• Nem Talált Eredményt

A MULTIPLE HARDY-HILBERT’S INTEGRAL INEQUALITY WITH THE BEST CONSTANT FACTOR

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A MULTIPLE HARDY-HILBERT’S INTEGRAL INEQUALITY WITH THE BEST CONSTANT FACTOR"

Copied!
10
0
0

Teljes szövegt

(1)

A MULTIPLE HARDY-HILBERT’S INTEGRAL INEQUALITY WITH THE BEST CONSTANT FACTOR

HONG Yong

Department of Mathematics,Guangdong University of Business Study , Guangzhou 510320,People’s Republic of China

November 14, 2006

Abstract

In this paper, by introducing the norm kxkα(x Rn), we give a multiple Hardy-Hilbert’s integral inequality with a best constant factor and two parameters α,λ.

Key words: multiple Hardy-Hilbert’s integral inequality, the Γ-function, the best constant factor.

Mathematics subject classification (2000): 26D15

1 Introduction

If p >1, 1p +1q = 1,f ≥0, g ≥0, 0<R

0 fp(x)dx <+∞, 0<R

0 gq(x)dx <+∞, then the well known Hardy-Hilbert’s integral inequality is given by (see [1]):

Z 0

Z 0

f(x)g(x)

x+y dxdy < π sin(πp)

Z 0

fp(x)dx

1pZ 0

gq(x)dx 1q

, (1)

where the constant factor sin(ππ

p) is the best possible. it’s equivalent form is:

Z 0

Z 0

f(x) x+ydx

p

dy <

"

π sin(πp)

#p

Z 0

fp(x)dx, (2)

where the constant factor

π sin(πp)

p

is also the best possible.

Hardy-Hilbert’t inequality is valuable in harmonic analysis, real analysis and oper- ator theory. In recent years, many valuable results (see [2-5]) have been obtained in

(2)

generalization and improvement of Hardy-Hilbert’s inequality. In 1999,Kuang [6] gave a generalization with a parameterλof (1) as follows:

Z 0

Z 0

f(x)g(y)

xλ+yλ dxdy < hλ(p) Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

, (3) where max{1p,1q} < λ≤ 1, hλ(p) =π[λsin1p(π ) sin1q(π)]−1. Because of the constant factor hλ(p) being not the best possible, Yang [7] gave a new generalization of (1) in 2002 as follows:

Z 0

Z 0

f(x)g(y)

xλ+yλ dxdy < π λsin(πp)

× Z

0

x(1−λ)(p−1)fp(x)dx

p1Z 0

x(1−λ)(q−1)gq(x)dx 1q

, (4) it’s equivalent form is:

Z 0

yλ−1 Z

0

f(x) xλ+yλdx

p

dy <

"

π λsin(πp)

#p

Z 0

x(1−λ)(p−1)fp(x)dx, (5) where the constant factors λsin(π π

p) in (4) and [λsin(π π

p)]p in (5) are all the best possible.

At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multiple Hardy-Hilbert’s integral inequality is re- searched. Hong [8] obtained: If a > 0, Pn

i=1 1

pi = 1, pi > 1, fi ≥ 0, ri = p1

i

Qn j=1pj, λ > 1a(n−1− r1

i),i= 1,2,· · ·, n, then Z

α

· · · Z

α

1 [Pn

i=1(xi−αi)a]λ

n

Y

i=1

fi(x)dx1· · ·dxn≤ Γn−2(α1) αn−1Γ(λ)

×

n

Y

i=1

Γ

1 a(1− 1

ri

)

Γ

λ− 1

a(n−1− 1 ri

) Z

α

(t−α)n−1−αλfipidt 1

pi .(6)

Afterwards, Bicheng Yang and Kuang Jichang etc. obtained some multiple Hardy- Hilbert’s integral inequalities (see [9-10]).

In this paper, by introducing the Γ-function, we generalize (3) and (4) into multiple Hardy-Hilbert’s integral inequalities with the best constant factors.

2 Some lemmas

First of all, we introduce the signs as:

Rn+={x= (x1,· · ·, xn) :x1, . . . , xn>0}, kxkα = (xα1 +· · ·+xαn)α1, α >0.

(3)

Lemma 2.1 (see [11]) If pi >0, ai >0, αi >0, i= 1,2,· · ·, n, Ψ(u) is a measurable function, then

Z . . .

Z

x1,···,xn>0;(xa1

1)α1+···+(xn

an)αn≤1

Ψ

(x1

a1)α1 +· · ·+ (xn

an)αn

×xp11−1· · ·xpnn−1dx1· · ·dxn

= ap11· · ·apnnΓ(αp1

1)· · ·Γ(αpn

n) α1· · ·αnΓ(αp1

1 +· · ·+αpn

n) Z 1

0

Ψ(u)u

p1 α1+···+pn

αn−1

du. (7)

where Γ(·) is the Γ-function.

Lemma 2.2 If p > 1, 1p + 1q = 1, n∈ Z+, α >0, λ > 0, setting the weight function ωα,λ(x, p, q) as:

ωα,λ(x, p, q) = Z

Rn+

1 kxkλα+kykλα

 kxk

1 q

α

kyk

1 p

α

(n−λ)p

kxkα kykα

λq dy,

then

ωα,λ(x, p, q) =kxk(n−λ)(p−1)α πΓn(α1)

sin(πp)λαn−1Γ(αn). (8)

Proof By lemma 2.1, we have

ωα,λ(x, p, q) =kxk(n−λ)(p−1)+λ α q

Z

Rn+

1

kxkλα+kykλαkyk−(n−λ+

λ q)

α dy

= kxk(n−λ)(p−1)+λ

α q lim

R→+∞

Z

· · · Z

y1,···,yn>0;yα1+···+yαn<rα

× h

r((yr1)α+· · ·+ (yrn)α)α1

i−(n−λ+λ

q)

kxkλα+h

r((yr1)α+· · ·+ (yrn)α)α1iλy1−11 · · ·yn1−1dy1· · ·dyn

= kxk(n−λ)(p−1)+λq

α lim

R→+∞

rnΓn(α1) αnΓ(nα)

Z 1 0

(ru1α)−(n−λ+λq) kxkλα+ (ruα1)λ

unα−1du

= kxk(n−λ)(p−1)+λ α q

Γn(α1)

αn−1Γ(nα) lim

R→+∞

Z r

0

1

kxkλα+uλuλ−λq−1du

= kxk(n−λ)(p−1)+λ α q

Γn(α1) αn−1Γ(nα)

Z 0

1

kxkλα+uλuλ−λq−1du

= kxk(n−λ)(p−1)α Γn(α1) λαn−1Γ(nα)

Z 0

1

1 +uu1p−1du

(4)

= kxk(n−λ)(p−1)α Γn(α1) λαn−1Γ(nα)Γ(1

p)Γ(1−1 p)

= kxk(n−λ)(p−1)α πΓn(α1) sin(πp)λαn−1Γ(nα), hence (8) is valid.

Lemma 2.3 If p > 1, 1p + 1q = 1, n ∈ Z+, α > 0, λ > 0, 0 < ε < λ(q−1), setting

˜

ωα,λ(x, q, ε) as:

˜

ωα,λ(x, q, ε) = Z

Rn+

1

kxkλα+kykλαkyk

(n−λ)(q−1)+n+ε q

α dy,

then we have

˜

ωα,λ(x, q, ε) =kxk

λ qε α q

Γn(α1) λαn−1Γ(nα)Γ(1

p − ε λq)Γ(1

q + ε

λq). (9)

Proof By the same way of lemma 2.2, lemma 2.3 can be proved.

3 Main Results

Theorem 3.1 If p >1, 1p +1q = 1, n∈Z+,α >0, λ >0, f ≥0, g≥0, and 0<

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx <∞, 0<

Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx <∞, (10) then

Z

Rn+

Z

Rn+

f(x)g(y)

kxkλα+kykλαdxdy < πΓn(α1) sin(πp)λαn−1Γ(nα)

× Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx

!1q

; (11)

Z

Rn+

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy <

"

πΓn(1α) sin(πp)λαn−1Γ(nα)

#p

× Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx, (12)

where the constant factors πΓ

n(α1)

sin(πp)λαn−1Γ(αn) and[ πΓ

n(α1)

sin(πp)λαn−1Γ(nα)]p are all the best possible.

(5)

Proof By H¨older’s inequality, we have A:=

Z

Rn+

Z

Rn+

f(x)g(y) kxkλα+kykλαdxdy

= Z

Rn+

Z

Rn+

f(x) (kxkλα+kykλα)1p

 kxk

1 q

α

kyk

1 p

α

n−λ

kxkα kykα

pqλ

× g(y)

(kxkλα+kykλα)1q

 kyk

1

αp

kxk

1

αq

n−λ

kykα kxkα

pqλ dxdy

 Z

Rn+

Z

Rn+

fp(x) kxkλα+kykλα

 kxk

1

αq

kyk

1

αp

(n−λ)p

kxkα kykα

λ

q

dxdy

1 p

×

 Z

R+n

Z

Rn+

gq(x) kxkλα+kykλα

 kyk

1 p

α

kxk

1 q

α

(n−λ)q

kykα kxkα

λp dxdy

1 q

=

 Z

Rn+

fp(x)

 Z

Rn+

1 kxkλα+kykλα

 kxk

1

αq

kyk

1

αp

(n−λ)p

kxkα kykα

λq dy

dx

1 p

×

 Z

Rn+

gq(y)

 Z

Rn+

1 kxkλα+kykλα

 kyk

1 p

α

kxk

1 q

α

(n−λ)q

kykα kxkα

λ

p

dx

dy

1 q

= Z

Rn+

fp(x)ωα,λ(x, p, q)dx

!1

p Z

R+n

gq(y)ωα,λ(y, q, p)dy

!1

q

,

according to the condition of taking equality in H¨older’s inequality, if this inequality takes the form of an equality, then there exist constantsC1 and C2, such that they are not all zero, and

C1fp(x) kxkλα+kykλα

 kxk

1

αq

kyk

1

αp

(n−λ)p

kxkα kykα

λq

= C2gq(y) kxkλα+kykλα

 kyk

1 p

α

kxk

1 q

α

(n−λ)q

kykα kxkα

λp

, a.e. in Rn+×Rn+,

it follows that C1kxk(n−λ)(p−1)+n

α fp(x) =C2kyk(n−λ)(q−1)+n

α gq(y) =C(constant), a.e. in Rn+×Rn+,

(6)

which contradicts (10), hence we have A <

Z

Rn+

fp(x)ωα,λ(x, p, q)dx

!1p Z

R+n

gq(y)ωα,λ(y, q, p)dy

!1q .

By lemma 2.2 and sin(πp) = sin(πq), we have

A <

"

πΓn(α1) sin(πp)λαn−1Γ(nα)

#1

p Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1

p

×

"

πΓn(α1) sin(πq)λαn−1Γ(nα)

#1

q Z

Rn+

kyk(n−λ)(q−1)α gq(y)dy

!1

q

= πΓn(α1) sin(πp)λαn−1Γ(nα)

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1

p Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx

!1

q

.

Hence (11) is valid.

For 0< a < b <∞, setting ga,b(y) =

(

kykλ−nα R

Rn+

f(x)

kxkλα+kykλαdxp−1

, a <kykα< b

0, 0<kykα ≤a or kykα≥b

˜

g(y) =kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p−1

, y ∈Rn+,

by (10), for sufficiently smalla >0 and sufficiently largeb >0, we have 0<

Z

a<kykα<b

kyk(n−λ)(q−1)α ga,bq (y)dy <∞.

Hence by (11), we have Z

a<kykα<b

kyk(n−λ)(q−1)αq(y)dy= Z

a<kykα<b

kykλ−nα Z

R+n

f(x) kxkλα+kykλαdx

!p

dy

= Z

a<kykα<b

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p−1

Z

R+n

f(x) kxkλα+kykλαdx

! dy

= Z

Rn+

Z

Rn+

f(x)ga,b(y) kxkλα+kykλαdxdy

< πΓn(α1) sin(πp)λαn−1Γ(αn)

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kyk(n−λ)(q−1)α gqa,b(y)dy

!1q

= πΓn(α1) sin(πp)λαn−1Γ(αn)

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

a<kykα<b

kyk(n−λ)(q−1)α ˜gq(y)dy

!1q ,

(7)

it follows that Z

a<kykα<b

kyk(n−λ)(q−1)αq(y)dy <

"

πΓn(α1) sin(πp)λαn−1Γ(αn)

#p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx.

Fora→0+,b→+∞, by (10), we obtain 0<

Z

Rn+

kyk(n−λ)(q−1)α ˜gq(y)dy≤

"

πΓn(α1) sin(πp)λαn−1Γ(nα)

#p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx <∞, hence by (11), we have

Z

Rn+

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy= Z

Rn+

Z

R+n

f(x)˜g(y) kxkλα+kykλαdxdy

< πΓn(α1) sin(πp)λαn−1Γ(nα)

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!p1 Z

Rn+

kyk(n−λ)(q−1)αq(y)dy

!1q

= πΓn(α1) sin(πp)λαn−1Γ(nα)

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!p1

×

"

Z

Rn+

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy

#1q ,

it follows that

Z

Rn+

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy

<

"

πΓn(α1) sin(πp)λαn−1Γ(nα)

#p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx.

Hence (12) is valid.

Remark: By (12), we can also obtain (11), hence (12) and (11) are equivalent.

If the constant factor Cn,α(λ, p) := πΓ

n(1α)

sin(πp)λαn−1Γ(αn) in (11) is not the best possible, then there exists a positive constantK < Cn,α(λ, p), such that

Z

Rn+

Z

Rn+

f(x)g(y) kxkλα+kykλαdxdy

< K Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kyk(n−λ)(q−1)α gq(y)dy

!1q

. (13)

(8)

In particular, setting f(x) =kxk

(n−λ)(p−1)+n+ε

α p , g(y) =kyk

(n−λ)(q−1)+n+ε

α q , 0< ε < λ(q−1), (13) is still true. By the properties of limit, there exists a sufficiently smalla >0, such that

Z

kxkα>a

Z

R+n

1

kxkλα+kykλαkxk

(n−λ)(p−1)+n+ε

α p kyk

(n−λ)(q−1)+n+ε

α q dxdy

< K Z

kxkα>a

kxk(n−λ)(p−1)α kxk−(n−λ)(p−1)−n−ε

α dx

!1p

× Z

kykα>a

kyk(n−λ)(q−1)α kyk−(n−λ)(q−1)−n−ε

α dy

!1q

= K

Z

kxkα>a

kxk−n−εα dx.

On the other hand, by lemma 2.3, we have Z

kxkα>a

Z

Rn+

1

kxkλα+kykλαkxk

(n−λ)(p−1)+n+ε

α p kyk

(n−λ)(q−1)+n+ε

α q dxdy

= Z

kxkα>a

kxk−n+

λ qε α p

Z

Rn+

1

kxkλα+kykλαkyk

(n−λ)(q−1)+n+ε

α q dydx

= Z

kxkα>a

kxk−n+

λ qε

α pω˜α,λ(x, q, ε)dx

= Γn(α1) λαn−1Γ(nα

1 p− ε

λq

Γ 1

q + ε λq

Z

kxkα>a

kxk−n−εα dx, hence we obtain

Γn(α1) λαn−1Γ(nα

1 p− ε

λq

Γ 1

q + ε λq

< K.

forε→0+, we have

Cn,α(λ, p) = πΓn(α1)

sin(πp)λαn−1Γ(nα) ≤K,

this contradicts the fact that K < Cn,α(λ, p).Hence the constant factor in (11) is the best possible.

Since (12) and (11) are equivalent, the constant factor in (12) is also the best possible.

Corollary 3.1 If p >1, 1p +1q = 1, n∈Z+, α >0, f ≥0, g≥0, and 0<

Z

Rn+

fp(x)dx <∞, 0<

Z

Rn+

gq(x)dx <∞, (14)

(9)

then

Z

Rn+

Z

Rn+

f(x)g(y)

kxknα+kyknαdxdy < πΓn(α1) sin(πp)nαn−1Γ(nα)

× Z

Rn+

fp(x)dx

!1p Z

Rn+

gq(x)dx

!1q

; (15)

Z

Rn+

Z

Rn+

f(x) kxknα+kyknαdx

!p

dy <

"

πΓn(1α) sin(πp)nαn−1Γ(nα)

#p

Z

Rn+

fp(x)dx, (16) where the constant factors in (15) and (16) are all the best possible.

Proof By takingλ=n in theorem 3.1, (15) and (16) can be obtained.

Corollary 3.2 If p >1, 1p +1q = 1, n∈Z+, f ≥0, g≥0, and 0<

Z

Rn+

fp(x)dx <∞, 0<

Z

Rn+

gq(x)dx <∞, (17) then

Z

Rn+

Z

Rn+

f(x)g(y) (Pn

i=1xi)n+ (Pn

i=1yi)ndxdy < π n! sin(πp)

× Z

Rn+

fp(x)dx

!1p Z

Rn+

gq(x)dx

!1q

; (18)

Z

Rn+

Z

Rn+

f(x) (Pn

i=1xi)n+ (Pn

i=1yi)ndx

!p

dy <

"

π n! sin(πp)

#p

Z

Rn+

fp(x)dx, (19) where the constant factors in (18) and (19) are all the best possible.

Proof By takingα= 1 in corollary 3.1, (18) and (19) can be obtained.

References

[1] G. H. Hardy, J. E. Littewood and G. Polya. Inequalities. Gambridge Unie. press, London, 1952.

(10)

[2] A. E. Ingham. A note on Hilbert’s inequality. J. London Math. Soc., 11(1936), 237-240.

[3] Gao Mingzhe and Tan Li. Some improvements on Hilbert’s integral inequality. J.

Math. Anal. Appl. 229(1999), 682-689.

[4] B. G. pachpatte.On some new inequalities similar to Hilbert’s inequality. J. Math.

Anal. Appl. 226(1998), 166-179.

[5] Bicheng Yang and Themistocles M. Rassias. On the way of weight coefficient and research for the Hilbert-type inequalities. Math. Ineq. appl., 6: 4(2003), 625-658.

[6] Kuang Jichang. On new extensions of Hilbert’s integtal inequality. Math. Anal.

Appl, 235(1999): 608-614.

[7] Bicheng Yang. On a generalization of Hardy-Hilbert’s inequality. Chin. Ann. of Math., 23(2002): 247-254.

[8] Hong Yong. All-sided Generalization about Hardy-Hilbert’s integral inequalities.

Acta Math. sinica ,(China) 44(2001): 619-626.

[9] Bichebg Yang. On a multiple Hardy-Hilbert’s integral inequality. Chin. Anna. of Math. 24(A): 6(2003), 743-750.

[10] Kuang Jichang.Applied Inequalities. Shandong Science and Technology press, Ji- nan,2004.

[11] Fichtingoloz G. M..A course in differential and integral calculus. Renmin Jiaoyu publisgers, Beijing, 1957.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This paper deals with a reverse of the Hardy-Hilbert’s type inequality with a best constant factor.. The other reverse of the form

In this paper, by introducing the norm kxk α (x ∈ R n ), we give a multiple Hardy- Hilbert’s integral inequality with a best constant factor and two parameters α, λ.. Key words

By introducing some parameters and the β function and improving the weight func- tion, we obtain a generalization of Hilbert’s integral inequality with the best constant factor.. As

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. 2000 Mathematics Subject Classification:

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

Key words: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant fac- tor, β-function,