• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
20
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 154, 2006.

Received 27 April, 2006;

accepted 09 October, 2006.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON SEVERAL NEW INEQUALITIES CLOSE TO HILBERT-PACHPATTE’S INEQUALITY

BING HE AND YONGJIN LI

Department of Mathematics Sun Yat-sen University

Guangzhou, 510275 P. R. China EMail:hzs314@163.com EMail:stslyj@mail.sysu.edu.cn

c

2000Victoria University ISSN (electronic): 1443-5756 124-06

(2)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Abstract

In this paper we establish several new inequalities similar to Hilbert-Pachpatte’s inequality. Moreover, some new generalizations of Hilbert-Pachpatte’s inequal- ity are presented.

2000 Mathematics Subject Classification:26D15.

Key words: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.

The work was partially supported by the Foundation of Sun Yat-sen University Ad- vanced Research Centre.

Contents

1 Introduction . . . 3 2 Main Results . . . 6

References

(3)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

1. Introduction

The well known Hardy-Hilbert’s inequality is (see [1]):

Theorem 1.1. If p > 1, p0 = p/(p−1) andP

m=1apm ≤ A, P

n=1bpn0 ≤ B, then

(1.1)

X

n=1

X

m=1

ambn

m+n < π sin

π p

(A)1p(B)p10,

unless the sequence{am}or{bn}is null.

The integral analogue can be stated as follows:

Theorem 1.2. Ifp > 1, p0 =p/(p−1)andR

0 fp(x)dx ≤ F,R

0 gp0(y)dy≤ G, then

(1.2)

Z

0

Z

0

f(x)g(y)

x+y dxdy < π sin

π p

F1pGp10

unlessf ≡0org ≡0.

The following two theorems were studied by Pachpatte (see [2])

Theorem 1.3. Let p ≥ 1, q ≥ 1 and f(σ) ≥ 0, g(τ) ≥ 0 for σ ∈ (0, x), τ ∈ (0, y), wherex, y are positive real numbers and defineF(s) =Rs

0 f(σ)dσ,

(4)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

G(t) = Rt

0 g(τ)dτ, fors∈(0, x), t∈(0, y). Then Z x

0

Z y

0

Fp(s)Gq(t) s+t dsdt

≤D(p, q, x, y) Z x

0

(x−s)(Fp−1(s)f(s))2ds 12

× Z y

0

(y−t)(Gq−1(t)g(t))2dt 12

,

unlessf ≡0org ≡0, where

D(p, q, x, y) = 1 2pq√

xy.

Theorem 1.4. Let f, g, F, Gbe as in the above theorem, letp(σ)andq(τ)be two positive functions defined for σ ∈ (0, x), τ ∈ (0, y) and define P(s) = Rs

0 p(σ)dσ, Q(t) = Rt

0 q(τ)dτ for s ∈ (0, x), t ∈ (0, y), where x, y are posi- tive real numbers. Let φ andψ be real-valued, nonnegative, convex, and sub- multiplicative functions defined onR+ = [0,∞). Then

(1.3) Z x

0

Z y

0

φ(F(s))ψ(G(t)) s+t dsdt

≤L(x, y) (Z x

0

(x−s)

p(s)φ

f(s) p(s)

2

ds )12

× (Z y

0

(y−t)

q(t)ψ g(t)

q(t) 2

dt )12

(5)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

where

L(x, y) = 1 2

Z x

0

φ(P(s)) P(s)

2

ds

!12 Z y

0

ψ(Q(t)) Q(t)

2

dt

!12 .

The inequalities in these theorems were studied extensively and numerous variants, generalizations, and extensions have appeared in the literature (see [3]

– [9]).

The main purpose of the present article is to establish some new inequalities similar to the Hilbert-Pachpatte inequalities.

(6)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

2. Main Results

Lemma 2.1. Supposep > 1,1p + 1q = 1, r > 1,1r + w1 = 1, λ > 0, define the weight functionsωe1(w, p, x),eω2(w, p, x),ωe3(w, p, x)as

(2.1) ωe1(w, p, x) :=

Z

0

1

xλ+yλ · x(p−1)(1−λr)

y1−λw dy, x∈(0,∞),

(2.2) ωe2(w, p, x) :=

Z

0

1

max{xλ, yλ} · x(p−1)(1−λr)

y1−λw dy, x∈(0,∞),

(2.3) ωe3(w, p, x) :=

Z

0

lnx/y

xλ−yλ · x(p−1)(1−λr)

y1−wλ dy, x∈(0,∞).

Then

1(w, p, x) = π

λsin πrxp(1−λr)−1, ωe2(w, p, x) = rw

λ xp(1−λr)−1,

ωe3(w, p, x) =

"

π λsin πr

#2

xp(1−λr)−1.

Proof. For fixedx, letu=yλ/xλ, then (2.1) turns into ωe1(w, p, x) = 1

λxp(1−λr)−1 Z

0

1

1 +uu−1+w1du

(7)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

= 1

λxp(1−λr)−1B 1

w,1 r

= π

λsin π

p

xp(1−λr)−1

and similarly, we can prove the others.

Theorem 2.2. Let m ≥ 1, n ≥ 1, pi > 1, p1

i + q1

i = 1 for i = 0,1,2,3,4, p0 =p, p3 =k, p4 =r;q0 =q, q3 =l, q4 =wandf(σ)≥0, g(τ)≥0. Define F(s) = Rs

0 f(σ)dσandG(t) =Rt

0 g(τ)dτ such that 0<

Z

0

sp(1−λr)−1Ffp(s)ds <∞, 0<

Z

0

tq(1−wλ)−1Gqg(t)dt <∞ forσ, τ, s, t∈(0,∞). Then

(2.4) Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2)(sλ+tλ)dsdt

≤E1(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds 1p

× Z

0

tq(1−wλ)−1Gqg(t)dt 1q

unlessf ≡0org ≡0, whereE1(m, n, k, r, λ) = λklπmnsin(π/r),

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1

and

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

(8)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Proof. From the hypotheses, we can easily observe that (2.5) Fm(s) =m

Z s

0

Fm−1(σ)f(σ)dσ, s∈(0,∞),

(2.6) Gn(t) =n Z t

0

Gn−1(τ)g(τ)dτ, t∈(0,∞).

From (2.5) and (2.6), applying Hölder’s inequality, equality (2.1) and Young’s inequality:

ab≤ ap p +bq

q, wherea≥0, b≥0, p >1, 1p +1q = 1,we obtain

Fm(s)Gn(t)

=mn Z s

0

Fm−1(σ)f(σ)dσ

Z t

0

Gn−1(τ)g(τ)dτ

≤mns1/p1t1/p2 Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

≤mn

sk/p1

k +tl/p2 l

Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1

× Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

.

(9)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Note that Ff(s) =

Z s

0

(Fm−1(σ)f(σ))q1q1

1 , Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Hence Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2)(sλ+tλ)dsdt

≤ mn kl

Z

0

Z

0

Rs

0(Fm−1(σ)f(σ))q1dσ)

1 q1

nRt

0(Gn−1(τ)g(τ))q2dτ)oq1

2

sλ+tλ dsdt

= mn kl

Z

0

Z

0

1 sλ+tλ

"

Ff(s)s(1−λr)/q t(1−wλ)/p

# "

Gg(t)t(1−λw)/p s(1−λr)/q

# dsdt

≤ mn kl

(Z

0

Z

0

Ffp(s)

sλ+tλ · s(p−1)(1−λr) t(1−wλ) dsdt

)1p

× (Z

0

Z

0

Gqg(t)

sλ+tλ · t(q−1)(1−λw) s(1−λr) dsdt

)1q

= mn kl

Z

0 ωe1(w, p, s)Ffp(s)ds

1p Z

0 ωe1(r, q, t)Gqg(t)dt 1q

= πmn

λklsin(π/r) Z

0

sp(1−λr)−1Ffp(s)ds

p1 Z

0

tq(1−wλ)−1Gqg(t)dt 1q

(10)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

=E1(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−wλ)−1Gqg(t)dt 1q

.

This completes the proof.

Theorem 2.3. Letm≥1, n≥1, pi >1,p1

i+q1

i = 1fori= 0,1,2,3,4, p0 =p, p3 =k, p4 =r;q0 =q, q3 =l, q4 =wandf(σ)≥0, g(τ)≥0. DefineF(s) = Rs

0 f(σ)dσ and G(t) = Rt

0 g(τ)dτ such that0 < R

0 sp(1−λr)−1Ffp(s)ds < ∞, 0<R

0 tq(1−λw)−1Gqg(t)dt <∞forσ, τ, s, t∈(0,∞). Then Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2) max{sλ, tλ}dsdt

≤E2(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds 1p

× Z

0

tq(1−wλ)−1Gqg(t)dt 1q

,

unlessf ≡0org ≡0, whereE2(m, n, k, r, λ) = mnrwλkl and

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1 ,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q12

.

(11)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Proof. By (2.5) and (2.6), using Hölder’s inequality, equality (2.2) and Young’s inequality: ab≤ app + bqq,wherea≥0, b≥0, p >1, 1p +1q = 1.We obtain

Fm(s)Gn(t)

=mn Z s

0

Fm−1(σ)f(σ)dσ

Z t

0

Gn−1(τ)g(τ)dτ

≤mns1/p1t1/p2 Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1 Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

≤mn

sk/p1

k +tl/p2 l

Z s

0

(Fm−1(σ)f(σ))q1dσ) q1

1

× Z t

0

(Gn−1(τ)g(τ))q2dτ) q1

2

.

Note

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1 ,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Hence Z

0

Z

0

Fm(s)Gn(t)

(lsk/p1 +ktl/p2) max{sλ, tλ}dsdt

≤ mn kl

Z

0

Z

0

Rs

0(Fm−1(σ)f(σ))q1dσ)

1 q1

nRt

0(Gn−1(τ)g(τ))q2dτ) oq1

2

max{sλ, tλ} dsdt

(12)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

= mn kl

Z

0

Z

0

1 max{sλ, tλ}

"

Ff(s)s(1−λr)/q t(1−wλ)/p

# "

Gg(t)t(1−λw)/p s(1−λr)/q

# dsdt

≤ mn kl

(Z

0

Z

0

Ffp(s) max{sλ, tλ}

s(p−1)(1−λr) t(1−wλ) dsdt

)p1

× (Z

0

Z

0

Gqg(t) max{sλ, tλ}

t(q−1)(1−λw) s(1−λr) dsdt

)1q

= mn kl

Z

0 ωe2(w, p, s)Ffp(s)ds

1p Z

0 ωe2(r, q, t)Gqg(t)dt 1q

= mnrw λkl

Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−λw)−1Gqg(t)dt 1q

=E2(m, n, k, r, λ) Z

0

sp(1−λr)−1Ffp(s)ds

1pZ

0

tq(1−wλ)−1Gqg(t)dt 1q

.

This completes the proof.

Theorem 2.4. Let m ≥ 1, n ≥ 1, pi > 1, p1

i + q1

i = 1 for i = 0,1,2,3,4, p0 =p, p3 =k, p4 =r;q0 =q, q3 =l, q4 =wandf(σ)≥0, g(τ)≥0. Define F(s) = Rs

0 f(σ)dσandG(t) =Rt

0 g(τ)dτ such that 0<

Z

0

sp(1−λr)−1Ffp(s)ds <∞, 0<

Z

0

tq(1−wλ)−1Gqg(t)dt <∞

(13)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

forσ, τ, s, t∈(0,∞). Then Z

0

Z

0

ln(s/t)

(sλ−tλ)(lsk/p1 +ktl/p2)Fm(s)Gn(t)dsdt≤E3(m, n, k, r, λ)

× Z

0

sp(1−λr)−1Ffp(s)ds

1p Z

0

tq(1−wλ)−1Gqg(t)dt 1q

,

unlessf ≡0org ≡0, whereE3(m, n, k, r, λ) = λ2kl(sin(π/r))π2mn 2,

Ff(s) = Z s

0

(Fm−1(σ)f(σ))q1q1

1

,

Gg(t) = Z t

0

(Gn−1(τ)g(τ))q2q1

2

.

Proof. From (2.5) and (2.6), by Hölder’s inequality, equality (2.3) and Young’s inequality: ab ≤ app + bqq, where a ≥ 0, b ≥ 0, p > 1,1p + 1q = 1, and using a similar method of proof to that of Theorem2.2, the result can be clearly seen.

Theorem 2.5. Let mi ≥ 1, pi > 1, Pn i=1

1

pi = 1, p1

i + q1

i = 1,and fii) ≥ 0 for σi ∈ (0, xi), where xi are positive real numbers and define Fi(ti) = Rti

0 fii)dσi,forti ∈(0, xi), i = 1,2, . . . , n. Then (2.7)

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1 ti

pi

dt1dt2· · ·dtn

(14)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

n

Y

i=1

D(mi, xi, pi) Z xi

0

(xi−ti)

Fei(ti)qi

dti 1

qi ,

unlessf ≡0org ≡0, whereD(mi, xi, pi) =mix

1 pi

i ,Fei(ti) = Fmi−1(ti)fi(ti).

Proof. From the hypotheses, we know that (2.8) Fimi(ti) = mi

Z ti

0

Fi(mi−1)i)fii)dσi, ti ∈(0, xi).

Then (2.9)

n

Y

i=1

Fimi(ti) =

n

Y

i=1

mi Z ti

0

Fimi−1i)fii)dσi.

Using Hölder’s inequality, we have Z ti

0

Fimi−1i)dσi ≤t

1 pi

i

Z ti

0

(Fimi−1i)fii))qii qi1 (2.10)

,t

1 pi

i

Z ti

0

Feii)qi

i qi1

.

By (2.9) and (2.10) it follows that

n

Y

i=1

Fimi(ti)≤

n

Y

i=1

mit

1 pi

i

Z ti

0

Feii)qi

i qi1

.

(15)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Applying Young’s inequality

n

Y

k=1

|ak| ≤

n

X

k=1

1

pk|ak|pk,

where1< pk <∞,Pn k=1

1

pk = 1,we observe that Qn

i=1Fimi(ti) Pn

i=1 ti

pi

n

Y

i=1

mi

Z ti

0

Feii)

qi

i

qi1 .

Integrating overtifrom0toxi whereiruns from1ton, and using the Hölder’s inequality, we get

Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

mi

"

Z xi

0

Z ti

0

Feii)qi

i qi1

dti

#

n

Y

i=1

mix

1 pi

i

Z xi

0

Z ti

0

Feii)qi

i

dti qi1

=

n

Y

i=1

D(mi, xi, pi) Z xi

0

(xi −ti)

Fei(ti)qi

dti 1

qi

This completes the proof.

(16)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

Remark 1. In the special case when p1 = p2 = · · · = pn = n, the inequality (2.7) reduces to the following inequality,

(2.11) Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fimi(ti) Pn

i=1ti dt1dt2· · ·dtn

≤ 1 n

n

Y

i=1

D(mi, xi) Z xi

0

(xi−ti)

Fei(ti)n−1n dti

n−1n

where D(mi, xi) = mix

1 n

i . Moreover, (i) (2.11) reduces to Theorem1.3 which belongs to Pachpatte for n = 2; (ii) whenm1 = m2 = · · · = mn = 1, (2.11) turns into

(2.12) Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1Fi(ti) Pn

i=1ti dt1dt2· · ·dtn

≤ 1 n

n

Y

i=1

D(mi, xi) Z xi

0

(xi−ti)(fi(ti))n−1n dti n−1n

Theorem 2.6. Let fi, Fi be as in the above theorem, p > 1, p1

i + q1

i = 1, let pii) be positive function defined for σi ∈ (0, xi), and define Pi(ti) = Rti

0 pii)dσi for ti ∈ (0, xi),where xi are positive real numbers. Let φi be real-valued, nonnegative, convex, and sub-multiplicative function defined on R+= [0,∞),i= 1,2, . . . , n.Then

(2.13) Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

dt1dt2· · ·dtn

(17)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

n

Y

i=1

L(xi, pi) Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti qi1

,

where

L(xi, pi) = Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti pi1

.

Proof. Applying Jensen’s inequality and Hölder’s inequality, it is clear to ob- serve that

φi(Fi(ti)) =φi Pi(ti)Rti

0 pii)fpii)

ii)i Rti

0 pii)dσi

!

≤ φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

i

≤ φi(Pi(ti)) Pi(ti) t

1 pi

i

Z ti

0

piii

fii) pii)

qi

i qi1

.

Using Young’s inequality, we obtain that Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

n

Y

i=1

φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

qi

i qi1

.

Integrating both sides of the above inequality overtifrom0toxi withirunning

(18)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

fromiton, and applying the Hölder inequality, we get Z x1

0

Z x2

0

· · · Z xn

0

Qn

i=1φi(Fi(ti)) Pn

i=1 ti

pi

dt1dt2· · ·dtn

n

Y

i=1

"

Z xi

0

φi(Pi(ti)) Pi(ti)

Z ti

0

piii

fii) pii)

qi

i

qi1 dti

#

n

Y

i=1

Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti

pi1 Z xi

0

Z ti

0

piii

fii) pii)

qi

i

dti qi1

=

n

Y

i=1

Z xi

0

φi(Pi(ti)) Pi(ti)

pi

dti

pi1 Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti qi1

=

n

Y

i=1

L(xi, pi) Z xi

0

(xi−ti)

pi(tii

fi(ti) pi(ti)

qi

dti qi1

This completes the theorem.

(19)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cam- bridge Univ. Press, Cambridge, 1952.

[2] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequal- ity, J. Math. Anal. Appl., 226(1) (1998), 166–179.

[3] G.S. DAVIES AND G.M. PETERSEN, On an inequality of Hardy’s, (II), Quart. J. Math. Oxford Ser., 15(2) (1964), 35–40.

[4] D.S. MITRINOVI ´C, Analytic inequalities. In cooperation with P. M. Vasi´c.

Die Grundlehren der mathematischen Wisenschaften, Band 1965, Springer- Verlag, New York-Berlin, 1970.

[5] D.S. MITRINOVI ´C AND J.E. PE ˇCARI ´C, On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc. (2), 34(3) (1991), 411–414.

[6] Z. LÜ, Some new inequalities similar to Hilbert-Pachpatte type inequalities, J. Inequal. Pure Appl. Math., 4(2) (2003), Art. 33. [ONLINE: http://

jipam.vu.edu.au/article.php?sid=271].

[7] Y.H. KIM, Some new inverse-type Hilbert-Pachpatte integral inequalities, Acta Math. Sin. (Engl. Ser.), 20(1) (2004), 57–62.

[8] B. YANG, On an extension of Hilbert’s integral inequality with some parameters, Aust. J. Math. Anal. Appl., 1(1) (2004), Art. 11. [ONLINE:

http://ajmaa.org].

(20)

On Several New Inequalities Close to Hilbert-Pachpatte’s

Inequality Bing He and Yongjin Li

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of20

J. Ineq. Pure and Appl. Math. 7(4) Art. 154, 2006

http://jipam.vu.edu.au

[9] E.F. BECKENBACH AND R. BELLMAN, Inequalities. Second revised printing. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30, Springer-Verlag, New York, Inc. 1965.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,

Key words and phrases: Mean value inequality, Hölder’s inequality, Continuous positive function, Extension.. 2000 Mathematics

Key words: Ostrowski’s inequality, Ostrowski-like type inequality, Trapezoid type inequality, Sharp inequality, Mid-point-trapezoid type inequality.. Abstract: Several new

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.. 2000 Mathematics

Key words: Multiplicative integral inequalities, Weights, Carlson’s inequality.. The research of the second named author was partially supported by a grant of Uni- versity of

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

Key words: Triangle inequality, Reverse inequality, Diaz-Metkalf inequality, Inner product

Key words: Schatten class, Schatten norm, Norm inequality, Minkowski inequality, Triangle inequality, Powers of operators, Schatten-Minkowski constant.. This work was supported by