• Nem Talált Eredményt

Key words and phrases: Hilbert’s inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hilbert’s inequality"

Copied!
8
0
0

Teljes szövegt

(1)

ON A DECOMPOSITION OF HILBERT’S INEQUALITY

BICHENG YANG DEPARTMENT OFMATHEMATICS

GUANGDONGEDUCATIONINSTITUTE

GUANGZHOU, GUANGDONG510303, P.R. CHINA bcyang@pub.guangzhou.gd.cn

Received 07 October, 2008; accepted 20 March, 2009 Communicated by B. Opic

ABSTRACT. By using the Euler-Maclaurin’s summation formula and the weight coefficient, a pair of new inequalities is given, which is a decomposition of Hilbert’s inequality. The equivalent forms and the extended inequalities with a pair of conjugate exponents are built.

Key words and phrases: Hilbert’s inequality; Weight coefficient; Equivalent form; Hilbert-type inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

In 1908, H. Weyl published the following Hilbert inequality: If{an},{bn}are real sequences, 0<P

n=1a2n <∞and0<P

n=1b2n<∞,then [1]

(1.1)

X

n=1

X

m=1

ambn m+n < π

X

n=1

a2n

X

n=1

b2n

!12 ,

where the constant factorπis the best possible. In 1925, G. H. Hardy gave an extension of (1.1) by introducing one pair of conjugate exponents(p, q) (1p + 1q = 1)as [2]: Ifp >1, an, bn ≥0, 0<P

n=1apn <∞and0<P

n=1bqn<∞,then (1.2)

X

n=1

X

m=1

ambn

m+n < π sin(πp)

X

n=1

apn

!1p X

n=1

bqn

!1q ,

where the constant factorπ/sin(πp)is the best possible. We refer to (1.2) as the Hardy-Hilbert inequality. In 1934, Hardy et al. [3] gave some applications of (1.1) and (1.2). By introducing a pair of non-conjugate exponents (p, q) in (1.1), Hardy et al. [3] gave: Ifp, q > 1,1p + 1q

The author expresses his sincerest thanks to the referee for his thoughtful suggestions in improving this work.

277-08

(2)

1,0< λ= 2−(1p + 1q)≤1,then (1.3)

X

n=1

X

m=1

ambn

(m+n)λ ≤K(p, q)

X

n=1

apn

!p1 X

n=1

bqn

!1q ,

where the constant factorK(p, q)is the best value only forλ= 1. In 1951, Bonsall [4] consid- ered (1.3) in the case of a general kernel. In 1991, Mitrinovi´c et al. [5] summarized the above method and results.

In 1997-1998, by using weight coefficients, Yang and Gao [6], [7] gave a strengthened version of (1.2) as:

(1.4)

X

n=1

X

m=1

ambn m+n <

( X

n=1

"

π

sin(πp) −1−γ n1/p

# apn

)p1 ( X

n=1

"

π

sin(πp) −1−γ n1/q

# bqn

)1q , where,1−γ = 0.42278433+(γ is the Euler constant). In 2001, Yang [8] gave an extension of (1.1) by introducing an independent parameter0< λ≤4as

(1.5)

X

n=1

X

m=1

ambn

(m+n)λ < B λ

2,λ 2

X

n=1

n1−λa2n

X

n=1

n1−λb2n

!12 ,

where the constant factorB(λ2,λ2)is the best possible (B(u, v)is the Beta function). In 2004, Yang [9] published the dual form of (1.2) as follows

(1.6)

X

n=1

X

m=1

ambn

m+n < π sin(πp)

X

n=1

np−2apn

!1p X

n=1

nq−2bqn

!1q .

Forp = q = 2,both (1.6) and (1.2) reduce to (1.1). It means that there are two different best extensions of (1.1). To generalize (1.2) and (1.6), in 2005, Yang [10] gave an extension of (1.2) and (1.6) with two pairs of conjugate exponents (p, q),(r, s)(p, r > 1)and parametersα, λ >

0 (αλ≤ min{r, s})as: If0 < P

n=1np(1−αλr )−1apn < ∞and0 < P

n=1nq(1−αλs )−1bqn < ∞, then

(1.7)

X

n=1

X

m=1

ambn

(mα+nα)λ < kαλ(r) (

X

n=1

np(1−αλr )−1apn

)1p( X

n=1

nq(1−αλs )−1bqn )1q

, where the constant factor kαλ(r) = α1B(λr,λs) is the best possible. T. K. Pogány [11] also considered a best extension of (1.2) with the non-homogeneous kernel as 1

mn)µ (µ, λm, ρn >

0).

We have a non-negative decomposition of kernel in (1.1):

1

m+n = max{m, n}

(m+n)2 + min{m, n}

(m+n)2 (m, n∈N)

(Nis the set of positive integer numbers). In this paper, by using the Euler-Maclaurin summation formula and the weight coefficient as in [8], we give a pair of new Hilbert-type inequalities as

X

n=1

X

m=1

max{m, n}

(m+n)2 ambn

2 + 1 X

n=1

a2n

X

n=1

b2n

!12

; (1.8)

X

n=1

X

m=1

min{m, n}

(m+n)2 ambn

2 −1 X

n=1

a2n

X

n=1

b2n

!12 (1.9) ,

(3)

where the sum of two best constant factors isπ. The equivalent forms and extended inequalities with a pair of conjugate exponents are considered.

2. SOME LEMMAS

Lemma 2.1 (Euler-Maclaurin’s summation formula, cf. [8, 12, Lemma 1]). Iff(x)∈C1[1,∞), then we have

(2.1)

X

k=1

f(k) = Z

1

f(x)dx+1

2f(1) + Z

1

P1(x)f0(x)dx,

where P1(x) = x− [x] − 12 is the Bernoulli function of the first order; if g ∈ C3[1,∞), (−1)ig(i)(x)>0, g(i)(∞) = 0, (i= 0,1,2,3), then

1

12[g(n)−g(1)]<

Z n 1

P1(x)g(x)dx <0, (2.2)

− 1

12g(n)<

Z n

P1(x)g(x)dx <0.

Lemma 2.2. If 12 ≤α <1,setting the weight coefficientω(α, m)as

(2.3) ω(α, m) :=

X

n=1

max{m, n}mα

(m+n)2nα (m∈N), then we have

(2.4) k(α) = Aα(m) +ω(α, m); ω 1

2, m

< k 1

2

= π 2 + 1,

where

k(α) := 1 α

Z 0

max u1/α,1

(u1/α+ 1)2 uα1−2du andAα(m) =O(mα−1), (m→ ∞).

Proof. For fixed 12 ≤ α < 1, m ∈ N, setting f(x) := max{m,x}(m+x)2xα, x ∈ (0,∞),then by (2.1), it follows that

ω(α, m) = mα

X

n=1

f(n) (2.5)

=mα Z

1

f(x)dx+1

2f(1) + Z

1

P1(x)f0(x)dx

=mα Z

0

f(x)dx−mαρ(α, m), P1(x)f0(x)dx.

(2.6) ρ(α, m) :=

Z 1 0

f(x)dx−1

2f(1)− Z

1

P1(x)f0(x)dx.

We find

−1

2f(1) = −m

2(m+ 1)2 = −1

2(m+ 1) + 1 2(m+ 1)2,

(4)

and

Z 1 0

f(x)dx= Z 1

0

m

(m+x)2xαdx≥ Z 1

0

m

(m+x)2dx = 1 m+ 1; Z 1

0

f(x)dx≤ Z 1

0

m

m2xαdx= 1 (1−α)m.

Forx∈ (0, m), f(x) = (m+x)m2xα,it follows f0(x) = (m+x)−2m3xα(m+x)αm2xα+1;forx ∈ (m,∞), f(x) = (m+x)x1−α2,we find

f0(x) = −2x1−α

(m+x)3 + 1−α (m+x)2xα

= −2(x+m−m)

(m+x)3xα + 1−α (m+x)2xα

= −2

(m+x)2xα + 2m

(m+x)3xα + 1−α (m+x)2xα.

In the following, it is obvious thatg1(x) = (m+x)13xα, g2(x) = (m+x)12xα+1 andg3(x) = (m+x)12xα

are suited to apply in (2.2). Then by (2.2), we obtain

− Z m

1

P1(x)f0(x)dx (2.7)

= Z m

1

2mP1(x)dx (m+x)3xα +

Z m 1

αmP1(x)dx (m+x)2xα+1

> 2m 12

1

8m3+α − 1 (m+ 1)3

+αm 12

1

4m3+α − 1 (m+ 1)2

= α+ 1

48m2+α − α

12(m+ 1) − 2−α

12(m+ 1)2 + 1 6(m+ 1)3;

− Z

m

P1(x)f0(x)dx (2.8)

= Z

m

2P1(x)dx (m+x)2xα

Z m

2mP1(x)dx

(m+x)3xα −(1−α) Z

m

P1(x)dx (m+x)2xα

> −1 24m2+α

Z 1

P1(x)f0(x)dx

=− Z m

1

P1(x)f0(x)dx− Z

m

P1(x)f0(x)dx

> α−1

48m2+α − α

12(m+ 1) − 2−α

12(m+ 1)2 + 1 6(m+ 1)3. Hence by (2.6), forα = 12,it follows that

ρ 1

2, m

> −1

2(m+ 1) + 1

2(m+ 1)2 + 1 m+ 1 (2.9)

+

1 2 −1 48m2+1/2

1 2

12(m+ 1) − 2−12

12(m+ 1)2 + 1 6(m+ 1)3

(5)

= 11

24(m+ 1) + 9

24(m+ 1)2 + −1

96m2+1/2 + 1 6(m+ 1)3

≥ 11 24(m+ 1) +

9

96m2 + −1 96m2

+ 1

6(m+ 1)3 >0.

By (2.7) and (2.8), we obtain

− Z

1

P1(x)f0(x)dx=− Z m

1

P1(x)f0(x)dx− Z

m

P1(x)f0(x)dx

< 1

48m2+α + 1−α 48m2+α

= 2−α 48m2+α. Then by (2.6), it follows

0< m1−α[mαρ(α, m)]

(2.10)

< −m

2(m+ 1) + m

2(m+ 1)2 + 1

1−α + 2−α 48m1+α

→ 1

1−α − 1

2 (m→ ∞).

Settingu= (x/m)α,we find mα

Z 0

f(x)dx =mα Z

0

max{m, x}

(m+x)2xαdx (2.11)

= 1 α

Z 0

max{u1/α,1}

(u1/α+ 1)2 uα1−2du=k(α), k

1 2

= 2 Z

0

max{u2,1}

(u2+ 1)2 du= 4 Z 1

0

du (u2 + 1)2 (2.12)

= 4 Z π4

0

cos2θdθ= π 2 + 1.

Hence by (2.5), (2.9), (2.10) and (2.11), (2.4) is valid and the lemma is proved.

Similar to Lemma 2.2, we still have

Lemma 2.3. If 12 ≤α <1,setting the weight coefficient$(α, m)as

(2.13) $(α, m) :=

X

n=1

min{m, n}mα

(m+n)2nα (m∈N), then we have

(2.14) ek(α) =Bα(m) +$(α, m); $ 1

2, m

<ek 1

2

= π 2 −1, where

ek(α) = 1 α

Z 0

min{u1/α,1}

(u1/α+ 1)2 uα1−2du andBα(m) =O(mα−2), (m→ ∞).

(6)

3. MAIN RESULTS AND THEIREQUIVALENT FORMS

Theorem 3.1. Ifp >1,1p+1q = 1, an, bn ≥0,0<P

n=1np2−1apn<∞and0<P

n=1nq2−1bqn<

∞,then we have the following equivalent inequalities

I :=

X

n=1

X

m=1

max{m, n}

(m+n)2 ambn

2 + 1 X

n=1

np2−1apn

!1p X

n=1

nq2−1bqn

!1q

; (3.1)

J :=

X

n=1

np2−1

" X

m=1

max{m, n}

(m+n)2 am

#p

2 + 1p

X

n=1

nq2−1apn, (3.2)

where the constant factors π2 + 1and π2 + 1p

are the best possible.

Proof. By Hölder’s inequality and (2.3) – (2.4), we find

" X

m=1

max{m, n}

(m+n)2 am

#p

= (

X

m=1

max{m, n}

(m+n)2

m1/(2q)

n1/(2p)am n1/(2p) m1/(2q)

)p

(3.3)

" X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

#

×

" X

m=1

max{m, n}

(m+n)2

nq/(2p) m1/2

#p−1

p−1 1

2, n

n1−p2

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

≤π

2 + 1p−1

n1−p2

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm;

J ≤π

2 + 1p−1X

n=1

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

2 + 1p−1

X

m=1

" X

n=1

max{m, n}

(m+n)2

mp/(2q) n1/2

# apm

2 + 1p−1X

m=1

ω 1

2, m

mp2−1apm

2 + 1p

X

m=1

mp2−1apm. Therefore (3.2) is valid. By Hölder’s inequality, we find that

I =

X

n=1

"

n121p

X

m=1

max{m, n}

(m+n)2 am

# h

n−12 +1pbni

≤J1p

X

n=1

nq2−1bqn

!1q . (3.4)

Then by (3.2), we have (3.1). On the other hand, suppose that (3.1) is valid. Setting bn :=np2−1

" X

m=1

max{m, n}

(m+n)2 am

#p−1

, n ∈N,

(7)

then it follows P

n=1nq2−1bqn = J.By (3.3), we confirm that J < ∞.If J = 0,then (3.2) is naturally valid; if0< J <∞,then by (3.1), we find

X

n=1

nq2−1bqn=J =I <π

2 + 1 X

n=1

np2−1apn

!p1 X

n=1

nq2−1bqn

!1q

;

X

n=1

nq2−1bqn

!1p

=J1p

2 + 1 X

n=1

np2−1apn

!1p , and inequality (3.2) is valid, which is equivalent to (3.1).

For0< ε < q2,settingea={ean}n=1,eb={ebn}n=1 asea

−1 2 ε n p,eb

−1 2 ε

n q,forn ∈N,if there exists a constant0< k≤ π2+ 1,such that (3.1) is still valid when we replace π2 + 1byk,then we find

Ie:=

X

n=1

X

m=1

max{m, n}eamebn

(m+n)2 < k

X

n=1

np2−1eapn

!1p X

n=1

nq2−1ebqn

!1q

=k

X

n=1

1 n1+ε;

Ie=

X

n=1

" X

m=1

max{m, n}

(m+n)2 m−12 εp

# n−12 εq

=

X

m=1

1 m1+ε

X

n=1

max{m, n}m12+εq (m+n)2n12+εq

=

X

m=1

1 m1+εω

1 2 +ε

q, m

. And then by (2.4) and the above results, it follows that

k

X

n=1

1 n1+ε > k

1 2 +ε

q

X

m=1

1 m1+ε

1− 1 k

1

2 +εqA1

2+qε(m)

 (3.5) 

=k 1

2 +ε q

X

m=1

1

m1+ε − 1 k

1 2 +qε

X

m=1

1 m1+εA1

2+εq(m)

=k 1

2 +ε q

X

m=1

1 m1+ε

1− P

m=1 1 m1+εA1

2+εq(m)]

k

1 2 +εq

P m=1

1 m1+ε

;

k > k 1

2 +ε q

1− P

m=1 1 m1+εO

1 m

12εq

k

1 2 + εq

P m=1

1 m1+ε

. Settingα = 12 + εq,by Fatou’s Lemma, it follows that

lim

ε→0+k 1

2 +ε q

= lim

α→12+

1 α

Z 0

max{u1/α,1}

(u1/α+ 1)2 u1α−2du

≥2 Z

0

lim

α→12+

max{u1/α,1}

(u1/α+ 1)2 uα1−2du=k 1

2

= π 2 + 1.

Then by (3.5), we havek ≥ π2 + 1 (ε →0+).Hencek = π2 + 1is the best value of (3.1). We confirm that the constant factor in (3.2) is the best, otherwise we would obtain a contradiction by (3.4) that the constant factor in (3.1) is not the best possible. The theorem is proved.

In the same manner, by Lemma 2.3, we have:

(8)

Theorem 3.2. Ifp >1,1p+1q = 1, an, bn ≥0,0<P

n=1np2−1apn<∞and0<P

n=1nq2−1bqn<

∞,then we have the following equivalent inequalities

(3.6)

X

n=1

X

m=1

min{m, n}

(m+n)2 ambn

2 −1 X

n=1

np2−1apn

!1p X

n=1

nq2−1bqn

!1q

;

X

n=1

np2−1

" X

m=1

min{m, n}

(m+n)2 am

#p

2 −1p

X

n=1

nq2−1apn, where the constant factors π2 −1and(π2 −1)p are the best possible.

Remark 1. Forp=q= 2,(3.1) reduces to (1.8) and (3.6) reduces to (1.9).

REFERENCES

[1] H. WEYL, Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Inte- graltheorems, Göttingen : Inaugural–Dissertation, 1908.

[2] G.H. HARDY, Note on a theorem of Hilbert concerning series of positive term, Proceedings of the London Math. Society, 23 (1925),45–46.

[3] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge University Press, Cambridge,1934.

[4] F.F. BONSALL, Inequalities with non-conjugate parameter, J. Math. Oxford Ser., 2(2) (1951), 135–150.

[5] D. S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.

[6] BICHENG YANGANDMINGZHE GAO, On a best value of Hardy-Hilbert’s inequality, Advances in Math. (China), 26(2) (1997), 159–164.

[7] MINGZHE GAOANDBICHENG YANG, On the extended Hilbert’s inequality, Proc. Amer. Math.

Soc., 126(3) (1998), 751–759.

[8] BICHENG YANG, On a generalization of Hilbert double series theorem, Journal of Nanjing Uni- versity Mathematical Biquarterly (China), 18(1) (2001), 145–152.

[9] BICHENG YANG, On new extensions of Hilbert’s inequality, Acta Math. Hungar., 104(4) (2004), 291–299.

[10] BICHENG YANG, On best extensions of Hardy-Hilbert’s inequality with two parameters, J.

Ineq. Pure & Applied Math., 6(3) (2005), Art. 81. [ONLINE http://jipam.vu.edu.au/

article.php?sid=554].

[11] T.K. POGÁNY, Hilbert’s double series theorem extended to the case of non-homogeneous kernels, J. Math. Anal. Appl., 342 (2008), 1485–1489.

[12] BICHENG YANG, On a strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta Mathematica Sinica (Chin. Ser.), 42(6) (1999), 1103–1110.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by Wang and Han [2], we obtain a general L 2 inequality of Grüss type, which includes some existing results

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

In recent years, [2] – [5] consid- ered the strengthened version, generalizations and improvements of inequality (1.1) and Pach- patte [6] built some inequalities similar to

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.. Key words and phrases: Weight

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

A fundamental inequality between positive real numbers is the arithmetic-geometric mean inequality, which is of interest herein, as is its generalisation in the form of

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and