• Nem Talált Eredményt

Key words and phrases: Hardy-Hilbert’s inequality, Weight coefficient, Hölder’s inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hardy-Hilbert’s inequality, Weight coefficient, Hölder’s inequality"

Copied!
7
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 180, 2006

ON A NEW STRENGTHENED VERSION OF A HARDY-HILBERT TYPE INEQUALITY AND APPLICATIONS

WEIHONG WANG AND DONGMEI XIN DEPARTMENT OFMATHEMATICS,

GUANGDONGEDUCATIONCOLLEGE, GUANGZHOU, GUANGDONG510303, PEOPLESREPUBLIC OFCHINA.

xdm77108@gdei.edu.cn

Received 16 April, 2006; accepted 20 June, 2006 Communicated by B. Yang

ABSTRACT. By improving an inequality of the weight coefficient, we give a new strengthened version of Hardy-Hilbert’s type inequality. As its applications, we build some strengthened versions of the equivalent form and some particular results.

Key words and phrases: Hardy-Hilbert’s inequality, Weight coefficient, Hölder’s inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Ifp > 1, 1p + 1q = 1, an, bn ≥ 0 (n ∈ N0 = N∪ {0}),such that 0 < P

n=0apn < ∞and 0<P

n=0bqn <∞, then we have the famous Hardy-Hilbert inequality as follows [1]:

(1.1)

X

n=0

X

m=0

ambn

m+n+ 1 < π sin

π p

X

n=0

apn

!1p X

n=0

bqn

!1q ,

where the constant factor sin(ππ

p) is the best possible.

Inequality (1.1) is important in analysis and its applications. In recent years, [2] – [5] consid- ered the strengthened version, generalizations and improvements of inequality (1.1) and Pach- patte [6] built some inequalities similar to inequality (1.1).

Under the same condition with (1.1), we still have Mulholand’s inequality (cf. [7]):

(1.2)

X

n=2

X

n=2

ambn

mnlnmn < π sin

π p

(

X

n=2

1 napn

)1p( X

n=2

1 nbqn

)1q ,

where the constant factor sin(ππ

p) is the best possible.

ISSN (electronic): 1443-5756

c 2006 Victoria University. All rights reserved.

116-06

(2)

For the double series:

X

n=1

X

m=1

ambn

msnt(lnm+ lnn+ lnα) =

X

n=1

X

m=1

ambn

msntlnαm (s, t ∈R, α ≥e7/6), in 2003, Yang [8] built an inequality of the weight coefficient as follows:

X

m=1

1 mlnαmn

ln√ αn ln√

αm 1r

< π

sinπ(1−1/r) (r >1, α ≥e7/6), then he gave

(1.3)

X

n=1

X

m=1

ambn

msnt(lnαmn) < π sin

π p

X

n=1

n1q−sanp!1q X

n=1

n1p−tbnq!1p ,

(1.4)

X

n=1

1 n

X

m=1

am mslnαmn

!p

<

 π sin

π p

p

X

n=1

n1q−sanp

,

where the constant factors π

sin(πp) and

π sin(πp)

p

are the best possible.

In this paper, by using the refined Euler-Maclaurin formula, we have some strengthened versions of inequalities (1.3) and (1.4).

2. SOME LEMMAS

Iff(4) ∈C[1,∞),R

1 f(x)dx <∞,and(−1)nf(n)(x)>0, f(n)(∞) = 0 (n = 0,1,2,3,4), then we have the following inequality (see [9]):

(2.1)

X

m=1

f(m)<

Z 1

f(x)dx+1

2f(1)− 1 12f0(1).

Lemma 2.1. Settingr >1, n∈Nandα≥e7/6, define the functionω(r, n, α)as:

ω(r, n, α) =

X

m=1

1 mlnαmn

ln√ αn ln√

αm 1r

.

The we have

(2.2) ω(r, n, α)< π

sinπ(1−1/r) − 3

8(r−1)(2 lnn+ 1)1−1/r. Proof. For fixedx∈[1,∞), settingf(x) = xln1αnx ·

ln αn ln

αx

1r

,we have

f(1) = 1 lnαn·

ln√ αn ln√

α 1r

= ln√ αn ln√

α·lnαn ·

ln√ α ln√

αn 1−1r

,

f0(1) =− 1

lnαn+ 1

ln2αn+ 1 rln√

α·lnαn

·

ln√ αn ln√

α 1−1r

=−

ln√ αn ln√

αn·lnαn + ln√ αn rln2

α·lnαn + ln√ αn ln√

α·ln2αn

·

ln√ α ln√

αn 1−1r

,

(3)

Z 1

f(x)dx= Z

1

1 xlnαnx·

ln√ αn ln√

αx 1r

dx

= Z

ln α ln

αn

1 1 +u·

1 u

1r du

= π

sin(π/r) − Z ln

α ln

αn

0

1 1 +u ·

1 u

1r du.

Since Z ln

α ln

αn

0

1 1 +u ·

1 u

1r du

= r

r−1 Z ln

α ln

αn

0

1

1 +u ·du1−1r

= rln√ αn (r−1) lnαn ·

ln√ α ln√

αn 1−1r

+ r

r−1 Z ln

α ln

αn

0

u1−1r · 1 (1 +u)2du

= rln√ αn (r−1) lnαn ·

ln√ α ln√

αn 1−1r

+ r2

(r−1)(2r−1) Z ln

α ln

αn

0

1

(1 +u)2du2−1r

> rln√ αn (r−1) lnαn ·

ln√ α ln√

αn 1−1r

+ r2

(r−1)(2r−1)· ln√

α lnα n

2

· ln√

α lnα n

2−1r

=

ln√ α ln√

αn

1−1r

rln√ αn

(r−1) lnαn+ r2

(r−1)(2r−1)· ln√

α·ln√ αn ln2αn

, in view of (2.1) and the above result, we have

ω(r, n, α) =

X

m=1

f(m)

<

Z 1

f(x)dx+1

2f(1)− 1 12f0(1)

< π sin

π p

ln√ α ln√

αn 1−1r

·

rln√ αn

(r−1) lnαn+ r2

(r−1)(2r−1)· ln√

α·ln√ αn ln2αn

+ ln√

αn 2 ln√

α·lnαn ·

ln√ α ln√

αn 1−1r

+ 1 12

ln√ αn ln√

α·lnαn

+ ln√

αn rln2

α·lnαn+ ln√ αn ln√

α·ln2αn ·

ln√ α ln√

αn 1−1r

= π

sin

π p

ln√ α ln√

αn 1−1r

·

r

r−1 − 7

6 lnα − 1 3rln2α

·ln√ αn lnαn

+

r2lnα

2(r−1)(2r−1) − 1 6 lnα

·ln√ αn ln2αn

.

(4)

Forn ∈N, r > 1, α≥e7/6, since r

1−r − 7

6 lnα − 1 3rln2α

· ln√ αn lnαn ≥

1 + 1

r−1− 7

76 − 1 3r·(76)2

· 1 2

= 3

8(r−1), r2lnα

2(r−1)(2r−1)− 1 6 lnα

·ln√ αn ln2αn

>

lnα 4

1 + 3

2(r−1)

− 1 6 lnα

·ln√ αn ln2αn

>

7 24

1 + 3

2(r−1)

−1 7

· ln√ αn ln2αn >0, and

ln√ α ln√

αn 1−1r

> 1

(2 lnn+ 1)1−1/r, we have

ω(r, n, α)< π

sinπ(1−1/r) − 3

8(r−1)(2 lnn+ 1)1−1/r.

The lemma is proved.

3. MAIN RESULTS AND APPLICATIONS

Theorem 3.1. Ifp >1, 1p + 1q = 1, α≥e7/6, s, t∈R, anbnare two sequences of non-negative real numbers, such that0<P

n=1

n1q−sanp

<∞and0<P n=1

n1p−tbnq

<∞,then we have

(3.1)

X

n=1

X

m=1

ambn

msntlnαmn <

X

n=1

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1p

n1q−sanp

1 p

×

X

n=1

 π sin

π p

− 3(q−1) 8(2 lnn+ 1)1q

np1−tbnq

1 q

.

In particular,

(a) fors= 1q, t= 1p, we have

(3.2)

X

n=1

X

m=1

ambn

m1pn1qlnαmn

<

X

n=1

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)p1

apn

1 p

×

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1q

bqn

1 q

;

(5)

(b) fors=t= 1, we have

(3.3)

X

n=1

X

m=1

ambn

mnlnαmn <

X

n=1

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1p

 apn

n

1 p

×

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1q

 bqn

n

1 q

(c) fors=t= 0, we have

(3.4)

X

n=1

X

m=1

ambn lnαmn <

X

n=1

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1p

np−1apn

1 p

×

 π sin

π p

− 3(p−1) 8(2 lnn+ 1)1q

nq−1bqn

1 q

.

Proof. By Hölder’s inequality, we have

X

n=1

X

m=1

ambn

msntlnαmn =

X

n=1

X

m=1

"

am (lnαmn)1p

ln√ αm ln√

αn pq1

m1q−s n1p

!#

×

"

bn (lnαmn)1q

ln√ αn ln√

αm pq1

n1p−t m1q

!#

X

m=1

X

n=1

"

apm lnαmn

ln√ αm ln√

αn 1q

mp(1q−s) n

!#1p

×

X

n=1

X

m=1

"

bqn lnαmn

ln√ αn ln√

αm 1p

nq(1p−t) m

!#1q

=

" X

m=1

ω(q, m, α)

m1q−samp#p1 " X

n=1

ω(p, n, α)

n1p−tbnq#1q .

In view of (2.2), we have (3.1). The theorem is proved.

Theorem 3.2. If p > 1, 1p + 1q = 1, α ≥ e7/6, s ∈ R, an is sequence of non-negative real numbers, such that0<P

n=1

n1q−sanp

<∞,then we have

(3.5)

X

n=1

1 n

X

m=1

am mslnαmn

!p

<

"

π sin(πp)

#p−1

X

m=1

π

sin(πp) − 3(p−1) 8(2 lnm+ 1)1p

!

m1q−samp

.

In particular,

(6)

(a) fors= 1q, we have

(3.6)

X

n=1

1 n

X

m=1

am m1q lnαmn

!p

<

"

π sin(πp)

#p−1

X

m=1

π

sin(πp) − 3(p−1) 8(2 lnm+ 1)1p

! (am)p;

(b) fors= 1, we have (3.7)

X

n=1

1 n

X

m=1

am

mlnαmn

!p

<

"

π sin(πp)

#p−1

X

m=1

π

sin(πp)− 3(p−1) 8(2 lnm+ 1)1p

!apm m; (c) fors= 0, we have

(3.8)

X

n=1

1 n

X

m=1

am lnαmn

!p

<

"

π sin(πp)

#p−1

X

m=1

π

sin(πp)− 3(p−1) 8(2 lnm+ 1)p1

!

(mp−1am)p.

Proof. It is obvious that for anym∈ N0, ω(r, m, α)< sinπ(1−1/r)π .By Cauchy’s inequality, we obtain

X

m=1

am mslnαmn

!p

=

" X

m=1

1 (lnαmn)1p

ln√ αm ln√

αn pq1

m1q−s

am· 1 (lnαmn)1q

ln√ αn ln√

αm pq1

1 m1q

#p

X

m=1

1 (lnαmn)

ln√ αm ln√

αn 1q

mp(1q−s)apm·

X

m=1

"

1 (lnαmn)

ln√ αn ln√

αm 1p

1 m

#(p−1)

=

X

m=1

1 (lnαmn)

ln√ αm ln√

αn 1q

mp(1q−s)apm·[ω(p, n, α)](p−1)

<

"

π sinπp

#(p−1)

X

m=1

1 (lnαmn)

ln√ αm ln√

αn 1q

mp(1q−s)apm.

Hence, by (2.2) we find

X

n=1

1 n

X

m=1

am mslnαmn

!p

<

"

π sinπp

#(p−1) X

n=1

1 n

X

m=1

1 (lnαmn)

ln√ αm ln√

αn 1q

mp(1q−s)apm

=

"

π sinπp

#(p−1)

X

m=1

X

n=1

1 nlnαmn

ln√ αm ln√

αn 1q

mp(1q−s)apm

=

"

π sinπp

#(p−1)

X

m=1

ω(q, m, α)

m1q−samp

<

"

π sinπp

#(p−1)

X

m=1

π

sin(πp) − 3(p−1) 8(2 lnm+ 1)1p

!

m1q−samp

.

The theorem is proved.

Remark 3.3. Obviously, inequalities (3.1) and (3.5) are separately strengthened versions of inequalities (1.3) and (1.4).

(7)

REFERENCES

[1] F.H. HARDYANDJ.E. LITTLEWOOD, Inequalities, London, Cambridge Univ. Press, 1952.

[2] B.C. YANG AND L. DEBNATH, On a new generalization of Hardy-Hilbert’s inequality and its applications., J. Math. Anal. Appl., 233 (1999), 484–497.

[3] B.C. YANG, On a strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta Math- ematical Sinica, 43(6) (1999), 1003–1110 (in Chinese).

[4] B.C. YANG, On a strengthened Hardy-Hilbert’s inequality, J. Ineq. Pure and Appl. Math., 1(2) (2000), Art. 22. [ONLINE:http://jipam.vu.edu.au/article.php?sid=116].

[5] JICHANG KUANGAND L. DEBNATH, On new generalizations of Hilbert’s inequality and their applications, J. Math. Anal. Appl., 245 (2000), 248–265.

[6] B.G. PACHPATTE, On some inequalities similar to Hilbert’s inequality, J. Math. Anal., 226 (1998), 166–179.

[7] H.P. MULHOLAND, A further generalization of Hilbert’s double series theorem, J. London Math.

Soc., 6 (1931), 100–106.

[8] B.C. YANG, A new Hardy-Hilbert’s type inequality and Applications, Acta Mathematica Sinica, 46(6) (2003), 1079–1086 (in Chinese).

[9] JICHANG KUANG AND L. DEBNATH, On new generalization of Hilbert’s inequality and their applications, J. Math. Anal. Appl., 245 (2000), 248–265.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In recent years, [2] – [5] considered the strengthened version, generalizations and improvements of inequality (1.1) and Pachpatte [6] built some inequalities similar to

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor, β-function, Γ-function.. 2000 Mathematics

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and

Recently B.G.Pachpatte [3] considered some new integral inequalities, analogous to that of Hadamard, involving the product of two convex functions.. In [3] the following theorem

Yang [4] considered an analogous form of inequality (1.1) and posed an inter- esting open problem as follows..

Inequality (1.1) is of a similar nature and can be directly compared to one-sided versions of Bernstein’s and Bennett’s inequalities (see Theorem 3 in [7]) which also require the X i