• Nem Talált Eredményt

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality"

Copied!
9
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 154, 2006

ON SEVERAL NEW INEQUALITIES CLOSE TO HILBERT-PACHPATTE’S INEQUALITY

BING HE AND YONGJIN LI DEPARTMENT OFMATHEMATICS

SUNYAT-SENUNIVERSITY

GUANGZHOU, 510275 P. R. CHINA

hzs314@163.com stslyj@mail.sysu.edu.cn

Received 27 April, 2006; accepted 09 October, 2006 Communicated by B. Yang

ABSTRACT. In this paper we establish several new inequalities similar to Hilbert-Pachpatte’s inequality. Moreover, some new generalizations of Hilbert-Pachpatte’s inequality are presented.

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

The well known Hardy-Hilbert’s inequality is (see [1]):

Theorem 1.1. Ifp >1, p0 =p/(p−1)andP

m=1apm ≤A,P

n=1bpn0 ≤B, then (1.1)

X

n=1

X

m=1

ambn

m+n < π sin

π p

(A)1p(B)p10, unless the sequence{am}or{bn}is null.

The integral analogue can be stated as follows:

Theorem 1.2. Ifp >1, p0 =p/(p−1)andR

0 fp(x)dx≤F,R

0 gp0(y)dy≤G, then (1.2)

Z

0

Z

0

f(x)g(y)

x+y dxdy < π sin

π p

F1pGp10

unlessf ≡0org ≡0.

The following two theorems were studied by Pachpatte (see [2])

ISSN (electronic): 1443-5756

c 2006 Victoria University. All rights reserved.

The work was partially supported by the Foundation of Sun Yat-sen University Advanced Research Centre.

124-06

(2)

Theorem 1.3. Let p ≥ 1, q ≥ 1 andf(σ) ≥ 0, g(τ) ≥ 0 forσ ∈ (0, x), τ ∈ (0, y), where x, y are positive real numbers and defineF(s) =Rs

0 f(σ)dσ, G(t) =Rt

0 g(τ)dτ, fors∈(0, x), t∈(0, y). Then

Z x

0

Z y

0

Fp(s)Gq(t)

s+t dsdt≤D(p, q, x, y) Z x

0

(x−s)(Fp−1(s)f(s))2ds 12

× Z y

0

(y−t)(Gq−1(t)g(t))2dt 12

,

unlessf ≡0org ≡0, where

D(p, q, x, y) = 1 2pq√

xy.

Theorem 1.4. Let f, g, F, G be as in the above theorem, let p(σ) and q(τ) be two positive functions defined for σ ∈ (0, x), τ ∈ (0, y)and defineP(s) = Rs

0 p(σ)dσ, Q(t) = Rt

0 q(τ)dτ for s ∈ (0, x), t ∈ (0, y), where x, y are positive real numbers. Letφ andψ be real-valued, nonnegative, convex, and sub-multiplicative functions defined onR+= [0,∞). Then

(1.3) Z x

0

Z y

0

φ(F(s))ψ(G(t))

s+t dsdt≤L(x, y) (Z x

0

(x−s)

p(s)φ

f(s) p(s)

2

ds )12

× (Z y

0

(y−t)

q(t)ψ g(t)

q(t) 2

dt )12

where

L(x, y) = 1 2

Z x

0

φ(P(s)) P(s)

2

ds

!12 Z y

0

ψ(Q(t)) Q(t)

2

dt

!12 .

The inequalities in these theorems were studied extensively and numerous variants, general- izations, and extensions have appeared in the literature (see [3] – [9]).

The main purpose of the present article is to establish some new inequalities similar to the Hilbert-Pachpatte inequalities.

2. MAINRESULTS

Lemma 2.1. Supposep > 1,1p +1q = 1, r >1,1r + w1 = 1, λ > 0, define the weight functions ωe1(w, p, x),eω2(w, p, x),ωe3(w, p, x)as

(2.1) ωe1(w, p, x) :=

Z

0

1

xλ+yλ · x(p−1)(1−λr)

y1−wλ dy, x∈(0,∞),

(2.2) ωe2(w, p, x) :=

Z

0

1

max{xλ, yλ} · x(p−1)(1−λr)

y1−λw dy, x∈(0,∞),

(2.3) ωe3(w, p, x) :=

Z

0

lnx/y

xλ−yλ · x(p−1)(1−λr)

y1−wλ dy, x∈(0,∞).

Then

ωe1(w, p, x) = π

λsin πrxp(1−λr)−1,

(3)

ωe2(w, p, x) = rw

λ xp(1−λr)−1,

ωe3(w, p, x) =

"

π λsin πr

#2

xp(1−λr)−1.

Proof. For fixedx, letu=yλ/xλ, then (2.1) turns into

ωe1(w, p, x) = 1

λxp(1−λr)−1 Z

0

1

1 +uu−1+w1du

= 1

λxp(1−λr)−1B 1

w,1 r

= π

λsin

π p

xp(1−λr)−1

and similarly, we can prove the others.

Theorem 2.2. Letm ≥ 1, n ≥ 1, pi > 1, p1

i + q1

i = 1 for i = 0,1,2,3,4, p0 = p, p3 = k, p4 = r;q0 = q, q3 = l, q4 = w and f(σ) ≥ 0, g(τ) ≥ 0. Define F(s) = Rs

0 f(σ)dσ and G(t) =Rt

0 g(τ)dτ such that 0<

Z

0

sp(1−λr)−1Ffp(s)ds < ∞, 0<

Z

0

tq(1−wλ)−1Gqg(t)dt <∞ forσ, τ, s, t∈(0,∞). Then

(2.4) Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2)(sλ +tλ)dsdt

≤E1(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−λw)−1Gqg(t)dt 1q

unlessf ≡0org ≡0, whereE1(m, n, k, r, λ) = λklπmnsin(π/r),

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1

and

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Proof. From the hypotheses, we can easily observe that

(2.5) Fm(s) =m

Z s

0

Fm−1(σ)f(σ)dσ, s∈(0,∞),

(2.6) Gn(t) = n

Z t

0

Gn−1(τ)g(τ)dτ, t∈(0,∞).

From (2.5) and (2.6), applying Hölder’s inequality, equality (2.1) and Young’s inequality:

ab≤ ap p + bq

q,

(4)

wherea≥0, b≥0, p >1, 1p +1q = 1,we obtain Fm(s)Gn(t)

=mn Z s

0

Fm−1(σ)f(σ)dσ

Z t

0

Gn−1(τ)g(τ)dτ

≤mns1/p1t1/p2 Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

≤mn

sk/p1

k +tl/p2 l

Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

.

Note that Ff(s) =

Z s

0

(Fm−1(σ)f(σ))q1q1

1 , Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Hence Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2)(sλ+tλ)dsdt

≤ mn kl

Z

0

Z

0

Rs

0(Fm−1(σ)f(σ))q1dσ)

1 q1

nRt

0(Gn−1(τ)g(τ))q2dτ)oq1

2

sλ+tλ dsdt

= mn kl

Z

0

Z

0

1 sλ+tλ

"

Ff(s)s(1−λr)/q t(1−wλ)/p

# "

Gg(t)t(1−wλ)/p s(1−λr)/q

# dsdt

≤ mn kl

(Z

0

Z

0

Ffp(s)

sλ +tλ · s(p−1)(1−λr) t(1−wλ) dsdt

)1p( Z

0

Z

0

Gqg(t)

sλ +tλ ·t(q−1)(1−wλ) s(1−λr) dsdt

)1q

= mn kl

Z

0

ωe1(w, p, s)Ffp(s)ds

1pZ

0

ωe1(r, q, t)Gqg(t)dt 1q

= πmn

λklsin(π/r) Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−wλ)−1Gqg(t)dt 1q

=E1(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−wλ)−1Gqg(t)dt 1q

.

This completes the proof.

Theorem 2.3. Letm ≥ 1, n ≥ 1, pi > 1, p1

i + q1

i = 1 for i = 0,1,2,3,4, p0 = p, p3 = k, p4 = r;q0 = q, q3 = l, q4 = w and f(σ) ≥ 0, g(τ) ≥ 0. Define F(s) = Rs

0 f(σ)dσ and G(t) = Rt

0 g(τ)dτ such that0 < R

0 sp(1−λr)−1Ffp(s)ds < ∞,0 < R

0 tq(1−wλ)−1Gqg(t)dt < ∞ forσ, τ, s, t∈(0,∞). Then

Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2) max{sλ, tλ}dsdt

≤E2(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1p Z

0

tq(1−wλ)−1Gqg(t)dt 1q

,

(5)

unlessf ≡0org ≡0, whereE2(m, n, k, r, λ) = mnrwλkl and

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1

,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Proof. By (2.5) and (2.6), using Hölder’s inequality, equality (2.2) and Young’s inequality:

ab≤ app + bqq,wherea≥0, b≥0, p >1, 1p + 1q = 1.We obtain Fm(s)Gn(t)

=mn Z s

0

Fm−1(σ)f(σ)dσ

Z t

0

Gn−1(τ)g(τ)dτ

≤mns1/p1t1/p2 Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

≤mn

sk/p1

k +tl/p2 l

Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

.

Note

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1 ,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q12

.

Hence Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2) max{sλ, tλ}dsdt

≤ mn kl

Z

0

Z

0

Rs

0(Fm−1(σ)f(σ))q1dσ)

1 q1

nRt

0(Gn−1(τ)g(τ))q2dτ)oq1

2

max{sλ, tλ} dsdt

= mn kl

Z

0

Z

0

1 max{sλ, tλ}

"

Ff(s)s(1−λr)/q t(1−wλ)/p

# "

Gg(t)t(1−wλ)/p s(1−λr)/q

# dsdt

≤ mn kl

(Z

0

Z

0

Ffp(s) max{sλ, tλ}

s(p−1)(1−λr) t(1−wλ) dsdt

)1p( Z

0

Z

0

Gqg(t) max{sλ, tλ}

t(q−1)(1−wλ) s(1−λr) dsdt

)1q

= mn kl

Z

0 ωe2(w, p, s)Ffp(s)ds

1pZ

0 ωe2(r, q, t)Gqg(t)dt 1q

= mnrw λkl

Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−wλ)−1Gqg(t)dt 1q

=E2(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1p Z

0

tq(1−wλ)−1Gqg(t)dt 1q

.

This completes the proof.

(6)

Theorem 2.4. Letm ≥ 1, n ≥ 1, pi > 1, p1

i + q1

i = 1 for i = 0,1,2,3,4, p0 = p, p3 = k, p4 = r; q0 = q, q3 = l, q4 = w and f(σ) ≥ 0, g(τ) ≥ 0. Define F(s) = Rs

0 f(σ)dσ and G(t) =Rt

0 g(τ)dτ such that

0<

Z

0

sp(1−λr)−1Ffp(s)ds <∞, 0<

Z

0

tq(1−λw)−1Gqg(t)dt <∞

forσ, τ, s, t∈(0,∞). Then Z

0

Z

0

ln(s/t)

(sλ−tλ)(lsk/p1 +ktl/p2)Fm(s)Gn(t)dsdt≤E3(m, n, k, r, λ)

× Z

0

sp(1−λr)−1Ffp(s)ds

1p Z

0

tq(1−wλ)−1Gqg(t)dt 1q

,

unlessf ≡0org ≡0, whereE3(m, n, k, r, λ) = λ2kl(sin(π/r))π2mn 2,

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1

,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Proof. From (2.5) and (2.6), by Hölder’s inequality, equality (2.3) and Young’s inequality:ab≤

ap

p +bqq, wherea ≥0, b≥0, p >1,1p + 1q = 1, and using a similar method of proof to that of

Theorem 2.2, the result can be clearly seen.

Theorem 2.5. Let mi ≥ 1, pi > 1, Pn i=1

1

pi = 1, p1

i + q1

i = 1, and fii) ≥ 0 for σi ∈ (0, xi), where xi are positive real numbers and defineFi(ti) = Rti

0 fii)dσi, forti ∈ (0, xi), i= 1,2, . . . , n. Then

(2.7) Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

D(mi, xi, pi) Z xi

0

(xi−ti)

Fei(ti)qi

dti 1

qi ,

unlessf ≡0org ≡0, whereD(mi, xi, pi) =mix

1 pi

i ,Fei(ti) =Fmi−1(ti)fi(ti).

Proof. From the hypotheses, we know that

(2.8) Fimi(ti) = mi

Z ti

0

Fi(mi−1)i)fii)dσi, ti ∈(0, xi).

Then (2.9)

n

Y

i=1

Fimi(ti) =

n

Y

i=1

mi Z ti

0

Fimi−1i)fii)dσi.

(7)

Using Hölder’s inequality, we have Z ti

0

Fimi−1i)dσi ≤t

1 pi

i

Z ti

0

(Fimi−1i)fii))qii qi1 (2.10)

,t

1 pi

i

Z ti

0

Feii)qi

i qi1

.

By (2.9) and (2.10) it follows that

n

Y

i=1

Fimi(ti)≤

n

Y

i=1

mit

1 pi

i

Z ti

0

Feii)qi

i qi1

.

Applying Young’s inequality

n

Y

k=1

|ak| ≤

n

X

k=1

1

pk|ak|pk,

where1< pk<∞,Pn k=1

1

pk = 1,we observe that Qn

i=1Fimi(ti) Pn

i=1 ti

pi

n

Y

i=1

mi Z ti

0

Feii)qi

i qi1

.

Integrating overti from0toxi whereiruns from1ton, and using the Hölder’s inequality, we get

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

mi

"

Z xi

0

Z ti

0

Feii)qi

i qi1

dti

#

n

Y

i=1

mix

1 pi

i

Z xi

0

Z ti

0

Feii)qi

i

dti qi1

=

n

Y

i=1

D(mi, xi, pi) Z xi

0

(xi−ti)

Fei(ti) qi

dti

qi1

This completes the proof.

Remark 2.6. In the special case whenp1 =p2 =· · ·=pn=n, the inequality (2.7) reduces to the following inequality,

(2.11)

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1ti dt1dt2· · ·dtn

≤ 1 n

n

Y

i=1

D(mi, xi) Z xi

0

(xi−ti)

Fei(ti)n−1n dti

n−1n

(8)

where D(mi, xi) = mix

1 n

i . Moreover, (i) (2.11) reduces to Theorem 1.3 which belongs to Pachpatte forn = 2; (ii) whenm1 =m2 =· · ·=mn = 1, (2.11) turns into

(2.12)

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fi(ti) Pn

i=1ti dt1dt2· · ·dtn

≤ 1 n

n

Y

i=1

D(mi, xi) Z xi

0

(xi−ti)(fi(ti))n−1n dti n−1n

Theorem 2.7. Letfi, Fi be as in the above theorem,p > 1, p1

i + q1

i = 1, letpii)be positive function defined for σi ∈ (0, xi), and define Pi(ti) = Rti

0 pii)dσi for ti ∈ (0, xi),wherexi are positive real numbers. Let φi be real-valued, nonnegative, convex, and sub-multiplicative function defined onR+ = [0,∞),i= 1,2, . . . , n.Then

(2.13)

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

L(xi, pi) Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti

qi1 ,

where

L(xi, pi) = Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti pi1

.

Proof. Applying Jensen’s inequality and Hölder’s inequality, it is clear to observe that

φi(Fi(ti)) = φi Pi(ti)Rti

0 pii)fpii)

ii)i

Rti

0 pii)dσi

!

≤ φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

i

≤ φi(Pi(ti)) Pi(ti) t

1 pi

i

Z ti

0

piii

fii) pii)

qi

i qi1

.

Using Young’s inequality, we obtain that

Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

n

Y

i=1

φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

qi

i qi1

.

(9)

Integrating both sides of the above inequality overti from 0toxi withi running fromi ton, and applying the Hölder inequality, we get

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

"

Z xi

0

φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

qi

i qi1

dti

#

n

Y

i=1

Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti

pi1 Z xi

0

Z ti

0

piii

fii) pii)

qi

i

dti qi1

=

n

Y

i=1

Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti

pi1 Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti qi1

=

n

Y

i=1

L(xi, pi) Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti qi1

This completes the theorem.

REFERENCES

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge Univ. Press, Cam- bridge, 1952.

[2] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl., 226(1) (1998), 166–179.

[3] G.S. DAVIES AND G.M. PETERSEN, On an inequality of Hardy’s, (II), Quart. J. Math. Oxford Ser., 15(2) (1964), 35–40.

[4] D.S. MITRINOVI ´C, Analytic inequalities. In cooperation with P. M. Vasi´c. Die Grundlehren der mathematischen Wisenschaften, Band 1965, Springer-Verlag, New York-Berlin, 1970.

[5] D.S. MITRINOVI ´CAND J.E. PE ˇCARI ´C, On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc. (2), 34(3) (1991), 411–414.

[6] Z. LÜ, Some new inequalities similar to Hilbert-Pachpatte type inequalities, J. Inequal. Pure Appl.

Math., 4(2) (2003), Art. 33. [ONLINE:http://jipam.vu.edu.au/article.php?sid=

271].

[7] Y.H. KIM, Some new inverse-type Hilbert-Pachpatte integral inequalities, Acta Math. Sin. (Engl.

Ser.), 20(1) (2004), 57–62.

[8] B. YANG, On an extension of Hilbert’s integral inequality with some parameters, Aust. J. Math.

Anal. Appl., 1(1) (2004), Art. 11. [ONLINE:http://ajmaa.org].

[9] E.F. BECKENBACH AND R. BELLMAN, Inequalities. Second revised printing. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30, Springer-Verlag, New York, Inc. 1965.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.. 2000 Mathematics

In recent years, [2] – [5] consid- ered the strengthened version, generalizations and improvements of inequality (1.1) and Pach- patte [6] built some inequalities similar to

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

Yang [4] considered an analogous form of inequality (1.1) and posed an inter- esting open problem as follows..

Inequality (1.1) is of a similar nature and can be directly compared to one-sided versions of Bernstein’s and Bennett’s inequalities (see Theorem 3 in [7]) which also require the X i

Peˇcari´c [2] established a new class of related integral inequalities from which the results of Pachpatte [12] – [14] are obtained by specializing the parameters and the functions

These are sharper than some known generalizations of the Hilbert integral inequality including a recent result of Yang.. Key words and phrases: Hilbert inequality,