• Nem Talált Eredményt

AN APPLICATION OF HÖLDER’S INEQUALITY FOR CONVOLUTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "AN APPLICATION OF HÖLDER’S INEQUALITY FOR CONVOLUTIONS"

Copied!
14
0
0

Teljes szövegt

(1)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page

Contents

JJ II

J I

Page1of 14 Go Back Full Screen

Close

AN APPLICATION OF HÖLDER’S INEQUALITY FOR CONVOLUTIONS

JUNICHI NISHIWAKI AND SHIGEYOSHI OWA

Department of Mathematics Kinki University

Higashi-Osaka, Osaka 577 - 8502 Japan

EMail:jerjun2002@yahoo.co.jp owa@math.kindai.ac.jp

Received: 30 March, 2009

Accepted: 16 July, 2009

Communicated by: N.E. Cho 2000 AMS Sub. Class.: 30C45.

Key words: Analytic function, Multivalent starlike, Multivalent convex.

Abstract: LetAp(n)be the class of analytic and multivalent functionsf(z)in the open unit diskU. Furthermore, letSp(n, α)andTp(n, α)be the subclasses ofAp(n) consisting of multivalent starlike functionsf(z)of orderαand multivalent con- vex functionsf(z)of order α, respectively. Using the coefficient inequalities forf(z)to be inSp(n, α)andTp(n, α), new subclassesSp(n, α)andTp(n, α) are introduced. Applying the Hölder inequality, some interesting properties of generalizations of convolutions (or Hadamard products) for functionsf(z)in the classesSp(n, α)andTp(n, α)are considered.

(2)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page2of 14 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Convolution Properties for the ClassesSp(n, α)andTp(n, α) 5

(3)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page3of 14 Go Back Full Screen

Close

1. Introduction

LetAp(n)be the class of functionsf(z)of the form

f(z) =zp+

X

k=p+n

akzk

which are analytic in the open unit disk U = {z ∈ C||z| < 1} for some natural numberspandn. LetSp(n, α)be the subclass ofAp(n)consisting of functionsf(z) which satisfy

Re

zf0(z) f(z)

> α (z ∈U)

for someα (0 5 α < p). Also letTp(n, α)be the subclass of Ap(n)consisting of functionsf(z)satisfyingzf0(z)/p∈ Sp(n, α), that is,

Re

1 + zf00(z) f0(z)

> α (z ∈U)

for someα(05α < p). These classes,Ap(n),Sp(n, α)andTp(n, α), were studied by Owa [3]. It is easy to derive the following lemmas, which provide the sufficient conditions for functions f(z) ∈ Ap(n)to be in the classes Sp(n, α)and Tp(n, α), respectively.

Lemma 1.1. Iff(z)∈ Ap(n)satisfies

(1.1)

X

k=p+n

(k−α)|ak|5p−α

for someα(05α < p), thenf(z)∈ Sp(n, α).

(4)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page4of 14 Go Back Full Screen

Close

Lemma 1.2. Iff(z)∈ Ap(n)satisfies

(1.2)

X

k=p+n

k(k−α)|ak|5p(p−α)

for someα(05α < p), thenf(z)∈ Tp(n, α).

Remark 1. We note that Silverman [4] has given Lemma1.1and Lemma1.2in the case ofp = 1andn = 1. Also, Srivastava, Owa and Chatterjea [5] have given the coefficient inequalities in the case ofp= 1.

In view of Lemma1.1 and Lemma1.2, we introduce the subclassSp(n, α)con- sisting of functionsf(z)which satisfy the coefficient inequality (1.1), and the sub- classTp(n, α)consisting of functions f(z)which satisfy the coefficient inequality (1.2).

(5)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page5of 14 Go Back Full Screen

Close

2. Convolution Properties for the Classes S

p

(n, α) and T

p

(n, α)

For functionsfj(z)∈ Ap(n)given by fj(z) =zp+

X

k=p+n

ak,jzk (j = 1,2, . . . , m),

we define

Gm(z) =zp +

X

k=p+n m

Y

j=1

ak,j

! zk

and

Hm(z) =zp+

X

k=p+n m

Y

j=1

apk,jj

!

zk (pj >0).

ThenGm(z)denotes the convolution offj(z) (j = 1,2, . . . , m). Therefore, Hm(z) is the generalization of the convolutions. In the case of pj = 1, we have Gm(z) = Hm(z). The generalization of the convolution was considered by Choi, Kim and Owa [1].

In the present paper, we discuss an application of the Hölder inequality forHm(z) to be in the classesSp(n, α)andTp(n, α).

Forfj(z)∈ Ap(n), the Hölder inequality is given by

X

k=p+n m

Y

j=1

|ak,j|

! 5

m

Y

j=1

X

k=p+n

|ak,j|pj

!pj1 , wherepj >1andPm

j=1 1 pj =1.

Recently, Nishiwaki, Owa and Srivastava [2] have given some results of Hölder- type inequalities for a subclass of uniformly starlike functions.

(6)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page6of 14 Go Back Full Screen

Close

Theorem 2.1. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Sp(n, β) with

β = inf

k=p+n

(

p− (k−p)Qm

j=1(p−αj)pj Qm

j=1(k−αj)pj−Qm

j=1(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

Proof. Forfj(z)∈ Sp(n, αj), Lemma1.1gives us that

X

k=p+n

k−αj p−αj

|ak,j|51 (j = 1,2, . . . , m),

which implies

( X

k=p+n

k−αj p−αj

|ak,j| )qj1

51

withqj >1andPm j=1

1

qj =1. Applying the Hölder inequality, we have:

X

k=p+n

( m Y

j=1

k−αj p−αj

qj1

|ak,j|

1 qj

) 51.

Note that we have to find the largestβsuch that

X

k=p+n

k−β p−β

m Y

j=1

|ak,j|pj

! 51,

that is,

X

k=p+n

k−β p−β

m

Y

j=1

|ak,j|pj

! 5

X

k=p+n

( m Y

j=1

k−αj p−αj

qj1

|ak,j|

1 qj

) .

(7)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page7of 14 Go Back Full Screen

Close

Therefore, we need to find the largestβ such that k−β

p−β m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k−αj p−αj

qj1

|ak,j|

1 qj,

which is equivalent to k−β

p−β

m Y

j=1

|ak,j|pj

1 qj

! 5

m

Y

j=1

k−αj p−αj

qj1

for allk=p+n. Since

m

Y

j=1

k−αj p−αj

pj1

qj |ak,j|pj

1 qj 51

pj− 1 qj =0

, we see that

m

Y

j=1

|ak,j|pj

1

qj 5 1

Qm j=1

k−α

j

p−αj

pj1

qj

.

This implies that

k−β p−β 5

m

Y

j=1

k−αj p−αj

pj

for allk=p+n. Therefore,βshould be β5p− (k−p)Qm

j=1(p−αj)pj Qm

j=1(k−αj)pj −Qm

j=1(p−αj)pj (k=p+n).

This completes the proof of the theorem.

(8)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page8of 14 Go Back Full Screen

Close

Takingpj = 1in Theorem2.1, we obtain

Corollary 2.2. If fj(z) ∈ Sp(n, αj) for each j = 1,2, . . . , m, then Gm(z) ∈ Sp(n, β)with

β =p− nQm

j=1(p−αj) Qm

j=1(p+n−αj)−Qm

j=1(p−αj). Proof. In view of Theorem2.1, we have

β 5 inf

k=p+n

(

p− (k−p)Qm

j=1(p−αj) Qm

j=1(k−αj)−Qm

j=1(p−αj) )

.

Let F(k;m) be the right hand side of the above inequality. Further, let us define G(k;m)by the numerator ofF0(k;m). Whenm= 2,

G(k; 2) =−(p−α1)(p−α2){(k−α1)(k−α2)−(p−α1)(p−α2)}

+ (k−p)(p−α1)(p−α2){(k−α1) + (k−α2)}

= (p−α1)(p−α2)(k−p)2 >0.

SinceF(k; 2)is an increasing function ofk, we see that F(k; 2)=F(p+n; 2)

(2.1)

=p− n(p−α1)(p−α2)

(p+n−α1)(p+n−α2)−(p−α1)(p−α2).

Therefore, the corollary is true form= 2. Let us suppose thatGm−1(z)∈ Sp(n, β) andfm(z)∈ Sp(n, αm), where

β =p− nQm−1

j=1 (p−αj) Qm−1

j=1 (p+n−αj)−Qm−1

j=1 (p−αj).

(9)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page9of 14 Go Back Full Screen

Close

Then replacingα1byβ andα2byαmfrom (2.1), we see that β =p− n(p−β)(p−αm)

(p+n−β)(p+n−αm)−(p−β)(p−αm)

=p− nQm

j=1(p−αj) Qm

j=1(p+n−αj)−Qm

j=1(p−αj).

Therefore, the corollary is true for the integerm. Using mathematical induction, we complete the proof of the corollary.

Takingαj =αin Theorem2.1, we have:

Corollary 2.3. Iffj(z) ∈ Sp(n, α)for allj = 1,2, . . . , m, thenHm(z) ∈ Sp(n, β) with

β =p− n(p−α)s

(p+n−α)s−(p−α)s, where

s =

m

X

j=1

pj =1 + p−α

n , pj = 1 qj

, qj >1 and

m

X

j=1

1 qj =1.

Proof. By means of Theorem2.1, we obtain that

β 5p− (k−p)(p−α)s

(k−α)s−(p−α)s (k =p+n).

Let us defineF(k)by

F(k) =p− (k−p)(p−α)s

(k−α)s−(p−α)s (k =p+n).

(10)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page10of 14 Go Back Full Screen

Close

Then the numerator ofF0(k)can be written as

(p−α)s(k−α)s{s(k−p)−(k−α)}+ (p−α)s.

Sinces=1+p−αn , we easily see that the numerator ofF0(k)is positive fork =p+n.

Therefore, F(k) is increasing for k = p +n. This gives the value of β in the corollary.

We consider the example for Corollary2.3.

Example 2.1. Let us definefj(z)by fj(z) =zp + p−α

p+n−αzp+n+ p−α

p+n+j−αjzp+n+j (||+|j|51) for eachj = 1,2, . . . , m, which is equivalent tofj(z) ∈ Sp(n, α). ThenHm(z) ∈ Sp(n, β)with

β =p− n(p−α)s

(p+n−α)s−(p−α)s. Because, for functions

(2.2) fj(z) = zp+ p−α

p+n−αzp+n+ p−α

p+n+j−αjzp+n+j for eachj = 1,2, . . . , m, we have

X

k=p+n

k−α

p−α|ak|= p+n−α

p−α |||ap+n|+p+n+j−α

p−α |j||ap+n+j|

=||+|j|51

(11)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page11of 14 Go Back Full Screen

Close

from Lemma1.1which impliesfj(z)∈ Sp(n, αj). From (2.2), we see that Hm(z) =zp+

p−α p+n−α

s

zp+n.

ThereforeHm(z)∈ Sp(n, β).

We also derive other results aboutSp andTp.

Theorem 2.4. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Tp(n, β) with

β = inf

k=p+n

(

p− k(k−p)Qm

j=1(p−αj)pj pQm

j=1(k−αj)pj −kQm

j=1(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

Proof. Using the same method as the proof in Theorem 2.1, we have to find the largestβsuch that

k(k−β) p(p−β)

m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k−αj p−αj

1

qj |ak,j|

1 qj,

which implies that

β 5p− k(k−p)Qm

j=1(p−αj)pj pQm

j=1(k−αj)pj −kQm

j=1(p−αj)pj for allk=p+n.

(12)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page12of 14 Go Back Full Screen

Close

Corollary 2.5. If fj(z) ∈ Sp(n, αj) for each j = 1,2, . . . , m, then Gm(z) ∈ Tp(n, β)with

β =p− n(p+n)Qm

j=1(p−αj) pQm

j=1(p+n−αj)−(p+n)Qm

j=1(p−αj).

Theorem 2.6. If fj(z) ∈ Tp(n, αj) for each j = 1,2, . . . , m, then Hm(z) ∈ Tp(n, β)with

β = inf

k=p+n

(

p− k(k−p)Qm

j=1ppj(p−αj)pj pQm

j=1kpj(k−αj)pj−kQm

j=1ppj(p−αj)pj )

,

wherepj = q1j,qj >1andPm j=1

1 qj =1.

Proof. To prove the theorem, we have to find the largestβsuch that k(k−β)

p(p−β)

m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k(k−αj) p(p−αj)

qj1

|ak,j|

1 qj

for allk=p+n.

Corollary 2.7. If fj(z) ∈ Tp(n, αj) for each j = 1,2, . . . , m, then Gm(z) ∈ Tp(n, β)with

β=p− npm−1Qm

j=1(p−αj) (p+n)m−1Qm

j=1(p+n−αj)−pm−1Qm

j=1(p−αj).

(13)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page13of 14 Go Back Full Screen

Close

Theorem 2.8. If fj(z) ∈ Tp(n, αj) for each j = 1,2, . . . , m, then Hm(z) ∈ Sp(n, β)with

β = inf

k=p+n

(

p− (k−p)Qm

j=1ppj(p−αj)pj Qm

j=1kpj(k−αj)pj −Qm

j=1ppj(p−αj)pj )

,

wherepj = q1j,qj >1andPm j=1

1 qj =1.

Proof. We note that, we need to find the largestβsuch that k−β

p−β

m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k(k−αj) p(p−αj)

qj1

|ak,j|qj1

for allk=p+n.

Corollary 2.9. If fj(z) ∈ Tp(n, αj) for each j = 1,2, . . . , m, then Gm(z) ∈ Sp(n, β)with

β =p− npmQm

j=1(p−αj) (p+n)mQm

j=1(p+n−αj)−pmQm

j=1(p−αj).

(14)

Hölder’s Inequality for Convolutions Junichi Nishiwaki and

Shigeyoshi Owa vol. 10, iss. 4, art. 98, 2009

Title Page Contents

JJ II

J I

Page14of 14 Go Back Full Screen

Close

References

[1] J.H. CHOI, Y.C. KIMAND S. OWA, Generalizations of Hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495–501.

[2] J. NISHIWAKI, S. OWA AND H.M. SRIVASTAVA, Convolution and Hölder- type inequalities for a certain class of analytic functions, Math. Inequal. Appl., 11 (2008), 717–727.

[3] S. OWA, On certain classes of p−valent functions with negative coefficients, Simon. Stevin, 59 (1985), 385–402.

[4] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer.

Math. Soc., 51 (1975), 109–116.

[5] H.M. SRIVASTAVA, S. OWA AND S.K. CHATTERJEA, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova, 77 (1987), 115–

124.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: We use a parabolic region to prove certain inequalities for uniformly p-valent functions in the open unit disk D.... Inequalities for p-Valent

RAINA, On certain classes of functions associated with multivalently analytic and multivalently meromorphic functions, Soochow J. Math., 32(3)

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

Abstract: For functions f (z) which are starlike of order α, convex of order α, and λ-spiral- like of order α in the open unit disk U , some interesting sufficient conditions

INAYAT NOOR, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, J. SAIGO

A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX

We introduce a subclass M p (λ, µ, A, B) of p-valent analytic functions and de- rive certain properties of functions belonging to this class by using the tech- niques of

We introduce a subclass M p (λ, µ, A, B) of p-valent analytic functions and derive certain properties of functions belonging to this class by using the techniques of