and (4.2) can be obtained.

(8)

Corollary 4.2. If 1p+1q = 1 (p >1), λ >0, f ≥0, g ≥0andx(1−λ)(p−1)/pf(x)∈Lp(0,+∞), x(1−λ)(q−1)/qg(x)∈Lq(0,+∞), then

(4.3) Z

0

Z 0

f(x)g(y) (x+y)λdxdy

<

Γ

λ p

Γ

λ q

Γ(λ)

Z 0

x(1−λ)(p−1)fp(x)dx

1pZ 0

x(1−λ)(q−1)gq(x)dx 1q

,

(4.4)

Z 0

Z 0

f(x) (x+y)λdx

p

dy <

 Γ

λ p

Γ

λ q

Γ(λ)

p

Z 0

x(1−λ)(p−1)fp(x)dx,

where Γ

λ p

Γ

λ q

.

Γ(λ)in (4.3) andh Γ

λ p

Γ

λ q

.

Γ(λ)ip

in (4.4) are the best possible.

Proof. If we takeα= 1in Corollary 4.1, (4.3) and (4.4) can be obtained.

Corollary 4.3. If 1p +1q = 1 (p >1), λ >0, p+λ−2>0, q+λ−2>0, f ≥0, g ≥0, and x(1−λ)/pf(x)∈Lp(0,+∞), x(1−λ)/qg(x)∈Lq(0,+∞), then

(4.5) Z

0

Z 0

f(x)g(y) (x+y)λdxdy

< B

p+λ−2

p ,q+λ−2 q

Z 0

x1−λfp(x)

1pZ 0

x1−λgq(x)dx 1q

,

(4.6) Z

0

y1−λ1−q Z

0

f(x) (x+y)λdx

p

dy < Bp

p+λ−2

p ,q+λ−2 q

Z 0

x1−λfp(x)dx, whereB

p+λ−2

p ,q+λ−2q

in (4.5) andBp

p+λ−2

p ,q+λ−2q

in (4.6) are the best possible.

Proof. If we takeα= 1, m=n= 2−λpq in Theorem 1.2, (4.5) and (4.6) can be obtained.

Corollary 4.4. If 1p + 1q = 1 (p > 1), α > 0, f ≥ 0, g ≥ 0, andx(1−α)/pf(x) ∈ Lp(0,+∞), x(1−α)/qg(x)∈Lq(0,+∞), then

(4.7) Z

0

Z 0

f(x)g(x) xα+yα dxdy

< π

αsinp1

π

sin1q

π

Z

0

x1−αfp(x)dx

pZ 0

x1−αgq(x)dx q

,

(4.8) Z

0

y1−α1−q Z

0

f(x) xα+yαdx

p

dy <

π αsin1p

π

sin1q

π

p

Z 0

x1−αfp(x)dx.

Proof. If we takeλ= 1, m=n= pq1, in Theorem 1.1, (4.7) and (4.8) can be obtained.

(9)

Corollary 4.5. If 1p + 1q = 1 (p > 1), α > 0, f ≥ 0, g ≥ 0, and f(x) ∈ Lp(0,+∞), g(x)∈Lq(0,+∞), then

(4.9)

Z 0

Z 0

f(x)g(x)

(xα+yα)α1 dxdy <

Γ

1

Γ

1

αΓ α1

Z 0

fp(x)dx

p1 Z 0

gq(x)dx 1q

,

(4.10)

Z 0

Z 0

f(x) (xα+yα)α1 dx

!p

dy <

 Γ

1

Γ

1

αΓ α1

p

Z 0

fp(x)dx, where Γ

1

Γ

1

.

αΓ α1

in (4.9) andh Γ

1

Γ

1

.

αΓ α1ip

in (4.10) are the best possible.

Proof. If we takeλ= α1, m=n= pq1 in Theorem 1.2, (4.9) and (4.10) can be obtained.

Remark 4.6. (4.1) and (4.2) are respectively generalizations of (1.6) and (1.7). Forα = 1in (4.1) and (4.2), (1.6) and (1.7) can be obtained.

Remark 4.7. (4.3) and (4.4) are respectively generalizations of (1.1) and (1.2) . Remark 4.8. (4.5) is the result of [1] and [2]. (4.6) is a new inequality.

Remark 4.9. (4.7) is the result of [3]. (1.7) is a new inequality.

Remark 4.10. (4.9) is a generalization of (1.5). (4.10) is a new inequality.

For other appropriate values of parameters taken in Theorems 1.1 and 1.2, many new inequal- ities and the inequalities of [6] – [13] can yet be obtained.

REFERENCES

[1] BICHENG YANG, A generalized Hardy-Hilbert’s inequality with a best constant factor, Chin. Ann.

of Math. (China), 21A(2000), 401–408.

[2] BICHENG YANG, On Hardy-Hilbert’s intrgral inequality, J. Math. Anal. Appl., 261 (2001), 295–

306.

[3] JICHANG KUANG, On new extensions of Hilbert’s integtal inequality, Math. Anal. Appl., 235 (1999), 608–614.

[4] YONG HONG, All-sided Generalization about Hardy-Hilbert’s integral inequalities, Acta Math.

Sinica (China), 44 (2001), 619–626.

[5] BICHENG YANG, On a generalization of Hardy-Hilbert’s inequality, Ann. of Math. (China), 23 (2002), 247–254.

[6] BICHENG YANG, On a generalization of Hardy-Hilbert’s integral ineguality, Acta Math. Sinica (China), 41(4) (1998), 839–844.

[7] KE HU, On Hilbert’s inequality, Ann. of Math. (China), 13B (1992), 35–39

[8] KE HU, On Hilbert’s inequality and it’s application, Adv. in Math. (China), 22 (1993), 160–163.

[9] BICHENG YANG ANDMINGZHE GAO, On a best value of Hardy-Hilbert’s inequality, Adv. in Math. (China), 26 (1999), 159–164.

[10] MINGZHE GAO, An improvement of Hardy-Riesz’s extension of the Hilbert inequality, J. Math- ematical Research and Exposition, (China) 14 (1994), 255–359.

(10)

[11] MINGZHE GAOANDBICHENG YANG, On the extended Hilbert’s inequality, Proc. Amer. Math.

Soc., 126 (1998), 751–759.

[12] BICHENG YANGANDL. DEBNATH, On a new strengtheaed Hardy-Hilbert’s intequality, Inter- nat. J. Math. & Math. Sci., 21 (1998): 403–408.

[13] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. &

Appl., 226 (1998), 166–179.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, by introducing the norm kxk α (x ∈ R n ), we give a multiple Hardy- Hilbert’s integral inequality with a best constant factor and two parameters α, λ.. Key words

By introducing some parameters and the β function and improving the weight function, we obtain a generalization of Hilbert’s integral inequality with the best constant factorJ. As

By introducing some parameters and the β function and improving the weight func- tion, we obtain a generalization of Hilbert’s integral inequality with the best constant factor.. As

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.. 2000 Mathematics

In recent years, [2] – [5] consid- ered the strengthened version, generalizations and improvements of inequality (1.1) and Pach- patte [6] built some inequalities similar to

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results