• Nem Talált Eredményt

ON A DECOMPOSITION OF HILBERT’S INEQUALITY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON A DECOMPOSITION OF HILBERT’S INEQUALITY"

Copied!
18
0
0

Teljes szövegt

(1)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page

Contents

JJ II

J I

Page1of 18 Go Back Full Screen

Close

ON A DECOMPOSITION OF HILBERT’S INEQUALITY

BICHENG YANG

Department of Mathematics Guangdong Education Institute Guangzhou, Guangdong 510303 P.R. CHINA

EMail:bcyang@pub.guangzhou.gd.cn

Received: 07 October, 2008

Accepted: 20 March, 2009

Communicated by: B. Opic 2000 AMS Sub. Class.: 26D15.

Key words: Hilbert’s inequality; Weight coefficient; Equivalent form; Hilbert-type inequality.

Abstract: By using the Euler-Maclaurin’s summation formula and the weight coefficient, a pair of new inequalities is given, which is a decomposition of Hilbert’s inequal- ity. The equivalent forms and the extended inequalities with a pair of conjugate exponents are built.

Acknowledgement: The author expresses his sincerest thanks to the referee for his thoughtful sug- gestions in improving this work.

(2)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page2of 18 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Some Lemmas 6

3 Main Results and their Equivalent Forms 12

(3)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page3of 18 Go Back Full Screen

Close

1. Introduction

In 1908, H. Weyl published the following Hilbert inequality: If{an},{bn}are real sequences,0<P

n=1a2n<∞and0<P

n=1b2n<∞,then [1]

(1.1)

X

n=1

X

m=1

ambn

m+n < π

X

n=1

a2n

X

n=1

b2n

!12 ,

where the constant factor π is the best possible. In 1925, G. H. Hardy gave an extension of (1.1) by introducing one pair of conjugate exponents(p, q) (1p +1q = 1) as [2]: Ifp > 1, an, bn ≥0,0<P

n=1apn<∞and0<P

n=1bqn<∞,then (1.2)

X

n=1

X

m=1

ambn

m+n < π sin(πp)

X

n=1

apn

!1p X

n=1

bqn

!1q ,

where the constant factor π/sin(πp) is the best possible. We refer to (1.2) as the Hardy-Hilbert inequality. In 1934, Hardy et al. [3] gave some applications of (1.1) and (1.2). By introducing a pair of non-conjugate exponents(p, q)in (1.1), Hardy et al. [3] gave: Ifp, q >1,1p +1q ≥1,0< λ= 2−(1p +1q)≤1,then

(1.3)

X

n=1

X

m=1

ambn

(m+n)λ ≤K(p, q)

X

n=1

apn

!1p X

n=1

bqn

!1q ,

where the constant factorK(p, q)is the best value only forλ = 1. In 1951, Bonsall [4] considered (1.3) in the case of a general kernel. In 1991, Mitrinovi´c et al. [5]

summarized the above method and results.

(4)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page4of 18 Go Back Full Screen

Close

In 1997-1998, by using weight coefficients, Yang and Gao [6], [7] gave a strength- ened version of (1.2) as:

(1.4)

X

n=1

X

m=1

ambn m+n

<

( X

n=1

"

π

sin(πp) − 1−γ n1/p

# apn

)1p( X

n=1

"

π

sin(πp) − 1−γ n1/q

# bqn

)1q , where, 1−γ = 0.42278433+ (γ is the Euler constant). In 2001, Yang [8] gave an extension of (1.1) by introducing an independent parameter0< λ≤4as

(1.5)

X

n=1

X

m=1

ambn

(m+n)λ < B λ

2,λ 2

X

n=1

n1−λa2n

X

n=1

n1−λb2n

!12 ,

where the constant factorB(λ2,λ2)is the best possible (B(u, v)is the Beta function).

In 2004, Yang [9] published the dual form of (1.2) as follows (1.6)

X

n=1

X

m=1

ambn

m+n < π sin(πp)

X

n=1

np−2apn

!1p X

n=1

nq−2bqn

!1q .

Forp=q= 2,both (1.6) and (1.2) reduce to (1.1). It means that there are two differ- ent best extensions of (1.1). To generalize (1.2) and (1.6), in 2005, Yang [10] gave an extension of (1.2) and (1.6) with two pairs of conjugate exponents(p, q),(r, s)(p, r >

1)and parametersα, λ > 0 (αλ≤min{r, s})as: If0<P

n=1np(1−αλr )−1apn <∞

(5)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page5of 18 Go Back Full Screen

Close

and0<P

n=1nq(1−αλs )−1bqn <∞, then (1.7)

X

n=1

X

m=1

ambn (mα+nα)λ

< kαλ(r) (

X

n=1

np(1−αλr )−1apn

)1p( X

n=1

nq(1−αλs )−1bqn )1q

, where the constant factor kαλ(r) = α1B(λr,λs) is the best possible. T. K. Pogány [11] also considered a best extension of (1.2) with the non-homogeneous kernel as

1

mn)µ (µ, λm, ρn>0).

We have a non-negative decomposition of kernel in (1.1):

1

m+n = max{m, n}

(m+n)2 + min{m, n}

(m+n)2 (m, n∈N)

(Nis the set of positive integer numbers). In this paper, by using the Euler-Maclaurin summation formula and the weight coefficient as in [8], we give a pair of new Hilbert-type inequalities as

X

n=1

X

m=1

max{m, n}

(m+n)2 ambn <

π 2 + 1

X

n=1

a2n

X

n=1

b2n

!12

; (1.8)

X

n=1

X

m=1

min{m, n}

(m+n)2 ambn

2 −1 X

n=1

a2n

X

n=1

b2n

!12 (1.9) ,

where the sum of two best constant factors isπ. The equivalent forms and extended inequalities with a pair of conjugate exponents are considered.

(6)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page6of 18 Go Back Full Screen

Close

2. Some Lemmas

Lemma 2.1 (Euler-Maclaurin’s summation formula, cf. [8, 12, Lemma 1]). If f(x)∈C1[1,∞),then we have

(2.1)

X

k=1

f(k) = Z

1

f(x)dx+1

2f(1) + Z

1

P1(x)f0(x)dx,

whereP1(x) =x−[x]−12 is the Bernoulli function of the first order; ifg ∈C3[1,∞), (−1)ig(i)(x)>0, g(i)(∞) = 0, (i= 0,1,2,3), then

1

12[g(n)−g(1)]<

Z n 1

P1(x)g(x)dx <0, (2.2)

− 1

12g(n)<

Z n

P1(x)g(x)dx <0.

Lemma 2.2. If 12 ≤α <1,setting the weight coefficientω(α, m)as

(2.3) ω(α, m) :=

X

n=1

max{m, n}mα

(m+n)2nα (m∈N), then we have

(2.4) k(α) = Aα(m) +ω(α, m); ω 1

2, m

< k 1

2

= π 2 + 1, where

k(α) := 1 α

Z 0

max u1/α,1

(u1/α+ 1)2 uα1−2du andAα(m) = O(mα−1), (m→ ∞).

(7)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page7of 18 Go Back Full Screen

Close

Proof. For fixed 12 ≤ α <1, m ∈N, settingf(x) := (m+x)max{m,x}2xα, x∈(0,∞),then by (2.1), it follows that

ω(α, m) = mα

X

n=1

f(n) (2.5)

=mα Z

1

f(x)dx+ 1

2f(1) + Z

1

P1(x)f0(x)dx

=mα Z

0

f(x)dx−mαρ(α, m), P1(x)f0(x)dx.

(2.6) ρ(α, m) :=

Z 1 0

f(x)dx−1

2f(1)− Z

1

P1(x)f0(x)dx.

We find

−1

2f(1) = −m

2(m+ 1)2 = −1

2(m+ 1) + 1 2(m+ 1)2, and

Z 1 0

f(x)dx= Z 1

0

m

(m+x)2xαdx≥ Z 1

0

m

(m+x)2dx= 1 m+ 1; Z 1

0

f(x)dx≤ Z 1

0

m

m2xαdx= 1 (1−α)m.

Forx ∈ (0, m), f(x) = (m+x)m2xα, it follows f0(x) = (m+x)−2m3xα(m+x)αm2xα+1; for

(8)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page8of 18 Go Back Full Screen

Close

x∈(m,∞), f(x) = (m+x)x1−α2,we find f0(x) = −2x1−α

(m+x)3 + 1−α (m+x)2xα

= −2(x+m−m)

(m+x)3xα + 1−α (m+x)2xα

= −2

(m+x)2xα + 2m

(m+x)3xα + 1−α (m+x)2xα.

In the following, it is obvious that g1(x) = (m+x)1 3xα, g2(x) = (m+x)12xα+1 and g3(x) = (m+x)1 2xα are suited to apply in (2.2). Then by (2.2), we obtain

− Z m

1

P1(x)f0(x)dx (2.7)

= Z m

1

2mP1(x)dx (m+x)3xα +

Z m 1

αmP1(x)dx (m+x)2xα+1

> 2m 12

1

8m3+α − 1 (m+ 1)3

+ αm 12

1

4m3+α − 1 (m+ 1)2

= α+ 1

48m2+α − α

12(m+ 1) − 2−α

12(m+ 1)2 + 1 6(m+ 1)3;

− Z

m

P1(x)f0(x)dx (2.8)

= Z

m

2P1(x)dx (m+x)2xα

Z m

2mP1(x)dx

(m+x)3xα −(1−α) Z

m

P1(x)dx (m+x)2xα

(9)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page9of 18 Go Back Full Screen

Close

> −1 24m2+α

Z 1

P1(x)f0(x)dx

=− Z m

1

P1(x)f0(x)dx− Z

m

P1(x)f0(x)dx

> α−1

48m2+α − α

12(m+ 1) − 2−α

12(m+ 1)2 + 1 6(m+ 1)3. Hence by (2.6), forα= 12,it follows that

ρ 1

2, m

> −1

2(m+ 1) + 1

2(m+ 1)2 + 1 m+ 1 (2.9)

+

1 2 −1 48m2+1/2

1 2

12(m+ 1) − 2− 12

12(m+ 1)2 + 1 6(m+ 1)3

= 11

24(m+ 1) + 9

24(m+ 1)2 + −1

96m2+1/2 + 1 6(m+ 1)3

≥ 11 24(m+ 1) +

9

96m2 + −1 96m2

+ 1

6(m+ 1)3 >0.

By (2.7) and (2.8), we obtain

− Z

1

P1(x)f0(x)dx=− Z m

1

P1(x)f0(x)dx− Z

m

P1(x)f0(x)dx

< 1

48m2+α + 1−α 48m2+α

= 2−α 48m2+α.

(10)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page10of 18 Go Back Full Screen

Close

Then by (2.6), it follows

0< m1−α[mαρ(α, m)]

(2.10)

< −m

2(m+ 1) + m

2(m+ 1)2 + 1

1−α + 2−α 48m1+α

→ 1

1−α − 1

2 (m→ ∞).

Settingu= (x/m)α,we find mα

Z 0

f(x)dx=mα Z

0

max{m, x}

(m+x)2xαdx (2.11)

= 1 α

Z 0

max{u1/α,1}

(u1/α+ 1)2 uα1−2du=k(α), k

1 2

= 2 Z

0

max{u2,1}

(u2+ 1)2 du= 4 Z 1

0

du (u2+ 1)2 (2.12)

= 4 Z π4

0

cos2θdθ= π 2 + 1.

Hence by (2.5), (2.9), (2.10) and (2.11), (2.4) is valid and the lemma is proved.

Similar to Lemma2.2, we still have

Lemma 2.3. If 12 ≤α <1,setting the weight coefficient$(α, m)as

(2.13) $(α, m) :=

X

n=1

min{m, n}mα

(m+n)2nα (m∈N), then we have

(2.14) ek(α) = Bα(m) +$(α, m); $ 1

2, m

<ek 1

2

= π 2 −1,

(11)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page11of 18 Go Back Full Screen

Close

where

ek(α) = 1 α

Z 0

min{u1/α,1}

(u1/α+ 1)2 uα1−2du andBα(m) =O(mα−2), (m→ ∞).

(12)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page12of 18 Go Back Full Screen

Close

3. Main Results and their Equivalent Forms

Theorem 3.1. If p > 1,1p + 1q = 1, an, bn ≥ 0, 0 < P

n=1np2−1apn < ∞ and 0<P

n=1nq2−1bqn<∞,then we have the following equivalent inequalities I :=

X

n=1

X

m=1

max{m, n}

(m+n)2 ambn (3.1)

<

π 2 + 1

X

n=1

np2−1apn

!1p X

n=1

nq2−1bqn

!1q

;

(3.2) J :=

X

n=1

np2−1

" X

m=1

max{m, n}

(m+n)2 am

#p

2 + 1p

X

n=1

nq2−1apn, where the constant factors π2 + 1and π2 + 1p

are the best possible.

Proof. By Hölder’s inequality and (2.3) – (2.4), we find

" X

m=1

max{m, n}

(m+n)2 am

#p

(3.3)

= (

X

m=1

max{m, n}

(m+n)2

m1/(2q)

n1/(2p)am n1/(2p) m1/(2q)

)p

" X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

# " X

m=1

max{m, n}

(m+n)2

nq/(2p) m1/2

#p−1

(13)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page13of 18 Go Back Full Screen

Close

p−1 1

2, n

n1−p2

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

≤π 2 + 1

p−1

n1−p2

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm;

J ≤π

2 + 1p−1X

n=1

X

m=1

max{m, n}

(m+n)2

mp/(2q) n1/2 apm

2 + 1p−1

X

m=1

" X

n=1

max{m, n}

(m+n)2

mp/(2q) n1/2

# apm

2 + 1p−1

X

m=1

ω 1

2, m

mp2−1apm

2 + 1p

X

m=1

mp2−1apm. Therefore (3.2) is valid. By Hölder’s inequality, we find that

I =

X

n=1

"

n121p

X

m=1

max{m, n}

(m+n)2 am

# h

n−12 +1pbni (3.4)

≤J1p

X

n=1

nq2−1bqn

!1q .

Then by (3.2), we have (3.1). On the other hand, suppose that (3.1) is valid. Setting bn :=np2−1

" X

m=1

max{m, n}

(m+n)2 am

#p−1

, n∈N,

(14)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page14of 18 Go Back Full Screen

Close

then it followsP

n=1nq2−1bqn =J.By (3.3), we confirm thatJ <∞.IfJ = 0,then (3.2) is naturally valid; if0< J <∞,then by (3.1), we find

X

n=1

nq2−1bqn =J =I <π

2 + 1 X

n=1

np2−1apn

!1p X

n=1

nq2−1bqn

!1q

;

X

n=1

nq2−1bqn

!1p

=J1p

2 + 1 X

n=1

np2−1apn

!1p , and inequality (3.2) is valid, which is equivalent to (3.1).

For0< ε < q2,settingea ={ean}n=1,eb ={ebn}n=1asea

−1 2 ε

p

n ,eb

−1 2 ε

q

n ,forn ∈N,if there exists a constant0< k ≤ π2 + 1,such that (3.1) is still valid when we replace

π

2 + 1byk,then we find Ie:=

X

n=1

X

m=1

max{m, n}eamebn (m+n)2

< k

X

n=1

np2−1eapn

!1p X

n=1

n2q−1ebqn

!1q

=k

X

n=1

1 n1+ε;

Ie=

X

n=1

" X

m=1

max{m, n}

(m+n)2 m−12 εp

# n−12 εq

=

X

m=1

1 m1+ε

X

n=1

max{m, n}m12+εq (m+n)2n12+qε

=

X

m=1

1 m1+εω

1 2 +ε

q, m

.

(15)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page15of 18 Go Back Full Screen

Close

And then by (2.4) and the above results, it follows that k

X

n=1

1 n1+ε > k

1 2+ ε

q

X

m=1

1 m1+ε

1− 1 k

1

2 +qεA1

2+εq(m)

 (3.5) 

=k 1

2+ ε q

X

m=1

1

m1+ε − 1 k

1 2 + εq

X

m=1

1 m1+εA1

2+εq(m)

=k 1

2+ ε q

X

m=1

1 m1+ε

1− P

m=1 1 m1+εA1

2+εq(m)]

k

1 2 +qε

P m=1

1 m1+ε

;

k > k 1

2+ ε q

1− P

m=1 1 m1+εO

1 m

12εq

k

1 2 +εq

P m=1

1 m1+ε

. Settingα= 12 +εq,by Fatou’s Lemma, it follows that

ε→0lim+k 1

2 +ε q

= lim

α→12+

1 α

Z 0

max{u1/α,1}

(u1/α+ 1)2 uα1−2du

≥2 Z

0

lim

α→12+

max{u1/α,1}

(u1/α+ 1)2 uα1−2du=k 1

2

= π 2 + 1.

Then by (3.5), we have k ≥ π2 + 1 (ε → 0+).Hence k = π2 + 1 is the best value of (3.1). We confirm that the constant factor in (3.2) is the best, otherwise we would obtain a contradiction by (3.4) that the constant factor in (3.1) is not the best possible.

The theorem is proved.

(16)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page16of 18 Go Back Full Screen

Close

In the same manner, by Lemma2.3, we have:

Theorem 3.2. If p > 1,1p + 1q = 1, an, bn ≥ 0, 0 < P

n=1np2−1apn < ∞ and 0<P

n=1nq2−1bqn<∞,then we have the following equivalent inequalities (3.6)

X

n=1

X

m=1

min{m, n}

(m+n)2 ambn

2 −1 X

n=1

np2−1apn

!1p X

n=1

nq2−1bqn

!1q

;

X

n=1

np2−1

" X

m=1

min{m, n}

(m+n)2 am

#p

2 −1p

X

n=1

nq2−1apn, where the constant factors π2 −1and(π2 −1)pare the best possible.

Remark 1. Forp=q= 2,(3.1) reduces to (1.8) and (3.6) reduces to (1.9).

(17)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page17of 18 Go Back Full Screen

Close

References

[1] H. WEYL, Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems, Göttingen : Inaugural–Dissertation, 1908.

[2] G.H. HARDY, Note on a theorem of Hilbert concerning series of positive term, Proceedings of the London Math. Society, 23 (1925),45–46.

[3] G.H. HARDY, J.E. LITTLEWOOD ANDG. PÓLYA, Inequalities, Cambridge University Press, Cambridge,1934.

[4] F.F. BONSALL, Inequalities with non-conjugate parameter, J. Math. Oxford Ser., 2(2) (1951), 135–150.

[5] D. S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.

[6] BICHENG YANGANDMINGZHE GAO, On a best value of Hardy-Hilbert’s inequality, Advances in Math. (China), 26(2) (1997), 159–164.

[7] MINGZHE GAOAND BICHENG YANG, On the extended Hilbert’s inequal- ity, Proc. Amer. Math. Soc., 126(3) (1998), 751–759.

[8] BICHENG YANG, On a generalization of Hilbert double series theorem, Jour- nal of Nanjing University Mathematical Biquarterly (China), 18(1) (2001), 145–152.

[9] BICHENG YANG, On new extensions of Hilbert’s inequality, Acta Math. Hun- gar., 104(4) (2004), 291–299.

(18)

Hilbert’s Inequality Bicheng Yang vol. 10, iss. 1, art. 25, 2009

Title Page Contents

JJ II

J I

Page18of 18 Go Back Full Screen

Close

[10] BICHENG YANG, On best extensions of Hardy-Hilbert’s inequality with two parameters, J. Ineq. Pure & Applied Math., 6(3) (2005), Art. 81. [ONLINE http://jipam.vu.edu.au/article.php?sid=554].

[11] T.K. POGÁNY, Hilbert’s double series theorem extended to the case of non- homogeneous kernels, J. Math. Anal. Appl., 342 (2008), 1485–1489.

[12] BICHENG YANG, On a strengthened version of the more accurate Hardy- Hilbert’s inequality, Acta Mathematica Sinica (Chin. Ser.), 42(6) (1999), 1103–

1110.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A következők- ben azt vizsgáljuk meg, hogy a három nagy hazai történelmi egyház törekvése a keresztény és nemzeti államrendszer megszilárdításáért való

This rather strange combination of modern and premodern elements also in several ways was decisive when the leaders of the Norwegian home mission, the Luther Foundation,

By using the Euler-Maclaurin’s summation formula and the weight coefficient, a pair of new inequalities is given, which is a decomposition of Hilbert’s inequality.. The equivalent

VUKVI ´ C, Hilbert-Pachpatte type inequalities from Bonsall’s form of Hilbert’s inequality, J. Pure

Abstract: The main objective of this paper is to deduce Hilbert-Pachpatte type inequali- ties using Bonsall’s form of Hilbert’s and Hardy-Hilbert’s inequalities, both in discrete

Abstract: In this paper, by using the way of weight function and real analysis techniques, a new integral inequality with some parameters and a best constant factor is given, which is

In this paper, by using the way of weight function and real analysis techniques, a new integral inequality with some parameters and a best constant factor is given, which is a

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by Wang and Han [2], we obtain a general L 2 inequality of Grüss type, which includes some existing results