• Nem Talált Eredményt

A VARIANT OF JESSEN’S INEQUALITY OF MERCER’S TYPE FOR SUPERQUADRATIC FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A VARIANT OF JESSEN’S INEQUALITY OF MERCER’S TYPE FOR SUPERQUADRATIC FUNCTIONS"

Copied!
26
0
0

Teljes szövegt

(1)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c vol. 9, iss. 3, art. 62, 2008

Title Page

Contents

JJ II

J I

Page1of 26 Go Back Full Screen

Close

A VARIANT OF JESSEN’S INEQUALITY OF MERCER’S TYPE FOR SUPERQUADRATIC

FUNCTIONS

S. ABRAMOVICH

Department of Mathematics

University of Haifa, Haifa, 31905, Israel EMail:abramos@math.haifa.ac.il

J. BARI ´C

Fac. of Electrical Engin., Mechanical Engin. & Naval Architecture University of Split, Rudjera Boškovi´ca bb, 21000 Split, Croatia EMail:jbaric@fesb.hr

J. PE ˇCARI ´C

Faculty of Textile Technology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia

EMail:pecaric@hazu.hr Received: 14 December, 2007

Accepted: 03 April, 2008

Communicated by: I. Gavrea 2000 AMS Sub. Class.: 26D15, 39B62.

Key words: Isotonic linear functionals, Jessen’s inequality, Superquadratic functions, Func- tional quasi-arithmetic and power means of Mercer’s type.

(2)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page2of 26 Go Back Full Screen

Close Abstract: A variant of Jessen’s inequality for superquadratic functions is proved.

This is a refinement of a variant of Jessen’s inequality of Mercer’s type for convex functions. The result is used to refine some comparison in- equalities of Mercer’s type between functional power means and between functional quasi-arithmetic means.

(3)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page3of 26 Go Back Full Screen

Close

Contents

1 Introduction 4

2 Main Results 8

3 Applications 15

(4)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page4of 26 Go Back Full Screen

Close

1. Introduction

LetE be a nonempty set andLbe a linear class of real valued functionsf :E →R having the properties:

L1:f, g ∈L⇒(αf+βg)∈Lfor allα, β ∈R; L2:1∈L, i.e., iff(t) = 1fort ∈E, thenf ∈L.

An isotonic linear functional is a functionalA:L→Rhaving the properties:

A1: A(αf +βg) = αA(f) +βA(g)forf, g∈L,α, β ∈R(Ais linear);

A2: f ∈L, f(t)≥0onE ⇒A(f)≥0(Ais isotonic).

The following result is Jessen’s generalization of the well known Jensen’s in- equality for convex functions [10] (see also [12, p. 47]):

Theorem A. Let Lsatisfy properties L1, L2on a nonempty set E, and letϕ be a continuous convex function on an intervalI ⊂R. IfAis an isotonic linear functional onLwithA(1) = 1, then for allg ∈Lsuch thatϕ(g)∈L,we haveA(g)∈I and

ϕ(A(g))≤A(ϕ(g)).

Similar to Jensen’s inequality, Jessen’s inequality has a converse [7] (see also [12, p. 98]):

Theorem B. Let L satisfy properties L1, L2 on a nonempty set E, and let ϕ be a convex function on an interval I = [m, M], −∞ < m < M < ∞. If A is an isotonic linear functional onLwithA(1) = 1, then for allg ∈Lsuch thatϕ(g)∈L so thatm≤g(t)≤M for allt∈E, we have

A(ϕ(g))≤ M −A(g)

M −m ·ϕ(m) + A(g)−m

M −m ·ϕ(M).

(5)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page5of 26 Go Back Full Screen

Close

Inspired by I.Gavrea’s [9] result, which is a generalization of Mercer’s variant of Jensen’s inequality [11], recently, W.S. Cheung, A. Matkovi´c and J. Peˇcari´c, [8]

gave the following extension on a linear classLsatisfying propertiesL1, L2.

Theorem C. Let Lsatisfy properties L1, L2on a nonempty set E, and letϕ be a continuous convex function on an interval I = [m, M], −∞ < m < M < ∞.

IfA is an isotonic linear functional on Lwith A(1) = 1, then for allg ∈ L such thatϕ(g), ϕ(m+M −g) ∈ Lso thatm ≤ g(t) ≤ M for allt ∈ E, we have the following variant of Jessen’s inequality

(1.1) ϕ(m+M −A(g))≤ϕ(m) +ϕ(M)−A(ϕ(g)). In fact, to be more specific we have the following series of inequalities

ϕ(m+M −A(g))

≤A(ϕ(m+M −g))

≤ M −A(g)

M −m ·ϕ(M) + A(g)−m

M −m ·ϕ(m) (1.2)

≤ϕ(m) +ϕ(M)−A(ϕ(g)).

If the functionϕis concave, inequalities(1.1)and(1.2)are reversed.

In this paper we give an analogous result for superquadratic function (see also different analogous results in [6]). We start with the following definition.

Definition A ([1, Definition 2.1]). A function ϕ : [0,∞) → R is superquadratic provided that for allx≥0 there exists a constantC(x)∈R such that

(1.3) ϕ(y)−ϕ(x)−ϕ(|y−x|)≥C(x) (y−x)

for ally≥0.We say thatf is subquadratic if−f is a superquadratic function.

(6)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page6of 26 Go Back Full Screen

Close

For example, the function ϕ(x) = xp is superquadratic for p ≥ 2 and sub- quadratic forp∈(0,2].

Theorem D ([1, Theorem 2.3]). The inequality f

Z gdµ

≤ Z

f(g(s))−f

g(s)− Z

gdµ

dµ(s)

holds for all probability measuresµand all non-negativeµ−integrable functionsg, if and only iff is superquadratic.

The following discrete version that follows from the above theorem is also used in the sequel.

Lemma A. Suppose that f is superquadratic. Let xr ≥ 0, 1 ≤ r ≤ n and let

¯ x=Pn

r=1λrxr whereλr≥0andPn

r=1λr = 1.Then

n

X

r=1

λrf(xr)≥f(¯x) +

n

X

r=1

λrf(|xr−x|).¯

In [3] and [4] the following converse of Jensen’s inequality for superquadratic functions was proved.

Theorem E. Let(Ω, A, µ) be a measurable space with0 < µ(r) < ∞and let f : [0,∞)→ Rbe a superquadratic function. Ifg : Ω→ [m, M]≤[0,∞)is such that g, f ◦g ∈L1(µ),then we have

1 µ(Ω)

Z

f(g)dµ≤ M −¯g

M −mf(m) + ¯g−m M −mf(M)

− 1 µ(Ω)

1 M −m

Z

((M−g)f(g−m) + (g−m)f(M −g))dµ, forg¯= µ(Ω)1 R

gdµ.

(7)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page7of 26 Go Back Full Screen

Close

The discrete version of this theorem is:

Theorem F. Let f : [0,∞) → Rbe a superquadratic function. Let (x1, . . . , xn) be ann−tuple in[m, M]n(0≤m < M < ∞), and (p1, . . . , pn)be a non-negative n−tuple such thatPn =Pn

i=1pi >0.Denotex¯= P1

n

Pn

i=1pixi, then 1

Pn

n

X

i=1

pif(xi)≤ M−x¯

M −mf(m) + x¯−m

M −mf(M)

− 1

Pn(M −m)

n

X

i=1

pi[(M −xi)f(xi−m) + (xi−m)f(M −xi)]. In Section2we give the main result of our paper which is an analogue of Theo- remCfor superquadratic functions. In Section 3we use that result to derive some refinements of the inequalities obtained in [8] which involve functional power means of Mercer’s type and functional quasi-arithmetic means of Mercer’s type.

(8)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page8of 26 Go Back Full Screen

Close

2. Main Results

Theorem 2.1. LetLsatisfy propertiesL1,L2, on a nonempty setE,ϕ : [0,∞)→R be a continuous superquadratic function, and 0 ≤ m < M < ∞. Assume that A is an isotonic linear functional on L with A(1) = 1. If g ∈ L is such that m≤g(t)≤M, for allt∈E, and such thatϕ(g),ϕ(m+M−g),(M−g)ϕ(g−m), (g−m)ϕ(M −g)∈L, then we have

ϕ(m+M −A(g))

≤ A(g)−m

M −m ϕ(m) + M−A(g) M −m ϕ(M)

− 1

M−m[(A(g)−m)ϕ(M −A(g)) + (M −A(g))ϕ(A(g)−m)]

≤ϕ(m) +ϕ(M)−A(ϕ(g)) (2.1)

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))

− 1

M−m[(A(g)−m)ϕ(M −A(g)) + (M −A(g))ϕ(A(g)−m)]. If the functionϕis subquadratic, then all the inequalities above are reversed.

Proof. From Lemma A for n = 2, as well as from Theorem F, we get that for 0≤m ≤t≤M,

(2.2) ϕ(t)≤ M −t

M −mϕ(m) + t−m

M −mϕ(M)

− M −t

M −mϕ(t−m)− t−m

M−mϕ(M −t).

(9)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page9of 26 Go Back Full Screen

Close

ReplacingtwithM +m−tin (2.2) it follows that ϕ(M +m−t)≤ t−m

M −mϕ(m) + M −t M −mϕ(M)

− t−m

M −mϕ(M −t)− M−t

M −mϕ(t−m)

=ϕ(m) +ϕ(M)−

t−m

M −mϕ(M) + M−t M −mϕ(m)

− t−m

M −mϕ(M −t)− M−t

M −mϕ(t−m).

Sincem≤g(t)≤M for allt∈E,it follows thatm≤A(g)≤M and we have (2.3) ϕ(m+M −A(g))

≤ϕ(m) +ϕ(M)−

A(g)−m

M −m ϕ(M) + M −A(g) M −m ϕ(m)

− A(g)−m

M −m ϕ(M −A(g))− M −A(g)

M −m ϕ(A(g)−m).

On the other hand, sincem≤g(t)≤M for allt ∈Eit follows that ϕ(g(t))≤ M −g(t)

M−m ϕ(m) + g(t)−m M −m ϕ(M)

− M −g(t)

M −m ϕ(g(t)−m)− g(t)−m

M −m ϕ(M −g(t)).

(10)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page10of 26 Go Back Full Screen

Close

Using functional calculus we have (2.4) A(ϕ(g))≤ M −A(g)

M −m ϕ(m) + A(g)−m

M −m ϕ(M)− 1

M −mA((M −g(t)ϕ(g(t)−m))

− 1

M −mA((g(t)−m)ϕ(M −g(t))). Using inequalities (2.3) and (2.4), we obtain the desired inequality (2.1).

The last statement follows immediately from the fact that if ϕ is subquadratic then−ϕis a superquadratic function.

Remark 1. If a functionϕ is superquadratic and nonnegative, then it is convex [1, Lema 2.2]. Hence, in this case inequality(2.1)is a refinement of inequality(1.1).

On the other hand, we can get one more inequality in (2.1) if we use a result of S. Bani´c and S. Varos˘anec [5] on Jessen’s inequality for superquadratic functions:

Theorem 2.2 ([5, Theorem 8, Remark 1]). Let Lsatisfy properties L1, L2, on a nonempty setE, and letϕ : [0,∞) → Rbe a continuous superquadratic function.

Assume that A is an isotonic linear functional on L with A(1) = 1. If f ∈ L is nonnegative and such thatϕ(f),ϕ(|f −A(f)|)∈L, then we have

(2.5) ϕ(A(f))≤A(ϕ(f))−A(ϕ(|f−A(f)|)).

If the functionϕis subquadratic, then the inequality above is reversed.

Using Theorem 2.2 and some basic properties of superquadratic functions we prove the next theorem.

(11)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page11of 26 Go Back Full Screen

Close

Theorem 2.3. Let L satisfy properties L1, L2, on a nonempty set E, and let ϕ : [0,∞) → Rbe a continuous superquadratic function, and let0 ≤ m < M < ∞.

Assume that A is an isotonic linear functional on L with A(1) = 1. If g ∈ L is such that m ≤ g(t) ≤ M, for all t ∈ E, and such that ϕ(g), ϕ(m + M −g), (M−g)ϕ(g−m),(g−m)ϕ(M −g),ϕ(|g−A(g)|)∈L, then we have

ϕ(m+M −A(g))

≤A(ϕ(m+M −g))−A(ϕ(|g−A(g)|)) (2.6)

≤ A(g)−m

M −m ϕ(m) + M −A(g) M−m ϕ(M) (2.7)

− 1

M −mA((g−m)ϕ(M−g) + (M −g)ϕ(g−m))

−A(ϕ(|g−A(g)|))

≤ϕ(m) +ϕ(M)−A(ϕ(g)) (2.8)

− 2

M −mA((g−m)ϕ(M−g) + (M −g)ϕ(g−m))

−A(ϕ(|g−A(g)|)).

If the functionϕis subquadratic, then all the inequalities above are reversed.

Proof. Notice that (m+ M −g) ∈ L. Since m ≤ g(t) ≤ M for all t ∈ E, it follows thatm ≤m+M −g(t)≤M for allt∈E. Applying (2.5) to the function f =m+M −gwe get

ϕ(A(m+M −g))

=ϕ(m+M −A(g))

≤A(ϕ(m+M −g))−A(ϕ(|m+M −g −A(m+M −g)|))

(12)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page12of 26 Go Back Full Screen

Close

=A(ϕ(m+M −g))−A(ϕ(|m+M −g−m−M +A(g)|))

=A(ϕ(m+M −g))−A(ϕ(|g−A(g)|)), which is the inequality (2.6).

From the discrete Jensen’s inequality for superquadratic functions we get for all m≤x≤M,

(2.9) ϕ(x)≤ M−x

M −mϕ(m) + x−m

M −mϕ(M)

− M −x

M −mϕ(x−m)− x−m

M −mϕ(M −x).

Replacingxin (2.9) withm+M −g(t)∈[m, M]for allt∈E, we have ϕ(m+M −g(t))≤ g(t)−m

M−m ϕ(m) + M −g(t) M −m ϕ(M)

− g(t)−m

M −m ϕ(M −g(t))− M −g(t)

M−m ϕ(g(t)−m).

Since A is linear, isotonic and satisfies A(1) = 1, from the above inequality it follows that

(2.10) A(ϕ(m+M −g))≤ A(g)−m

M −m ϕ(m) + M −A(g) M −m ϕ(M)

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m)). Adding−A(ϕ(|g−A(g)|))on both sides of (2.10) we get

(2.11) A(ϕ(m+M −g))−A(ϕ(|g−A(g)|))

≤ A(g)−m

M −m ϕ(m) + M −A(g) M−m ϕ(M)

(13)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page13of 26 Go Back Full Screen

Close

− 1

M −mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|)), which is the inequality (2.7).

The right hand side of (2.11) can be written as follows (2.12) ϕ(m) +ϕ(M)− M −A(g)

M −m ϕ(m)− A(g)−m M −m ϕ(M)

− 1

M −mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|)).

On the other hand, replacingx, in (2.9), withg(t)∈[m, M], for allt∈E, we get (2.13) ϕ(g(t))≤ M −g(t)

M −m ϕ(m) + g(t)−m M−m ϕ(M)

− M −g(t)

M −m ϕ(g(t)−m)− g(t)−m

M −m ϕ(M −g(t)).

Applying the functionalAon (2.13) we have (2.14) A(ϕ(g))≤ M −A(g)

M −m ϕ(m) + A(g)−m M −m ϕ(M)

− 1

M−mA((M −g)ϕ(g−m) + (g−m)ϕ(M −g)), The inequality (2.14) can be written as follows

−M −A(g)

M −m ϕ(m)− A(g)−m M−m ϕ(M)

≤ −A(ϕ(g))− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m)).

(14)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page14of 26 Go Back Full Screen

Close

Using (2.12) we get A(g)−m

M −m ϕ(m) + M −A(g) M −m ϕ(M)

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|))

≤ϕ(m) +ϕ(M)−A(ϕ(g))

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|))

=ϕ(m) +ϕ(M)−A(ϕ(g))

− 2

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|)).

Now, it follows that A(g)−m

M −m ϕ(m) + M −A(g) M −m ϕ(M)

− 1

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|))

≤ϕ(m) +ϕ(M)−A(ϕ(g))

− 2

M−mA((g−m)ϕ(M −g) + (M −g)ϕ(g−m))−A(ϕ(|g−A(g)|)), which is the inequality (2.8).

(15)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page15of 26 Go Back Full Screen

Close

3. Applications

Throughout this section we suppose that:

(i) Lis a linear class having propertiesL1,L2on a nonempty setE.

(ii) Ais an isotonic linear functional onLsuch thatA(1) = 1.

(iii) g ∈ L is a function of E to [m, M] (0< m < M <∞) such that all of the following expressions are well defined.

Letψbe a continuous and strictly monotonic function on an intervalI = [m, M], (0< m < M <∞).

For anyr ∈R, a power mean of Mercer’s type functional

Q(r, g) :=





[mr+Mr−A(gr)]1r , r6= 0 mM

exp (A(logg)), r= 0, and a quasi-arithmetic mean functional of Mercer’s type

Mfψ(g, A) = ψ−1(ψ(m) +ψ(M)−A(ψ(g))) are defined in [8] and the following theorems are proved.

Theorem G. Ifr, s∈Randr ≤s, then

Q(r, g)≤Q(s, g).

(16)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page16of 26 Go Back Full Screen

Close

Theorem H.

(i) If eitherχ◦ψ−1 is convex andχis strictly increasing, orχ◦ψ−1 is concave andχis strictly decreasing, then

(3.1) Mfψ(g, A)≤Mfχ(g, A).

(ii) If eitherχ◦ψ−1 is concave andχis strictly increasing, orχ◦ψ−1 is convex andχis strictly decreasing, then the inequality (3.1) is reversed.

Applying the inequality (2.1) to the adequate superquadratic functions we shall give some refinements of the inequalities in TheoremsGandH. To do this, we will define following functions.

♦(m, M, r, s, g, A) = 1

Mr−mrA (Mr−gr)(gr−mr)sr

+ 1

Mr−mrA (gr−mr)(Mr−gr)sr

+ 1

Mr−mr (A(gr)−mr) (Mr−A(gr))sr

+ 1

Mr−mr (Mr−A(gr)) (A(gr)−mr)sr . and

♦(m, M, ψ, χ, g, A)

= 1

ψ(M)−ψ(m)A (ψ(M)−ψ(g))χ ψ−1(ψ(g)−ψ(m)))

+ 1

ψ(M)−ψ(m)A (ψ(g)−ψ(m))χ ψ−1(ψ(M)−ψ(g))

(17)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page17of 26 Go Back Full Screen

Close

+ 1

ψ(M)−ψ(m)(A(ψ(g))−ψ(m))χ ψ−1(ψ(M)−A(ψ(g)))

+ 1

ψ(M)−ψ(m)(ψ(M)−A(ψ(g)))χ ψ−1(A(ψ(g))−ψ(m)) . Now, the following theorems are valid.

Theorem 3.1. Letr, s∈R. (i) If0<2r≤s, then

(3.2) Q(r, g)≤[(Q(s, g))s− ♦(m, M, r, s, g, A)]1s . (ii) If2r ≤s <0,then for(Q(s, g))s−♦(M, m, r, s, g, A)>0

(3.3) Q(r, g)≤[(Q(s, g))s− ♦(M, m, r, s, g, A)]1s ,

where we used♦(M, m, r, s, g, A)to denote the new function derived from the function♦(m, M, r, s, g, A)by changing the places ofmandM.

(iii) If 0 < s ≤ 2r, then for (Q(s, g))s − ♦(M, m, r, s, g, A) > 0 the reverse inequality (3.2) holds.

(iv) Ifs≤2r <0, then the reversed inequality (3.3) holds.

Proof.

(i) It is given that

0< m≤g ≤M <∞.

Since0<2r≤s,it follows that

0< mr ≤gr ≤Mr <∞.

(18)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page18of 26 Go Back Full Screen

Close

Applying Theorem2.1, or more precisely inequality (2.1) to the superquadratic functionϕ(t) =tsr (note that rs ≥ 2here) and replacingg, mandM withgr, mrandMr, respectively, we have

[mr+Mr−A(gr)]sr + 1

Mr−mr(A(gr)−mr) (Mr−A(gr))rs

+ 1

Mr−mr (Mr−A(gr)) (A(gr)−mr)sr

≤ms+Ms−A(gs)

− 1

Mr−mrA (Mr−gr)(gr−mr)sr

− 1

Mr−mrA (gr−mr)(Mr−gr)sr . i.e.

(3.4) [Q(r, g)]s ≤[Q(s, g)]s− ♦(m, M, r, s, g, A).

Raising both sides of (3.4) to the power 1s >0,we get desired inequality (3.2).

(ii) In this case we have

0< Mr ≤gr ≤mr <∞.

Applying Theorem 2.1 or, more precisely, the reversed inequality (2.1) to the subquadratic function ϕ(t) = tsr (note that now we have 0 < sr ≤ 2) and replacingg,mandM withgr,mrandMr, respectively, we get

[Mr+mr−A(gr)]sr + 1

mr−Mr(A(gr)−Mr) (mr−A(gr))rs

+ 1

mr−Mr (mr−A(gr)) (A(gr)−Mr)sr

(19)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page19of 26 Go Back Full Screen

Close

≥Ms+ms−A(gs)− 1

mr−MrA (mr−gr)(gr−Mr)sr

− 1

mr−MrA (gr−Mr)(mr−gr)sr .

Since2r ≤s <0, raising both sides to the power 1s,it follows that

[Mr+mr−A(gr)]1r ≤[Ms+ms−A(gs)− ♦(M, m, r, s, g, A)]1s , or

Q(r, g)≤[(Q(s, g))s− ♦(M, m, r, s, g, A)]1s .

(iii) In this case we have 0 < sr ≤ 2. Since 0 < mr ≤ gr ≤ Mr < ∞, we can apply Theorem2.1, or more precisely, the reversed inequality (2.1) to the subquadratic functionϕ(t) =tsr. Replacingg,mandM withgr,mr andMr, respectively, it follows that

[mr+Mr−A(gr)]sr

+ 1

Mr−mr(A(gr)−mr) (Mr−A(gr))rs

+ 1

Mr−mr(Mr−A(gr)) (A(gr)−mr)rs

≥ms+Ms−A(gs)

− 1

Mr−mrA (Mr−gr)(gr−mr)rs

− 1

Mr−mrA (gr−mr)(Mr−gr)rs , i.e.

(3.5) [Q(r, g)]s ≥[Q(s, g)]s− ♦(m, M, r, s, g, A).

(20)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page20of 26 Go Back Full Screen

Close

Raising both sides of (3.5) to the power 1s >0we get

Q(r, g)≥[(Q(s, g))s− ♦(m, M, r, s, g, A)]1s .

(iv) Since r < 0,from 0 < m ≤ g ≤ M < ∞it follows that 0 < Mr ≤ gr ≤ mr < ∞. Now, we are applying Theorem 2.1 to the superquadratic function ϕ(t) =trs, because rs ≥2here, and analogous to the previous theorem we get

[Q(r, g)]s ≤[Q(s, g)]s− ♦(M, m, r, s, g, A).

Raising both sides to the power 1s <0it follows that

Q(r, g)≥[(Q(s, g))s− ♦(M, m, r, s, g, A)]1s . Theorem 3.2. Letr, s∈R.

(i) If0<2s≤r, then

(3.6) Q(r, g)≥[(Q(s, g))r+♦(m, M, s, r, g, A)]1r ,

where we used♦(m, M, s, r, g, A)to denote the new function derived from the function♦(m, M, r, s, g, A)by changing the places ofrands.

(ii) If2s ≤r <0, then

(3.7) Q(r, g)≤[(Q(s, g))r+♦(M, m, s, r, g, A)]1r . (iii) If0< r≤2s, then the reversed inequality (3.6) holds.

(iv) Ifr≤2s <0, then the reversed inequality (3.7) holds.

(21)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page21of 26 Go Back Full Screen

Close

Proof.

(i) Applying inequality (2.1) to the superquadratic function ϕ(t) = trs (note that

r

s ≥2here) and replacingg, mandM withgs,msandMs, (0< ms ≤gs ≤ Ms <∞) respectively, we have

[ms+Ms−A(gs)]rs

+ 1

Ms−ms(A(gs)−ms) (Ms−A(gs))rs

+ 1

Ms−ms(Ms−A(gs)) (A(gs)−ms)rs

≥mr+Mr−A(gr)

− 1

Ms−msA (Ms−gs)(gs−ms)rs

− 1

Ms−msA (gs−ms)(Ms−gs)rs , i.e.

[Q(s, g)]r ≤[Q(r, g)]r− ♦(m, M, s, r, g, A).

Raising both sides to the power 1r >0,the inequality (3.6) follows.

(ii) Sinces < 0,we have0 < Ms ≤ gs ≤ ms < ∞so the function♦will be of the form♦(M, m, s, r, g, A). Since0 < rs ≤ 2,we will apply Theorem2.1 to the subquadratic functionϕ(t) =trs and, as in previous case, it follows that

[Q(s, g)]r+♦(M, m, s, r, g, A)≥[Q(r, g)]r. Raising both sides to the power 1r <0,the inequality (3.7) follows.

(22)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page22of 26 Go Back Full Screen

Close

(iii) Since 0 < rs ≤ 2, we will apply Theorem 2.1 to the subquadratic function ϕ(t) =trs and then it follows that

[Q(s, g)]r+♦(m, M, s, r, g, A)≥[Q(r, g)]r. Raising both sides to the power 1r >0,we get

Q(r, g)≤[(Q(s, g))r+♦(m, M, s, r, g, A)]1r .

(iv) Since rs ≥2,we will apply Theorem2.1to the superquadratic functionϕ(t) = trs and use the function♦(M, m, s, r, g, A)instead of♦(m, M, s, r, g, A). Then we get

[Q(s, g)]r+♦(M, m, s, r, g, A)≤[Q(r, g)]r. Raising both sides to the power 1r <0,it follows that

Q(r, g)≥[(Q(s, g))r+♦(M, m, s, r, g, A)]1r .

Remark 2. Notice that some cases in the last theorems have common parts. In some of them we can establish double inequalities. For example, if 0 < r ≤ 2s and 0< s≤2r, then for(Q(s, g))s−♦(M, m, r, s, g, A)>0

[(Q(s, g))r+♦(m, M, s, r, g, A)]1r ≥Q(r, g)≥[(Q(s, g))s−♦(m, M, r, s, g, A)]1s . Theorem 3.3. Letψ ∈C([m, M])be strictly increasing and letχ∈ C([m, M])be strictly monotonic functions.

(i) If eitherχ◦ψ−1 is superquadratic andχis strictly increasing, or χ◦ψ−1 is subquadratic andχis strictly decreasing, then

(3.8) Mfψ(g, A)≤χ−1 χ

Mfχ(g, A)

− ♦(m, M, ψ, χ, g, A) ,

(23)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page23of 26 Go Back Full Screen

Close

(ii) If eitherχ◦ψ−1 is subquadratic andχis strictly increasing orχ◦ψ−1 is su- perquadratic andχis strictly decreasing, then the inequality (3.8) is reversed.

Proof. Suppose thatχ◦ψ−1 is superquadratic. Lettingϕ=χ◦ψ−1in Theorem2.1 and replacingg,mandM withψ(g),ψ(m)andψ(M)respectively, we have

χ ψ−1(ψ(m) +ψ(M)−A(ψ(g)))

+ 1

ψ(M)−ψ(m) (A(ψ(g))−ψ(m))χ ψ−1(ψ(M)−A(ψ(g)))

+ 1

ψ(M)−ψ(m) (ψ(M)−A(ψ(g)))χ ψ−1(A(ψ(g))−ψ(m))

≤χ(m) +χ(M)−A(χ(g))

− 1

ψ(M)−ψ(m)A (ψ(M)−ψ(m))χ ψ−1(ψ(g)−ψ(m))

− 1

ψ(M)−ψ(m)A (ψ(g)−ψ(m))χ ψ−1(ψ(M)−ψ(g)) ,

i.e.,

χ

Mfψ(g, A) (3.9)

≤χ(m) +χ(M)−A(χ(g))− ♦(m, M, ψ, χ, g, A)

≤χ◦χ−1(χ(m) +χ(M)−A(χ(g)))− ♦(m, M, ψ, χ, g, A)

≤χ

Mfχ(g, A)

− ♦(m, M, ψ, χ, g, A).

If χ is strictly increasing, then the inverse function χ−1 is also strictly increasing and inequality (3.9) implies the inequality (3.8). Ifχis strictly decreasing, then the inverse functionχ−1 is also strictly decreasing and in that case the reverse of (3.9)

(24)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page24of 26 Go Back Full Screen

Close

implies (3.8). Analogously, we get the reverse of (3.8) in the cases when χ◦ψ−1 is superquadratic and χ is strictly decreasing, or χ◦ψ−1 is subquadratic and χ is strictly increasing.

Remark 3. If the functionψin Theorem3.3is strictly decreasing, then the inequality (3.8) and its reversal also hold under the same assumptions, but with m and M interchanged.

Remark 4. Obviously, Theorem3.1and Theorem3.2follow from Theorem3.3and Remark3by choosingψ(t) = trandχ(t) =ts, or vice versa.

(25)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page25of 26 Go Back Full Screen

Close

References

[1] S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen’s iInequality, Bull. Math. Soc. Math. Roum., 47 (2004), 3–14.

[2] S. ABRAMOVICH, G. JAMESONANDG. SINNAMON, Inequalities for aver- ages of convex and superquadratic functions, J. Inequal. in Pure & Appl. Math., 5(4) (2004), Art. 91. [ONLINE:http://jipam.vu.edu.au/article.

php?sid=444].

[3] S. BANI ´C, Superquadratic Functions, PhD. Thesis, (2007), Zagreb, (in Croat- ian).

[4] S. BANI ´C, J. PE ˇCARI ´C ANDS. VAROŠANEC, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc., to appear [5] S. BANI ´C AND S. VAROŠANEC, Functional inequalities for superquadratic

functions, submitted for publication.

[6] J. BARI ´C, A. MATKOVI ´CANDJ.E. PE ˇCARI ´C, A variant of Mercer’s operator inequality for superquadratic functions, Scientiae Mathematicae Japonicae.

[7] P.R. BEESACK AND J.E. PE ˇCARI ´C, On the Jessen’s inequality for convex functions, J. Math. Anal., 110 (1985), 536–552.

[8] W.S. CHEUNG, A. MATKOVI ´CANDJ.E. PE ˇCARI ´C, A variant of Jessen’s in- equality and generalized means, J. Inequal. in Pure & Appl. Math., 7(1) (2006), Art. 10. [ONLINE:http://jipam.vu.edu.au/article.php?sid=

623].

(26)

Jessen’s Inequality of Mercer’s Type and Superquadracity

S. Abramovich, J. Bari´c and J. Peˇcari´c

vol. 9, iss. 3, art. 62, 2008

Title Page Contents

JJ II

J I

Page26of 26 Go Back Full Screen

Close

[9] I. GAVREA, Some considerations on the monotonicity property of power mean, J. Inequal. in Pure & Appl. Math., 5(4) (2004), Art. 93. [ONLINE:

http://jipam.vu.edu.au/article.php?sid=448].

[10] B. JESSEN, Bemaerkinger om konvekse Funktioner og Uligheder imellem Middelvaerdier I., Mat.Tidsskrift, B, (1931), 17-28.

[11] A.McD. MERCER, A variant of Jensen’s inequality, J. Inequal. in Pure &

Appl. Math., 4(4) (2003), Art. 73. [ONLINE: http://jipam.vu.edu.

au/article.php?sid=314].

[12] J.E. PE ˇCARI ´C, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc. (1992).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Acknowledgements: The research of the second author was supported by the Croatian Ministry of Science, Education and Sports under the Research Grants 117-1170889-0888.... Cauchy’s

Key words and phrases: Cebyšev type inequalities, Absolutely continuous functions, Cauchy-Schwarz inequality for double integrals, L p spaces, Hölder’s integral inequality..

It follows that the equality holds if and only if the vectors α and β are linearly dependent; or the vector γ is a linear combination of the vector α and β, and xy = 0 but x and y

Key words: Ostrowski’s inequality, Ostrowski-like type inequality, Trapezoid type inequality, Sharp inequality, Mid-point-trapezoid type inequality.. Abstract: Several new

DONG, New generalization of perturbed trapezoid and mid point inequalities and applications, Inter.. LI

Gavrea [2] has obtained the following result which is in connection with Mercer’s variant of Jensen’s inequality [4]:..

Therefore the second refinement is confined only to the specific p given in Theorem B, which means that what we get is a variant of Jensen’s inequality and not of the more

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics