• Nem Talált Eredményt

Key words and phrases: Multiple Hardy-Hilbert integral inequality, theΓ-function, Best constant factor

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Multiple Hardy-Hilbert integral inequality, theΓ-function, Best constant factor"

Copied!
10
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 139, 2006

A MULTIPLE HARDY-HILBERT INTEGRAL INEQUALITY WITH THE BEST CONSTANT FACTOR

HONG YONG

DEPARTMENT OFMATHEMATICS

GUANGDONGUNIVERSITY OFBUSINESSSTUDY

GUANGZHOU510320 PEOPLESREPUBLIC OFCHINA.

hongyong59@sohu.com

Received 14 September, 2005; accepted 14 December, 2005 Communicated by B. Yang

ABSTRACT. In this paper, by introducing the normkxkα(xRn), we give a multiple Hardy- Hilbert’s integral inequality with a best constant factor and two parametersα,λ.

Key words and phrases: Multiple Hardy-Hilbert integral inequality, theΓ-function, Best constant factor.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Ifp >1, 1p + 1q = 1, f ≥0,g ≥0,0<R

0 fp(x)dx < +∞, 0<R

0 gq(x)dx < +∞, then the well known Hardy-Hilbert integral inequality is given by (see [3]):

(1.1)

Z 0

Z 0

f(x)g(x)

x+y dxdy < π sin

π p

Z

0

fp(x)dx

1pZ 0

gq(x)dx 1q

,

where the constant factor π

sin(πp) is the best possible. Its equivalent form is:

(1.2)

Z 0

Z 0

f(x) x+ydx

p

dy <

 π sin

π p

p

Z 0

fp(x)dx,

where the constant factor

π sin(πp)

p

is also the best possible.

Hardy-Hilbert’s inequality is valuable in harmonic analysis, real analysis and operator the- ory. In recent years, many valuable results (see [4] – [10]) have been obtained in the form of

ISSN (electronic): 1443-5756

c 2006 Victoria University. All rights reserved.

273-05

(2)

generalizations and improvements of Hardy-Hilbert’s inequality. In 1999, Kuang [5] gave a generalization with a parameterλof (1.1) as follows:

(1.3)

Z 0

Z 0

f(x)g(y)

xλ+yλ dxdy < hλ(p) Z

0

x1−λfp(x)dx

1p Z 0

x1−λgq(x)dx 1q

,

wheremaxn

1 p,1qo

< λ ≤ 1, hλ(p) = πh

λsinp1

π

sin1q

π

i−1

. Because of the constant factorhλ(p)being not the best possible, Yang [8] gave a new generalization of (1.1) in 2002 as follows:

(1.4) Z

0

Z 0

f(x)g(y) xλ+yλ dxdy

< π λsin

π p

Z

0

x(1−λ)(p−1)fp(x)dx

1pZ 0

x(1−λ)(q−1)gq(x)dx 1q

,

its equivalent form is:

(1.5)

Z 0

yλ−1 Z

0

f(x) xλ+yλdx

p

dy <

 π λsin

π p

p

Z 0

x(1−λ)(p−1)fp(x)dx,

where the constant factors π

λsin(πp) in (1.4) and

π λsin(πp)

p

in (1.5) are all the best possible.

At present, because of the requirement of higher-dimensional harmonic analysis and higher- dimensional operator theory, multiple Hardy-Hilbert integral inequalities have been studied.

Hong [11] obtained: If a > 0, Pn i=1

1

pi = 1, pi > 1, fi ≥ 0, ri = p1

i

Qn

j=1pj, λ >

1 a

n−1− r1

i

,i= 1,2, . . . , n, then

(1.6) Z

α

· · · Z

α

1 [Pn

i=1(xi−αi)a]λ

n

Y

i=1

fi(x)dx1· · ·dxn ≤ Γn−2 α1 αn−1Γ(λ)

×

n

Y

i=1

Γ

1 a

1− 1

ri

Γ

λ− 1 a

n−1− 1 ri

Z α

(t−α)n−1−αλfipidt pi1

.

Afterwards, Bicheng Yang and Kuang Jichang etc. obtained some multiple Hardy-Hilbert integral inequalities (see [9, 6]).

In this paper, by introducing the Γ-function, we generalize (1.3) and (1.4) into multiple Hardy-Hilbert integral inequalities with the best constant factors.

2. SOME LEMMAS

First of all, we introduce the signs as:

Rn+ ={x= (x1, . . . , xn) :x1, . . . , xn>0},

kxkα = (xα1 +· · ·+xαn)α1, α >0.

(3)

Lemma 2.1 (see [1]). Ifpi >0,ai >0,αi >0,i= 1,2, . . . , n,Ψ(u)is a measurable function, then

(2.1) Z

. . . Z

x1,...,xn>0;

x

1 a1

α1

+···+(xnan)αn≤1 Ψ

x1 a1

α1

+· · ·+ xn

an αn

×xp11−1· · ·xpnn−1dx1· · ·dxn

=

ap11· · ·apnnΓ

p1

α1

· · ·Γ

pn

αn

α1· · ·αnΓ

p1

α1 +· · ·+ αpn

n

Z 1

0

Ψ(u)u

p1

α1+···+pnαn−1

du.

whereΓ(·)is theΓ-function.

Lemma 2.2. Ifp > 1, 1p+1q = 1,n∈Z+,α >0,λ >0, setting the weight functionωα,λ(x, p, q) as:

ωα,λ(x, p, q) = Z

Rn+

1 kxkλα+kykλα

 kxk

1 q

α

kyk

1

αp

(n−λ)p

kxkα kykα

λq dy,

then

(2.2) ωα,λ(x, p, q) =kxk(n−λ)(p−1)α πΓn α1 sin

π p

λαn−1Γ αn.

Proof. By Lemma 2.1, we have

ωα,λ(x, p, q) =kxk(n−λ)(p−1)+λq α

Z

Rn+

1

kxkλα+kykλαkyk(n−λ+λq)

α dy

=kxk(n−λ)(p−1)+λ

α q lim

r→+∞

Z

· · · Z

y1,...,yn>0;yα1+···+yαn<rα

× h

r yr1α

+· · ·+ yrnαα1i−(n−λ+λq)

kxkλα+h

r yr1α

+· · ·+ yrnαα1iλy11−1· · ·yn1−1dy1· · ·dyn

=kxk(n−λ)(p−1)+λq

α lim

r→+∞

rnΓn α1 αnΓ nα

Z 1 0

ruα1(n−λ+λq)

kxkλα+

ruα1λunα−1du

=kxk(n−λ)(p−1)+λq α

Γn α1

αn−1Γ nα lim

r→+∞

Z r 0

1

kxkλα+uλuλ−λq−1du

=kxk(n−λ)(p−1)+λq α

Γn α1 αn−1Γ nα

Z 0

1

kxkλα+uλuλ−λq−1du

=kxk(n−λ)(p−1)α Γn α1 λαn−1Γ nα

Z 0

1

1 +uu1p−1du

=kxk(n−λ)(p−1)α Γn α1 λαn−1Γ nαΓ

1 p

Γ

1− 1

p

(4)

=kxk(n−λ)(p−1)α πΓn α1 sin

π p

λαn−1Γ αn,

hence (2.2) is valid.

Lemma 2.3. Ifp >1, 1p+1q = 1,n ∈Z+,α >0,λ >0,0< ε < λ(q−1), settingω˜α,λ(x, q, ε) as:

˜

ωα,λ(x, q, ε) = Z

Rn+

1

kxkλα+kykλαkyk

(n−λ)(q−1)+n+ε

α q dy,

then we have

(2.3) ω˜α,λ(x, q, ε) =kxk

λ qεq α

Γn α1 λαn−1Γ nαΓ

1 p− ε

λq

Γ 1

q + ε λq

.

Proof. Lemma 2.3 can be proved in the same manner as Lemma 2.2.

3. MAINRESULTS

Theorem 3.1. Ifp >1, 1p +1q = 1,n∈Z+,α >0,λ >0,f ≥0,g ≥0, and

(3.1) 0<

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx <∞, 0<

Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx <∞,

then

(3.2) Z

Rn+

Z

Rn+

f(x)g(y)

kxkλα+kykλαdxdy < πΓn α1 sin

π p

λαn−1Γ nα

× Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx

!1q

;

(3.3)

Z

Rn+

kykλ−nα Z

Rn+

f(x)

kxkλα+kykλαdx

!p

dy

<

πΓn α1 sin

π p

λαn−1Γ nα

p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx,

where the constant factors πΓ

n(α1)

sin(πp)λαn−1Γ(nα) and

πΓn(α1)

sin(πp)λαn−1Γ(nα) p

are all the best possible.

(5)

Proof. By Hölder’s inequality, we have

A:=

Z

Rn+

Z

Rn+

f(x)g(y)

kxkλα+kykλαdxdy

= Z

Rn+

Z

Rn+

f(x) (kxkλα+kykλα)p1

 kxk

1 q

α

kyk

1

αp

n−λ

kxkα kykα

pqλ

× g(y)

(kxkλα+kykλα)1q

 kyk

1 p

α

kxk

1

αq

n−λ

kykα kxkα

pqλ dxdy

 Z

Rn+

Z

Rn+

fp(x) kxkλα+kykλα

 kxk

1

αq

kyk

1 p

α

(n−λ)p

kxkα kykα

λq dxdy

1 p

×

 Z

Rn+

Z

Rn+

gq(x) kxkλα+kykλα

 kyk

1

αp

kxk

1 q

α

(n−λ)q

kykα kxkα

λp dxdy

1 q

=

 Z

Rn+

fp(x)

 Z

Rn+

1 kxkλα+kykλα

 kxk

1

αq

kyk

1 p

α

(n−λ)p

kxkα kykα

λq dy

dx

1 p

×

 Z

Rn+

gq(y)

 Z

Rn+

1 kxkλα+kykλα

 kyk

1

αp

kxk

1 q

α

(n−λ)q

kykα kxkα

λp dx

dy

1 q

= Z

Rn+

fp(x)ωα,λ(x, p, q)dx

!1p Z

Rn+

gq(y)ωα,λ(y, q, p)dy

!1q ,

according to the condition of taking equality in Hölder’s inequality, if this inequality takes the form of an equality, then there exist constantsC1 andC2, such that they are not all zero, and

C1fp(x) kxkλα+kykλα

 kxk

1 q

α

kyk

1 p

α

(n−λ)p

kxkα

kykα λq

= C2gq(y) kxkλα+kykλα

 kyk

1 p

α

kxk

1 q

α

(n−λ)q

kykα kxkα

λp

, a.e. inRn+×Rn+, it follows that

C1kxk(n−λ)(p−1)+n

α fp(x) = C2kyk(n−λ)(q−1)+n

α gq(y) =C (constant), a.e. in Rn+×Rn+, which contradicts (3.1), hence we have

A <

Z

Rn+

fp(x)ωα,λ(x, p, q)dx

!1p Z

Rn+

gq(y)ωα,λ(y, q, p)dy

!1q .

(6)

By Lemma 2.2 andsin

π p

= sin(πq), we have

A <

πΓn α1 sin

π p

λαn−1Γ αn

1 p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p

×

"

πΓn α1 sin(πq)λαn−1Γ nα

#1q Z

Rn+

kyk(n−λ)(q−1)α gq(y)dy

!1q

= πΓn α1 sin

π p

λαn−1Γ nα Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kxk(n−λ)(q−1)α gq(x)dx

!1q .

Hence (3.2) is valid.

For0< a < b <∞, setting

ga,b(y) =





kykλ−nα R

Rn+

f(x)

kxkλα+kykλαdxp−1

, a <kykα < b,

0, 0<kykα ≤a or kykα ≥b,

˜

g(y) = kykλ−nα Z

Rn+

f(x)

kxkλα+kykλαdx

!p−1

, y∈Rn+,

by (3.1), for sufficiently smalla >0and sufficiently largeb > 0, we have

0<

Z

a<kykα<b

kyk(n−λ)(q−1)α gqa,b(y)dy <∞.

Hence by (3.2), we have Z

a<kykα<b

kyk(n−λ)(q−1)αq(y)dy

= Z

a<kykα<b

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy

= Z

a<kykα<b

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p−1

Z

Rn+

f(x)

kxkλα+kykλαdx

! dy

= Z

Rn+

Z

Rn+

f(x)ga,b(y) kxkλα+kykλαdxdy

(7)

< πΓn α1 sin

π p

λαn−1Γ nα Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p

× Z

Rn+

kyk(n−λ)(q−1)α gqa,b(y)dy

!1q

= πΓn α1 sin

π p

λαn−1Γ nα Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p

× Z

a<kykα<b

kyk(n−λ)(q−1)α ˜gq(y)dy 1q

,

it follows that

Z

a<kykα<b

kyk(n−λ)(q−1)αq(y)dy <

πΓn α1 sin

π p

λαn−1Γ nα

p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx.

Fora→0+,b→+∞, by (3.1), we obtain

0<

Z

Rn+

kyk(n−λ)(q−1)αq(y)dy

πΓn α1 sin

π p

λαn−1Γ αn

p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx <∞,

hence by (3.2), we have

Z

Rn+

kykλ−nα Z

Rn+

f(x)

kxkλα+kykλαdx

!p

dy

= Z

Rn+

Z

Rn+

f(x)˜g(y)

kxkλα+kykλαdxdy

< πΓn α1 sin

π p

λαn−1Γ nα Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p Z

Rn+

kyk(n−λ)(q−1)αq(y)dy

!1q

= πΓn α1 sin

π p

λαn−1Γ nα Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!1p

×

"

Z

Rn+

kykλ−nα Z

Rn+

f(x) kxkλα+kykλαdx

!p

dy

#1q ,

(8)

it follows that Z

Rn+

kykλ−nα Z

Rn+

f(x)

kxkλα+kykλαdx

!p

dy

<

πΓn α1 sin

π p

λαn−1Γ nα

p

Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx.

Hence (3.3) is valid.

Remark 3.2. By (3.3), we can also obtain (3.2), hence (3.3) and (3.2) are equivalent.

If the constant factor Cn,α(λ, p) := πΓ

n(α1)

sin(πp)λαn−1Γ(nα) in (3.2) is not the best possible, then there exists a positive constantK < Cn,α(λ, p), such that

(3.4) Z

Rn+

Z

Rn+

f(x)g(y)

kxkλα+kykλαdxdy

< K Z

Rn+

kxk(n−λ)(p−1)α fp(x)dx

!p1 Z

Rn+

kyk(n−λ)(q−1)α gq(y)dy

!1q .

In particular, setting f(x) = kxk

(n−λ)(p−1)+n+ε p

α , g(y) =kyk

(n−λ)(q−1)+n+ε q

α , 0< ε < λ(q−1), (3.4) is still true. By the properties of limit, there exists a sufficiently smalla >0, such that

Z

kxkα>a

Z

Rn+

1

kxkλα+kykλαkxk

(n−λ)(p−1)+n+ε p

α kyk

(n−λ)(q−1)+n+ε q

α dxdy

< K Z

kxkα>a

kxk(n−λ)(p−1)α kxk−(n−λ)(p−1)−n−ε

α dx

1p

× Z

kykα>a

kyk(n−λ)(q−1)α kyk−(n−λ)(q−1)−n−ε

α dy

1q

=K Z

kxkα>a

kxk−n−εα dx.

On the other hand, by Lemma 2.3, we have Z

kxkα>a

Z

Rn+

1

kxkλα+kykλαkxk

(n−λ)(p−1)+n+ε p

α kyk

(n−λ)(q−1)+n+ε q

α dxdy

= Z

kxkα>a

kxk−n+

λ qpε α

Z

Rn+

1

kxkλα+kykλαkyk

(n−λ)(q−1)+n+ε q

α dydx

= Z

kxkα>a

kxk−n+

λ qε

α pω˜α,λ(x, q, ε)dx

= Γn α1 λαn−1Γ nαΓ

1 p− ε

λq

Γ 1

q + ε λq

Z

kxkα>a

kxk−n−εα dx,

hence we obtain

Γn α1 λαn−1Γ nαΓ

1 p − ε

λq

Γ 1

q + ε λq

< K.

(9)

Forε→0+, we have

Cn,α(λ, p) = πΓn α1 sin

π p

λαn−1Γ nα ≤K,

this contradicts the fact that K < Cn,α(λ, p).Hence the constant factor in (3.2) is the best possible.

Since (3.3) and (3.2) are equivalent, the constant factor in (3.3) is also the best possible.

Corollary 3.3. Ifp >1, 1p +1q = 1,n∈Z+,α >0,f ≥0,g ≥0, and

(3.5) 0<

Z

Rn+

fp(x)dx <∞, 0<

Z

Rn+

gq(x)dx <∞,

then

(3.6)

Z

Rn+

Z

Rn+

f(x)g(y)

kxknα+kyknαdxdy

< πΓn α1 sin

π p

n−1Γ nα Z

Rn+

fp(x)dx

!1p Z

Rn+

gq(x)dx

!1q

;

(3.7)

Z

Rn+

Z

Rn+

f(x)

kxknα+kyknαdx

!p

dy <

πΓn 1α sin

π p

n−1Γ αn

p

Z

Rn+

fp(x)dx,

where the constant factors in (3.6) and (3.7) are all the best possible.

Proof. By takingλ =nin Theorem 3.1, (3.6) and (3.7) can be obtained.

Corollary 3.4. Ifp >1, 1p +1q = 1,n∈Z+,f ≥0,g ≥0, and

(3.8) 0<

Z

Rn+

fp(x)dx <∞, 0<

Z

Rn+

gq(x)dx <∞,

then

(3.9)

Z

Rn+

Z

Rn+

f(x)g(y) (Pn

i=1xi)n+ (Pn

i=1yi)ndxdy

< π n! sin

π p

Z

Rn+

fp(x)dx

!1p Z

Rn+

gq(x)dx

!1q

;

(3.10) Z

Rn+

Z

Rn+

f(x) (Pn

i=1xi)n+ (Pn

i=1yi)ndx

!p

dy <

 π n! sin

π p

p

Z

Rn+

fp(x)dx,

where the constant factors in (3.9) and (3.10) are all the best possible.

Proof. By takingα = 1in Corollary 3.3, (3.9) and (3.10) can be obtained.

(10)

REFERENCES

[1] G.M. FICHTINGOLOZ, A Course in Differential and Integral Calculus, Renmin Jiaoyu Publishers, Beijing, 1957.

[2] MINGZHE GAOANDTAN LI, Some improvements on Hilbert’s integral inequality, J. Math. Anal.

Appl., 229 (1999), 682–689.

[3] G.H. HARDY, J.E. LITTLEWOODANDG. POLYA, Inequalities, Cambridge Univ. Press, London, 1952.

[4] A.E. INGHAM, A note on Hilbert’s inequality, J. London Math. Soc., 11 (1936), 237–240.

[5] JICHANG KUANG, On new extensions of Hilbert’s integtal inequality, Math. Anal. Appl., 235 (1999), 608–614.

[6] JICHANG KUANG, Applied Inequalities, Shandong Science and Technology Press, Jinan, 2004.

[7] B.G. PACHPATTE. On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl., 226 (1998), 166–179.

[8] BICHENG YANG, On a generalization of Hardy-Hilbert’s inequality, Chin. Ann. of Math., 23 (2002), 247–254.

[9] BICHENG YANG, On a multiple Hardy-Hilbert’s integral inequality, Chin. Ann. of Math., 24(A):6(2003), 743–750.

[10] BICHENG YANG ANDTh.M. RASSIAS, On the way of weight coefficient and research for the Hilbert-type inequalities, Math. Ineq. Appl., 6(4) (2003), 625–658.

[11] HONG YONG, All-sided generalization about Hardy-Hilbert’s integral inequalities, Acta Math.

Sinica, 44 (2001), 619–626.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This paper deals with a reverse of the Hardy-Hilbert’s type inequality with a best constant factor.. The other reverse of the form

All-sided Generalization about Hardy-Hilbert’s integral inequalities..

By introducing some parameters and the β function and improving the weight function, we obtain a generalization of Hilbert’s integral inequality with the best constant factorJ. As

By introducing some parameters and the β function and improving the weight func- tion, we obtain a generalization of Hilbert’s integral inequality with the best constant factor.. As

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parameters λ and α and using the Beta functionJ. The