• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
35
0
0

Teljes szövegt

(1)

volume 6, issue 3, article 81, 2005.

Received 23 February, 2005;

accepted 17 June, 2005.

Communicated by:W.S. Cheung

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON BEST EXTENSIONS OF HARDY-HILBERT’S INEQUALITY WITH TWO PARAMETERS

BICHENG YANG

Department of Mathematics Guangdong Institute of Education Guangzhou, Guangdong 510303 People’s Republic of China

EMail:bcyang@pub.guangzhou.gd.cn

c

2000Victoria University ISSN (electronic): 1443-5756 055-05

(2)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

Abstract

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parametersλ andα and using the Beta function. The equivalent form and some reversions are considered.

2000 Mathematics Subject Classification:26D15.

Key words: Hardy-Hilbert’s inequality; Beta function; Hölder’s inequality.

Contents

1 Introduction. . . 3

2 Some Lemmas. . . 9

3 Main Results . . . 12

4 Some Best Extensions of (1.3). . . 26 References

(3)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

1. Introduction

Ifan,bn ≥0satisfy 0<

X

n=1

a2n <∞ and 0<

X

n=1

b2n<∞, then one has two equivalent inequalities as:

(1.1)

X

n=1

X

m=1

ambn m+n < π

( X

n=1

a2n

X

n=1

b2n )12

and (1.2)

X

n=1

X

m=1

am m+n

!2

< π2

X

n=1

a2n,

where the constant factors π and π2 are the best possible. Inequality (1.1) is well known as Hilbert’s inequality (cf. Hardy et al. [1]). In 1925, Hardy [2]

gave some extensions of (1.1) and (1.2) by introducing the(p, q)−parameter as:

Ifp >1, 1p + 1q = 1, an,bn ≥0satisfy 0<

X

n=1

apn <∞ and 0<

X

n=1

bqn<∞, then one has the following two equivalent inequalities:

(1.3)

X

n=1

X

m=1

ambn

m+n < π sin

π p

(

X

n=1

apn

)1p( X

n=1

bqn )1q

(4)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

and (1.4)

X

n=1

X

m=1

am m+n

!p

<

 π sin

π p

p

X

n=1

apn,

where the constant factors sin(π/p)π andh

π sin(π/p)

ip

are the best possible. Inequal- ity (1.3) is called Hardy-Hilbert’s inequality, and is important in analysis and its applications (cf. Mitrinovi´c et al. [3]).

In 1997-1998, by estimating the weight coefficient and introducing the Euler constantγ, Yang and Gao [4,5] gave a strengthened version of (1.3) as:

(1.5)

X

n=1

X

m=1

ambn m+n

<

X

n=1

 π sin

π p

− 1−γ n1p

apn

1 p

X

n=1

 π sin

π p

−1−γ n1q

bqn

1 q

,

where 1 − γ = 0.42278433+ is the best value. In 1998, Yang [6] first in- troduced an independent parameter λ and the Beta function to build an exten- sion of Hilbert’s integral inequality. Recently, by introducing a parameter λ, Yang [7] and Yang et al. [8] gave some extensions of (1.3) and (1.4) as: If 2−min{p, q}< λ≤2, an,bn≥0satisfy

0<

Xn1−λapn <∞ and 0<

Xn1−λbqn<∞,

(5)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

then one has the following two equivalent inequalities:

(1.6)

X

n=1

X

m=1

ambn

(m+n)λ < kλ(p) (

X

n=1

n1−λapn

)1p( X

n=1

n1−λbqn )1q

and (1.7)

X

n=1

n(p−1)(λ−1)

" X

m=1

am (m+n)λ

#p

dy <[kλ(p)]p

X

n=1

n1−λapn, where the constant factorskλ(p) =Bp+λ−2

p ,q+λ−2q

and[kλ(p)]p are the best possible (B(u, v) is the β function). For λ = 1, inequalities (1.6) and (1.7) reduce respectively to (1.3) and (1.4). By introducing a parameterα,Kuang [9]

gave an extension of (1.3), and Yang [10] gave an improvement of [9] as: If 0< α≤min{p, q}, an,bn ≥0satisfy

0<

X

n=1

n(p−1)(1−α)apn<∞ and 0<

X

n=1

n(q−1)(1−α)bqn<∞, then one has two equivalent inequalities as:

(1.8)

X

n=1

X

m=1

ambn mα+nα

< π αsin

π p

(

X

n=1

n(p−1)(1−α)apn

)1p( X

n=1

n(q−1)(1−α)bqn )1q

(6)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

and (1.9)

X

n=1

nα−1

" X

m=1

am

mα+nα

#p

dy <

 π αsin

π p

p

X

n=1

n(p−1)(1−α)apn,

where the constant factors αsin(π/p)π and h π

αsin(π/p)

ip

are the best possible. For α = 1, inequalities (1.8) and (1.9) reduce respectively to (1.3) and (1.4). Re- cently, Hong [11] gave an extension of (1.3) by introducing two parametersλ andαas: Ifα ≥1,1−αr1 < λ≤1 (r =p, q),then

(1.10)

X

n=1

X

m=1

ambn (mα+nα)λ

< Hλ,α(p) (

X

n=1

nα(1−λ)apn

)1p( X

n=1

nα(1−λ)bpn )1q

, where

Hλ,α(p) =

B

1− 1

αq, λ+ 1 αq −1

1p B

1− 1

αp, λ+ 1 αp −1

1q . Forλ =α= 1,(1.10) reduces to (1.3). However, it is obvious that (1.10) is not an extension of (1.6) or (1.8).

In 2003, Yang et al. [12] provided an extensive account of the above results.

More recently, Yang [13] gave some extensions of (1.1) and (1.2) as: If 0 <

(7)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

λ ≤min{p, q},satisfy 0<

X

n=1

np−1−λapn<∞ and 0<

X

n=1

nq−1−λapn<∞, then one has the following two equivalent inequalities:

(1.11)

X

n=1

X

m=1

ambn

(m+n)λ < Kλ(p) (

X

n=1

np−1−λapn

)1p( X

n=1

nq−1−λbpn )1q

and (1.12)

X

n=1

n(p−1)λ−1

" X

m=1

am (m+n)λ

#p

dy <[Kλ(p)]p

X

n=1

np−1−λapn,

where the constantsKλ(p) =B

λ p,λq

and[Kλ(p)]p are the best possible. For λ = 1,(1.11) and (1.12) reduce to the following two equivalent inequalities:

(1.13)

X

n=1

X

m=1

ambn

m+n < π sin

π p

(

X

n=1

np−2apn

)1p( X

n=1

nq−2bqn )1q

and (1.14)

X

n=1

np−2

X

m=1

am

m+n

!p

<

 π sin

π p

p

X

n=1

np−2apn.

(8)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

Forp = q = 2, inequalities (1.13) and (1.14) reduce respectively to (1.1) and (1.2). We find that inequalities (1.3) and (1.13) are different, although both of them are the best extensions of (1.1) with the(p, q)−parameter.

The main objective of this paper is to obtain some extensions of (1.3) with the best constant factors, by introducing two parametersλandαand using the Beta function, related to the double series as P

n=1

P m=1

ambn

(mα+nα)λ (λ, α >

0), so that inequality (1.10) can be improved. The equivalent form and some reversions are considered.

(9)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

2. Some Lemmas

First, we need the form of the Beta function as (cf. Wang et al. [14]):

(2.1) B(u, v) :=

Z 0

1

(1 +t)u+vtu−1dt=B(v, u) (u, v >0).

Lemma 2.1. If p >0 (p 6= 1), 1p + 1q = 1, λ, α > 0, φr = φr(λ, α) > 0 (r = p, q),satisfyφpq=λα, define the weight functionωr(x)as

(2.2) ωr(x) :=

Z 0

xλα−φr (xα+yα)λ

1 y

1−φr

dy (x >0; r=p, q).

Then forx >0, eachωr(x)is constant, that is (2.3) ωr(x) = 1

αB φp

α,φq α

(x >0;r=p, q).

Proof. Settingu= yxα

in the integral (2.2), one hasdy= αxuα1−1duand ωr(x) =xλα−φr

Z 0

1 (xα+xαu)λ

1 xu1/α

1−φr

x

αuα1−1du

= 1 α

Z 0

1

(1 +u)λuφrα−1du (r =p, q).

By (2.1), sinceφpq =λα, one has (2.3). The lemma is proved.

(10)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

Lemma 2.2. If p > 1, 1p + 1q = 1, λ, α > 0, φr > 0 (r = p, q), satisfy φpq =λα, and0< ε < qφp,then one has

I1 :=

Z 1

Z 1

x−1+φqpε

(xα+yα)λy−1+φpεqdxdy

> 1 εαB

φp α − ε

qα,φq α + ε

−O(1).

(2.4)

If0< p <1and0< ε < −qφq,with the above assumption, then one has I2 :=

X

m=1

Z 0

m−1+φqεp

(mα+yα)λy−1+φpεqdy

= 1 αB

φp α − ε

qα,φq α + ε

X

m=1

1 m1+ε. (2.5)

Proof. Settingu= yxα

in the integralI1,one has I1 =

Z 1

x−1+φqεp Z

1

1

(xα+yα)λy−1+φpεqdy

dx

= 1 α

Z 1

x−1−ε Z

1

1 (1 +u)λu

φp αε −1

dudx

= 1 εα

Z 0

uφpαε −1

(1 +u)λ du− 1 α

Z 1

x−1−ε Z 1

0

uφpαε −1 (1 +u)λ dudx

(11)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

> 1 εα

Z 0

u

φp αε −1

(1 +u)λ du− 1 α

Z 1

x−1 Z 1

0

uφpαε−1dudx

= 1 εα

Z 0

uφpαε −1 (1 +u)λ du−

φp −ε

q −2

. (2.6)

By (2.1), it follows that (2.4) is valid. For0 < p < 1,settingu = (my)α in the integral ofI2,in the same manner, one has (2.5). The lemma is thus proved.

(12)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

3. Main Results

Theorem 3.1. If p > 1, 1p + 1q = 1, λ, α > 0, 0 < φr ≤ 1 (r = p, q), φpq =λαandan, bn≥0satisfy

0<

X

n=1

np(1−φq)−1apn<∞ and 0<

X

n=1

nq(1−φp)−1bqn <∞, then one has

(3.1)

X

n=1

X

m=1

ambn (mα+nα)λ

< 1 αB

φp

α,φq

α

( X

n=1

np(1−φq)−1apn

)1p( X

n=1

nq(1−φp)−1bqn )1q

,

where the constant factor α1Bφ

p

α,φαq

is the best possible.

Proof. By Hölder’s inequality with weight (see [15]), one has

H(am, bn) :=

X

n=1

X

m=1

ambn (mα+nα)λ

=

X

n=1

X

m=1

1 (mα+nα)λ

m(1−φq)/q

n(1−φp)/pam n(1−φp)/p m(1−φq)/qbn

(13)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

≤ (

X

m=1

" X

n=1

mλα−φp

(mα+nα)λ · 1 n1−φp

#

mp(1−φq)−1apm )1p

× (

X

n=1

" X

m=1

nλα−φq

(mα+nα)λ · 1 m1−φq

#

nq(1−φp)−1bqn )1q

. (3.2)

Sinceλ, α >0,and1−φr ≥0 (r=p, q),in view of (2.2), we rewrite (3.2) as

H(am, bn)<

( X

m=1

ωp(m)mp(1−φq)−1apm

)1p( X

n=1

ωq(n)nq(1−φp)−1bqn )1q

, and then by (2.3), one has (3.1). For 0 < ε < qφp,settinga0nandb0nas: a0n = n−1+φqpε, b0n=n−1+φpεq, n∈N,then we find

( X

n=1

np(1−φq)−1a0pn

)1p( X

n=1

nq(1−φp)−1b0qn )1q

= 1 +

X

n=2

1 n1+ε (3.3)

<1 + Z

1

1 t1+εdt

= 1

ε(1 +ε).

If the constant factor α1Bφ

p

α,φαq

in (3.1) is not the best possible, then there exists a positive constantk(withk < α1B

φp

α,φαq

), such that (3.1) is still valid

(14)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

if one replaces α1B φp

α,φαq

byk. In particular, by (2.4) and (3.3), 1

αB φp

α − ε qα,φq

α + ε qα

−εO(1)

< εI1

< εH(a0m, b0n)

< εk (

X

n=1

np(1−φq)−1a0pn

)p1 ( X

n=1

nq(1−φp)−1b0qn )1q

=k(1 +ε), and then α1Bφ

p

α,φαq

≤ k (ε → 0+). This contradicts the fact that k <

1 αB

φp

α,φαq

.Hence the constant factor α1B

φp

α,φαq

in (3.1) is the best possi- ble. The theorem is proved.

Theorem 3.2. If p > 1, 1p + 1q = 1, λ, α > 0, 0 < φr ≤ 1 (r = p, q), φpq =λαandan≥0satisfy

0<

X

n=1

np(1−φq)−1apn<∞, then one has

(3.4)

Xnp−1

"

X am (mα+nα)λ

#p

(15)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

<

1 αB

φp α,φq

α

p

X

n=1

np(1−φq)−1apn,

where the constant factorh

1 αB

φp

α,φαqip

is the best possible. Inequality (3.4) is equivalent to (3.1).

Proof. Set

bn:=np−1

" X

m=1

am (mα+nα)λ

#p−1

, and use (3.1) to obtain

0<

X

n=1

nq(1−φp)−1bqn (3.5)

=

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p

=

X

n=1

X

m=1

ambn (mα+nα)λ

≤ 1 αB

φp α,φq

α

( X

n=1

np(1−φq)−1apn

)1p( X

n=1

nq(1−φp)−1bqn )1q

(16)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

and

0<

( X

n=1

nq(1−φp)−1bqn )1p

= (

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#

p

)1p

≤ 1 αB

φp α,φq

α

( X

n=1

np(1−φq)−1apn )1p

<∞.

(3.6)

It follows that (3.5) takes the form of strict inequality by using (3.1); so does (3.6). Hence, one has (3.4).

On the other hand, if (3.4) is valid, by Hölder’s inequality, one has

X

n=1

X

m=1

ambn (mα+nα)λ (3.7)

=

X

n=1

" X

m=1

n1q−1+φpam (mα+nα)λ

# h

n1−φp1qbni

≤ (

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p)1p( X

n=1

nq(1−φp)−1bqn )1q

. By (3.4), one has (3.1). It follows that inequalities (3.4) and (3.1) are equivalent.

If the constant factor in (3.4) is not the best possible, one can obtain a contra- diction that the constant factor in (3.1) is not the best possible by using (3.7).

(17)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

Hence the constant factor in (3.4) is still the best possible. Thus the theorem is proved.

Theorem 3.3. If0< p <1, 1p +1q = 1,

A={(λ, α); λ, α >0, 0< φr ≤1 (r=p, q), φpq =λα} 6= Φ, andan, bn≥0satisfy

0<

X

n=1

np(1−φq)−1apn<∞ and 0<

X

n=1

nq(1−φp)−1bqn <∞, then for(λ, α)∈A,one has

(3.8)

X

n=1

X

m=1

ambn (mα+nα)λ

> 1 αB

φp α,φq

α

( X

n=1

[1−θp(n)]np(1−φq)−1apn

)1p( X

n=1

nq(1−φp)−1bqn )1q

,

where0< θp(n) = O n1φp

<1;the constantα1Bφ

p

α,φαq

is the best possible.

Proof. By the reverse of Hölder’s inequality (see [15]), following the method of proof in Theorem3.1, since0< p <1andq <0,one has

(3.9) H(am, bn)>

( X

n=1

$p(n)np(1−φq)−1apn

)p1 ( X

n=1

ωq(n)nq(1−φp)−1bqn )1q

,

(18)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

whereωq(n)is defined as in (2.2) and (3.10) $p(n) :=

X

k=1

nλα−φp (nα+kα)λ

1 k

1−φp

(n ∈N).

Defineθp(n)as

(3.11) θp(n) := nλα−φp ωp(n)

Z 1 0

1 (nα+yα)λ

1 y

1−φp

dy (n∈N).

Since

ωp(n)>

Z 1 0

nλα−φp (nα+yα)λ

1 y

1−φp

dy, then we find0< θp(n)<1,and

(3.12) $p(n)>

Z 1

nλα−φp (nα+yα)λ

1 y

1−φp

dy=ωp(n) [1−θp(n)]. By (3.12), (2.3) and (3.9), one has (3.8). Since

(3.13) 0< θp(n)< nλα−φp ωp(n)

Z 1 0

1 nλα

1 y

1−φp

dy = 1

ωp(n)φp · 1 nφp, andωp(n)is a constant, we haveθp(n) =O n1φp

(n→ ∞).

For0 < ε < min{q(φp−1),−qφq},settinga0nandb0n as: a0n =n−1+φqεp, b0n=n−1+φpεq, n∈N,sinceφp >0,then

XO 1

nφp+1+ε

=O(1) (ε→0+),

(19)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

and

( X

n=1

[1−θp(n)]np(1−φq)−1a0pn

)1p( X

n=1

nq(1−φp)−1b0qn )1q (3.14)

=

X

n=1

1 n1+ε

 1−

P n=1O

1 nφp+1+ε

P

n=1 1 n1+ε

1 p

=

X

n=1

1

n1+ε(1−o(1))1p. If the constant α1Bφ

p

α,φαq

in (3.8) is not the best possible, then there exists a positive numberK (withK > α1B

φp

α,φαq

), such that (3.8) is still valid if one replaces α1B

φp

α,φαq

byK. In particular, by (3.14) and (2.5), one has K

X

n=1

1

n1+ε {1−o(1)}1p

=K (

X

n=1

[1−θp(n)]np(1−φq)−1a0pn

)1p( X

n=1

nq(1−φp)−1b0qn )1q

< H(a0m, b0n)

< I2 = 1 αB

φp α − ε

qα,φq α + ε

X

n=1

1 n1+ε,

(20)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

and thenK ≤ α1B φp

α,φαq

(ε →0+).By this contradiction we can conclude that the constant α1B

φp

α,φαq

in (3.8) is the best possible. Thus the theorem is proved.

Theorem 3.4. If0< p <1, 1p +1q = 1,

A ={(λ, α);λ, α >0, 0< φr ≤1 (r =p, q), φpq =λα} 6= Φ, andan, bn≥0satisfy

0<

X

n=1

np(1−φq)−1apn<∞, for(λ, α)∈A,one has

(3.15)

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p

>

1 αB

φp α,φq

α

p

X

n=1

[1−θp(n)]np(1−φq)−1apn, where 0 < θp(n) = O n1φp

< 1, and the constant factor h

1 αBφ

p

α,φαqip

is the best possible. Inequality (3.15) is equivalent to (3.8).

Proof. Still setting

bn:=np−1

"

X am (mα+nα)λ

#p−1 ,

(21)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

by (3.8), one has 0<

X

n=1

nq(1−φp)−1bqn (3.16)

=

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p

=

X

n=1

X

m=1

ambn (mα+nα)λ

≥ 1 αB

φp α,φq

α

( X

n=1

[1−θp(n)]np(1−φq)−1apn )1p

× (

X

n=1

nq(1−φp)−1bqn )1q

and

0<

( X

n=1

nq(1−φp)−1bqn )1p

= (

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p)1p

≥ 1 αB

φp α,φq

α

( X

n=1

[1−θp(n)]np(1−φq)−1apn )1p

. (3.17)

If P

n=1nq(1−φp)−1bqn < ∞, by using (3.8), (3.16) takes the form of strict in- equality; so does (3.17). If P

n=1nq(1−φp)−1bqn = ∞, (3.17) takes naturally strict inequality. Hence we have (3.15).

(22)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

On the other hand, if (3.15) is valid, by the reverse of Hölder’s inequality,

X

n=1

X

m=1

ambn (mα+nα)λ (3.18)

=

X

n=1

" X

m=1

n1q−1+φpam (mα+nα)λ

#

[n1−φp1qbn]

≥ (

X

n=1

np−1

" X

m=1

am (mα+nα)λ

#p)1p( X

n=1

nq(1−φp)−1bqn )1q

. Hence by (3.15), one has (3.8). If the constant factor in (3.15) is not the best possible, we can conclude that the constant factor in (3.8) is not the best possible by using (3.18). The theorem is proved.

Note: In view of (3.1), ifφrr(λ, α) (r =p, q)satisfy B(φp(1,1), φq(1,1)) = π

sin

π p

,

and rφr(1,1) = 1 (r = p, q), one can get a best extension of (1.3); if B(φp(1,1), φq(1,1)) = sin(π/p)π (or π2),andrφr(1,1)6= 1 (r=p, q), one can get a best extension of (1.1) but not a best extension of (1.3). For example, setting φr = 1

r(α−2) + 1

λ (r = p, q),then rφr(1,1) = r−1 6= 1,by Theorems 3.1–3.4, one can get a best extension of (1.13) and (1.1) as follows:

(23)

On Best Extensions of Hardy-Hilbert’s Inequality with

Two Parameters Bicheng Yang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of35

J. Ineq. Pure and Appl. Math. 6(3) Art. 81, 2005

http://jipam.vu.edu.au

Corollary 3.5. Ifp > 1,1p+1q = 1, λ >0, α >2−min{p, q},1

r(α−2) + 1 λ≤ 1 (r =p, q), an,bn ≥0, satisfy

0<

X

n=1

np[1−λ(α−1)]+(α−2)λ−1

apn <∞ and

0<

X

n=1

nq[1−λ(α−1)]+(α−2)λ−1

bqn<∞, one has equivalent inequalities as:

(3.19)

X

n=1

X

m=1

ambn

(mα+nα)λ < Kλ,α(p)

× (

X

n=1

np[1−λ(α−1)]+(α−2)λ−1

apn )1p

× (

X

n=1

nq[1−λ(α−1)]+(α−2)λ−1

bqn )1q

and (3.20)

X

n=1

n(p+α−2)λ−1

" X

m=1

am (mα+nα)λ

#p

<[Kλ,α(p)]p

X

n=1

np[1−λ(α−1)]+(α−2)λ−1

apn,

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

All-sided Generalization about Hardy-Hilbert’s integral inequalities..

In this paper, by introducing the norm kxk α (x ∈ R n ), we give a multiple Hardy- Hilbert’s integral inequality with a best constant factor and two parameters α, λ.. Key words

By introducing some parameters and the β function and improving the weight function, we obtain a generalization of Hilbert’s integral inequality with the best constant factorJ. As

By introducing some parameters and the β function and improving the weight func- tion, we obtain a generalization of Hilbert’s integral inequality with the best constant factor.. As

The objective of this paper is to obtain further generalizations of the classical Hardy integral inequality which will be useful in applications by using some elementary methods

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

In 1998, Yang [6] first introduced an indepen- dent parameter λ and the Beta function to build an extension of Hilbert’s integral inequality.. Recently, by introducing a parameter