• Nem Talált Eredményt

Key words and phrases: Hilbert’s integral inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hilbert’s integral inequality"

Copied!
8
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 6, Issue 2, Article 39, 2005

ON A NEW MULTIPLE EXTENSION OF HILBERT’S INTEGRAL INEQUALITY

BICHENG YANG DEPARTMENT OFMATHEMATICS, GUANGDONGINSTITUTE OFEDUCATION,

GUANGZHOU, GUANGDONG510303, PEOPLESREPUBLICOFCHINA. bcyang@pub.guangzhou.gd.cn

URL:http://page.gdei.edu.cn/ yangbicheng

Received 04 June, 2004; accepted 18 March, 2005 Communicated by B.G. Pachpatte

ABSTRACT. This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameterλand theΓfunction. Some particular results are obtained.

Key words and phrases: Hilbert’s integral inequality; Weight coefficient ,Γfunction.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Iff, g ≥0satisfy 0<

Z 0

f2(x)dx <∞ and 0<

Z 0

g2(x)dx <∞,

then (1.1)

Z 0

Z 0

f(x)g(y)

x+y dxdy < π Z

0

f2(x)dx Z

0

g2(x)dx 12

,

where the constant factor π is the best possible (cf. Hardy et al. [2]). Inequality (1.1) is well known as Hilbert’s integral inequality, which had been extended by Hardy [1] as:

Ifp > 1, 1p +1q = 1, f, g ≥0satisfy 0<

Z 0

fp(x)dx <∞ and 0<

Z 0

gq(x)dx <∞,

ISSN (electronic): 1443-5756

c 2005 Victoria University. All rights reserved.

144-04

~

(2)

then (1.2)

Z 0

Z 0

f(x)g(y)

x+y dxdy < π sin

π p

Z

0

fp(x)dx

1pZ 0

gq(x)dx 1q

,

where the constant factor sin(π/p)π is the best possible. Inequality (1.2) is called Hardy- Hilbert’s integral inequality, and is important in analysis and its applications (cf. Mitrinovi´c et al.[6]).

Recently, by introducing a parameterλ,Yang [9] gave an extension of (1.2) as:

Ifλ >2−min{p, q}, f, g ≥0satisfy 0<

Z 0

x1−λfp(x)dx <∞ and 0<

Z 0

x1−λgq(x)dx <∞,

then (1.3)

Z 0

Z 0

f(x)g(y)

(x+y)λdxdy < kλ(p) Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

, where the constant factor kλ(p) = Bp+λ−2

p ,q+λ−2q

is the best possible (B(u, v) is the β function). Forλ= 1,inequality (1.3) reduces to (1.2).

On the problem for multiple extension of (1.1), [3, 4] gave some new results and Yang [8]

gave an improvement of their works as:

Ifn ∈N\{1}, pi >1,Pn i=1

1

pi = 1, λ > n− min

1≤i≤n{pi}, fi ≥0,satisfy 0<

Z 0

xn−1−λfipi(x)dx <∞ (i= 1,2, . . . , n),

then (1.4)

Z 0

· · · Z

0

1 Pn

j=1xjλ n

Y

i=1

fi(xi)dx1. . . dxn

< 1 Γ(λ)

n

Y

i=1

Γ

pi+λ−n pi

Z 0

xn−1−λfipi(x)dx pi1

,

where the constant factorΓ(λ)1 Qn i=1Γ

pi+λ−n pi

is the best possible. Forn= 2, inequality (1.4) reduces to (1.3). It follows that (1.4) is a multiple extension of (1.3), (1.2) and (1.1).

In 2003, Yang et. al [11] provided an extensive account of the above results.

The main objective of this paper is to build a new extension of (1.1) with a best constant factor other than (1.4), and give some new particular results. That is

Theorem 1.1. Ifn∈N\{1}, pi >1,Pn i=1

1

pi = 1, λ >0, fi ≥0,satisfy 0<

Z 0

xpi−1−λfipi(x)dx <∞ (i= 1,2, . . . , n),

then (1.5)

Z 0

· · · Z

0

1 Pn

j=1xjλ n

Y

i=1

fi(xi)dx1. . . dxn

< 1 Γ(λ)

n

Y

i=1

Γ λ

pi

Z 0

xpi−1−λfipi(x)dx pi1

,

(3)

where the constant factor Γ(λ)1 Qn i=1Γ

λ pi

is the best possible. In particular,

(a) forλ= 1,we have (1.6)

Z 0

· · · Z

0

Qn

i=1fi(xi) Pn

j=1xj

dx1. . . dxn <

n

Y

i=1

Γ 1

pi

Z 0

xpi−2fipi(x)dx pi1

;

(b) forn= 2, using the symbol of (1.3) and settingekλ(p) = B

λ p,λq

,we have

(1.7) Z

0

Z 0

f(x)g(y)

(x+y)λdxdy <ekλ(p) Z

0

xp−1−λfp(x)dx

1pZ 0

xq−1−λgq(x)dx 1q

,

where the constant factors in (1.6) and (1.7) are still the best possible.

In order to prove the theorem, we introduce some lemmas.

2. SOME LEMMAS

Lemma 2.1. Ifk ∈N, ri >1 (i= 1,2, . . . , k+ 1),andPk+1

i=1 ri =λ(k),then

(2.1)

Z 0

· · · Z

0

1

1 +Pk

j=1ujλ(k) k

Y

j=1

urjj−1du1. . . duk = Qk+1

i=1 Γ(ri) Γ(λ(k)) .

Proof. We establish (2.1) by mathematical induction. Fork = 1, sincer1+r2 =λ(1),and (see [7])

(2.2) B(p, q) =

Z 0

up−1

(1 +u)p+qdu=B(q, p) (p, q >0),

we have (2.1). Suppose for k ∈ N,that (2.1) is valid. Then fork + 1, sincer1 +Pk+1 i=2 ri = λ(k+ 1), by settingv =u1.

1 +Pk+1 j=2uj

, we obtain Z

0

· · · Z

0

1

1 +Pk+1

j=1ujλ(k+1) k+1

Y

j=1

urjj−1du1. . . duk+1 (2.3)

= Z

0

· · · Z

0

vr1−1

1 +Pk+1 j=2ujr1

Qk+1 j=2urjj−1

1 +Pk+1

j=2ujλ(k+1)

(1 +v)λ(k+1)

dvdu2. . . duk+1

= Z

0

· · · Z

0

Qk+1 j=2urjj−1

1 +Pk+1

j=2 ujλ(k+1)−r1du2. . . duk+1 Z

0

vr1−1

(1 +v)λ(k+1)dv.

In view of (2.2) and the assumption ofk, we have (2.4)

Z 0

vr1−1

(1 +v)λ(k+1)dv = 1

Γ(λ(k+ 1))Γ

k+1

X

i=2

ri

! Γ(r1);

(2.5)

Z 0

· · · Z

0

Qk+1 j=2urjj−1

1 +Pk+1

j=2ujλ(k+1)−r1du2. . . duk+1 =

Qk+2 i=2 Γ(ri) Γ

Pk+1 i=2 ri.

(4)

Then, by (2.5), (2.4) and (2.3), we find Z

0

· · · Z

0

Qk+1 j=1urjj−1

1 +Pk+1

j=1ujλ(k+1)du1. . . duk+1 = Qk+2

i=1 Γ(ri) Γ(λ(k+ 1)).

Hence (2.1) is valid fork ∈Nby induction. The lemma is proved.

Lemma 2.2. Ifn ∈ N\{1}, pi > 1 (i = 1,2, . . . , n),Pn i=1

1

pi = 1andλ > 0, set the weight coefficientω(xi)as

(2.6) ω(xi) :=x

λ pj

i

Z 0

· · · Z

0

Qn

j=1(j6=i)x(λ−pj j)/pj Pn

j=1xjλ dx1. . . dxi−1dxi+1. . . dxn. Then, eachω(xi)is constant, that is

(2.7) ω(xi) = 1

Γ(λ)

n

Y

j=1

Γ λ

pj

, (i= 1,2, . . . , n).

Proof. Fixi. Settingpen =pi,andpej =pj, uj =xj/xi, forj = 1,2, . . . , i−1;pej =pj+1, uj = xj+1/xi, forj =i, i+ 1, . . . , n−1in (2.6), by simplification, we have

(2.8) ω(xi) = Z

0

· · · Z

0

1

1 +Pn−1 j=1 ujλ

n−1

Y

j=1

u

−1+λ

pj

j du1. . . dun−1.

Substitution ofn−1fork, λforλ(k)andλ/pej forrj (j = 1,2, . . . , n)into (2.1), in view of (2.8), we have

ω(xi) = 1 Γ(λ)

n

Y

j=1

Γ λ

pej

= 1

Γ(λ)

n

Y

j=1

Γ λ

pj

.

Hence, (2.7) is valid. The lemma is proved.

Lemma 2.3. As in the assumption of Lemma 2.2, for0< ε < λ, we have

I :=ε Z

1

· · · Z

1

Qn

i=1x(λ−pi i−ε)/pi Pn

j=1xjλ dx1. . . dxn

≥ 1

Γ(λ)

n

Y

i=1

Γ λ

pi

(ε→0+).

(2.9)

Proof. Settingui =xi/xn(i= 1,2, . . . , n−1)in the following, we find I =ε

Z 1

x−1−εn

 Z

x−1n

· · · Z

x−1n

Qn−1

i=1 u(λ−pi i−ε)/pi

1 +Pn−1

j=1ujλdu1. . . dun−1

dxn

≥ε Z

1

x−1−εn

 Z

0

· · · Z

0

Qn−1

i=1 u(λ−pi i−ε)/pi

1 +Pn−1 j=1 uj

λdu1. . . dun−1

dxn

−ε Z

1

x−1n

n−1

X

j=1

Aj(xn)dxn, (2.10)

(5)

where, forj = 1,2, . . . , n−1, Aj(xn)is defined by

(2.11) Aj(xn) :=

Z

· · · Z

Dj

Qn−1

i=1 u(λ−pi i−ε)/pi (1 +Pn−1

j=1 uj)λ du1. . . dun−1, satisfyingDj ={(u1, u2, . . . , un−1)|0< uj ≤x−1n , 0< uk<∞(k6=j)}.

Without loss of generality, we estimate the integralAj(xn)forj = 1.

(a) Forn = 2, we have A1(xn) =

Z x−1n

0

1

(1 +u1)λu(λ−p1 1−ε)/p1du1

≤ Z x−1n

0

u(λ−p1 1−ε)/p1du1 = p1

λ−εx−(λ−ε)/pn 1;

(b) Forn ∈N\{1,2},by (2.1), we have

A1(xn)≤ Z

0

· · · Z

0

Qn−1 i=2 u−1+

λ−ε pi

i

1 +Pn−1

j=2ujλdu1. . . dun−1

Z x−1n

0

u

λ−p1−ε p1

1 du1

≤ p1x

λ−ε p1

n

λ−ε Z

0

· · · Z

0

Qn−1

i=2 u−1+(λ−ε)/pi i

1 +Pn−1 j=2 uj

(λ−ε)(1−p−11 )du1. . . dun−1

= p1x

λ−ε p1

n

λ−ε ·

Qn

i=2Γ(λ−εp

i ) Γ((λ−ε)(1−p−11 )).

By virtue of the results of (a) and (b), forj = 1,2, . . . , n−1,we have (2.12) Aj(xn)≤ pj

λ−εx−(λ−ε)/pn jOj(1) (ε →0+, n∈N\{1}).

By (2.11), since forε →0+, Z

0

· · · Z

0

Qn−1

i=1 u−1+(λ−ε)/pi i

1 +Pn−1

j=1ujλ du1. . . dun−1 = Qn

i=1Γ

λ pi

Γ(λ) +o(1);

Z 1

x−1n

n−1

X

j=1

Aj(xn)dxn=

n−1

X

j=1

Z 1

x−1n Aj(xn)dxn

n−1

X

j=1

pj

λ−εOj(1) Z

1

x−1−(λ−ε)/pn jdxn

=

n−1

X

j=1

pj λ−ε

2

Oj(1),

(6)

then by (2.10) , we find I ≥

 Qn

i=1Γ

λ pi

Γ(λ) +o(1)

−ε

n−1

X

j=1

pj λ−ε

2

Oj(1)

→ Qn

i=1Γ λ

pi

Γ(λ) (ε→0+).

Thereby, (2.9) is valid and the lemma is proved.

3. PROOF OF THE THEOREM ANDREMARKS

Proof of Theorem 1.1. By Hölder’s inequality, we have J :=

Z 0

· · · Z

0

1 Pn

j=1xj

λ n

Y

i=1

fi(xi)dx1. . . dxn

= Z

0

· · · Z

0









n

Y

i=1

fi(xi) Pn

j=1xjλ/pi

x(pi−λ)(1−p

−1 i ) i

n

Y

j=1

(j6=i)

x

λ−pj pj

j

1 pi









dx1. . . dxn

n

Y

i=1





 Z

0

· · · Z

0

fipi(xi) Pn

j=1xjλx(pi−λ)(1−p

−1 i ) i

n

Y

j=1

(j6=i)

x

λ−pj pj

j dx1. . . dxn





1 pi

. (3.1)

If (3.1) takes the form of equality, then there exists constantsC1, C2, . . . , Cn,such that they are not all zero and for anyi6=k∈ {1,2, . . . , n}(see [5]),

Ci

fipi(xi)x(pi−λ)(1−p

−1 i ) i

Pn

j=1xjλ

n

Y

j=1

(j6=i)

x

λ−pj pj

j =Ck

fkpk(xk)x(pk−λ)(1−p

−1 k ) k

Pn

j=1xjλ

n

Y

j=1

(j6=k)

x

λ−pj pj

j ,

a.e. in(0,∞)× · · · ×(0,∞).

(3.2)

Assume thatCi 6= 0.By simplification of (3.2), we find

xpii−λfipi(xi) = F(x1, . . . , xi−1, xi+1, . . . , xn)

=constant a.e. in(0,∞)× · · · ×(0,∞), which contradicts the fact that0 < R

0 xpii−λ−1fipi(x)dx < ∞.Hence by (2.6) and (3.1), we conclude

(3.3) J <

n

Y

i=1

Z 0

ω(xi)xpii−1−λfipi(xi)dxi pi1

. Then by (2.7), we have (1.5).

For0< ε < λ,settingfei(xi)as: fei(xi) = 0,forxi ∈(0,1);

fei(xi) = x(λ−pi i−ε)/pi, forxi ∈[1,∞) (i= 1,2, . . . , n),

(7)

then we find

(3.4) ε

n

Y

i=1

Z 0

xpii−1−λfeipi(xi)dxi 1

pi = 1.

By (2.9), we find

(3.5) ε

Z 0

· · · Z

0

1 Pn

j=1xjλ n

Y

i=1

fei(xi)dx1. . . dxn

=I ≥ 1 Γ(λ)

n

Y

i=1

Γ λ

pi

(ε→0+).

If the constant factorΓ(λ)1 Qn i=1Γ

λ pi

in (1.5) is not the best possible, then there exists a posi- tive constantK < Γ(λ)1 Qn

i=1Γ

λ pi

, such that (1.5) is still valid if one replacesΓ(λ)1 Qn i=1Γ

λ pi

byK.In particular, one has

ε Z

0

· · · Z

0

1 Pn

j=1xjλ n

Y

i=1

fei(xi)dx1. . . dxn< εK

n

Y

i=1

Z 0

xpi−1−λfeipi(x)dx 1

pi ,

and in view of (3.4) and (3.5), it follows that Γ(λ)1 Qn i=1Γ

λ pi

≤K(ε→0+).This contradicts the factK < Γ(λ)1 Qn

i=1Γ

λ pi

.Hence the constant factor Γ(λ)1 Qn i=1Γ

λ pi

in (1.5) is the best possible.

The theorem is proved.

Remark 3.1. Forλ= 1, inequality (1.7) reduces to (see [10])

(3.6)

Z 0

Z 0

f(x)g(y)

x+y dxdy < π sin

π p

Z

0

xp−2fp(x)dx

p1 Z 0

xq−2gq(x)dx 1q

. Forp =q = 2, both (3.6) and (1.2) reduce to (1.1). It follows that inequalities (3.6) and (1.2) are different extensions of (1.1). Hence, inequality (1.5) is a new multiple extension of (1.1).

Since all the constant factors in the obtained inequalities are the best possible, we have obtained new results.

REFERENCES

[1] G.H. HARDY, Note on a theorem of Hilbert concerning series of positive terms, Proc. Math. Soc., 23(2) (1925), Records of Proc. XLV-XLVI.

[2] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge University Press, Cambridge, 1952.

[3] YONG HONG, All-sided generalization about Hardy-Hilbert’s integral inequalities, Acta Math.

Sinica, 44(4) (2001), 619–626.

[4] LEPING HE, JIANGMING YUANDMINGZHE GAO, An extension of Hilbert’s integral inequal- ity, J. Shaoguan University (Natural Science), 23(3) (YEAR), 25–29.

[5] JICHANG KUANG, Applied Inequalities, Hunan Education Press, Changsha, 2004.

[6] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.

(8)

[7] ZHUXI WANGANDDUNRIN GUO, An Introduction to Special Functions, Science Press, Beijing, 1979.

[8] BICHENG YANG, On a multiple Hardy-Hilbert’s integral inequality, Chinese Annals of Math., 24A(6) (2003), 743–750.

[9] BICHENG YANG, On Hardy-Hilbert’s integral inequality, J. Math. Anal. Appl., 261 (2001), 295–

306.

[10] BICHENG YANG, On the extended Hilbert’s integral inequality, J. Inequal. Pure and Appl. Math., 5(4) (2004), Art. 96. [ONLINE:http://jipam.vu.edu.au/article.php?sid=451]

[11] BICHENG YANGANDTh. M. RASSIAS, On the way of weight coefficient and research for the Hilbert-type inequalities, Math. Ineq. Appl., 6(4) (2003), 625–658.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

By introducing some parameters and the β function and improving the weight function, we obtain a generalization of Hilbert’s integral inequality with the best constant factorJ. As

By introducing some parameters and the β function and improving the weight func- tion, we obtain a generalization of Hilbert’s integral inequality with the best constant factor.. As

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

In this paper, we obtain a generalization of advanced integral inequality and by means of examples we show the usefulness of our results.. Key words and phrases: Advanced

In 1998, Yang [6] first introduced an indepen- dent parameter λ and the Beta function to build an extension of Hilbert’s integral inequality.. Recently, by introducing a parameter

Key words: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant fac- tor, β-function,

Key words and phrases: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant factor, β-function, Γ-function.. 2000 Mathematics