• Nem Talált Eredményt

LetAp(n)be the class of analytic and multivalent functionsf(z)in the open unit diskU

N/A
N/A
Protected

Academic year: 2022

Ossza meg "LetAp(n)be the class of analytic and multivalent functionsf(z)in the open unit diskU"

Copied!
7
0
0

Teljes szövegt

(1)

AN APPLICATION OF HÖLDER’S INEQUALITY FOR CONVOLUTIONS

JUNICHI NISHIWAKI AND SHIGEYOSHI OWA DEPARTMENT OFMATHEMATICS

KINKIUNIVERSITY

HIGASHI-OSAKA, OSAKA577 - 8502 JAPAN

jerjun2002@yahoo.co.jp owa@math.kindai.ac.jp

Received 30 March, 2009; accepted 16 July, 2009 Communicated by N.E. Cho

ABSTRACT. LetAp(n)be the class of analytic and multivalent functionsf(z)in the open unit diskU. Furthermore, letSp(n, α)andTp(n, α)be the subclasses ofAp(n)consisting of mul- tivalent starlike functionsf(z)of order αand multivalent convex functionsf(z)of order α, respectively. Using the coefficient inequalities forf(z)to be inSp(n, α)andTp(n, α), new sub- classesSp(n, α)andTp(n, α)are introduced. Applying the Hölder inequality, some interesting properties of generalizations of convolutions (or Hadamard products) for functionsf(z)in the classesSp(n, α)andTp(n, α)are considered.

Key words and phrases: Analytic function, Multivalent starlike, Multivalent convex.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION

LetAp(n)be the class of functionsf(z)of the form f(z) =zp+

X

k=p+n

akzk

which are analytic in the open unit diskU ={z ∈ C||z| <1}for some natural numberspand n. LetSp(n, α)be the subclass ofAp(n)consisting of functionsf(z)which satisfy

Re

zf0(z) f(z)

> α (z ∈U)

for some α (0 5 α < p). Also let Tp(n, α)be the subclass of Ap(n) consisting of functions f(z)satisfyingzf0(z)/p∈ Sp(n, α), that is,

Re

1 + zf00(z) f0(z)

> α (z ∈U)

088-09

(2)

for someα(05α < p). These classes,Ap(n),Sp(n, α)andTp(n, α), were studied by Owa [3].

It is easy to derive the following lemmas, which provide the sufficient conditions for functions f(z)∈ Ap(n)to be in the classesSp(n, α)andTp(n, α), respectively.

Lemma 1.1. Iff(z)∈ Ap(n)satisfies (1.1)

X

k=p+n

(k−α)|ak|5p−α for someα(05α < p), thenf(z)∈ Sp(n, α).

Lemma 1.2. Iff(z)∈ Ap(n)satisfies (1.2)

X

k=p+n

k(k−α)|ak|5p(p−α)

for someα(05α < p), thenf(z)∈ Tp(n, α).

Remark 1. We note that Silverman [4] has given Lemma 1.1 and Lemma 1.2 in the case ofp= 1andn = 1. Also, Srivastava, Owa and Chatterjea [5] have given the coefficient inequalities in the case ofp= 1.

In view of Lemma 1.1 and Lemma 1.2, we introduce the subclassSp(n, α)consisting of func- tionsf(z)which satisfy the coefficient inequality (1.1), and the subclassTp(n, α)consisting of functionsf(z)which satisfy the coefficient inequality (1.2).

2. CONVOLUTION PROPERTIES FOR THECLASSESSp(n, α)ANDTp(n, α) For functionsfj(z)∈ Ap(n)given by

fj(z) =zp+

X

k=p+n

ak,jzk (j = 1,2, . . . , m), we define

Gm(z) =zp+

X

k=p+n m

Y

j=1

ak,j

! zk

and

Hm(z) =zp+

X

k=p+n m

Y

j=1

apk,jj

!

zk (pj >0).

Then Gm(z) denotes the convolution of fj(z) (j = 1,2, . . . , m). Therefore, Hm(z) is the generalization of the convolutions. In the case of pj = 1, we have Gm(z) = Hm(z). The generalization of the convolution was considered by Choi, Kim and Owa [1].

In the present paper, we discuss an application of the Hölder inequality forHm(z) to be in the classesSp(n, α)andTp(n, α).

Forfj(z)∈ Ap(n), the Hölder inequality is given by

X

k=p+n m

Y

j=1

|ak,j|

! 5

m

Y

j=1

X

k=p+n

|ak,j|pj

!pj1 , wherepj >1andPm

j=1 1 pj =1.

Recently, Nishiwaki, Owa and Srivastava [2] have given some results of Hölder-type inequal- ities for a subclass of uniformly starlike functions.

(3)

Theorem 2.1. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Sp(n, β)with β = inf

k=p+n

(

p− (k−p)Qm

j=1(p−αj)pj Qm

j=1(k−αj)pj−Qm

j=1(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

Proof. Forfj(z)∈ Sp(n, αj), Lemma 1.1 gives us that

X

k=p+n

k−αj

p−αj

|ak,j|51 (j = 1,2, . . . , m), which implies

( X

k=p+n

k−αj p−αj

|ak,j| )qj1

51 withqj >1andPm

j=1 1

qj =1. Applying the Hölder inequality, we have:

X

k=p+n

( m Y

j=1

k−αj p−αj

qj1

|ak,j|

1 qj

) 51.

Note that we have to find the largestβsuch that

X

k=p+n

k−β p−β

m Y

j=1

|ak,j|pj

! 51, that is,

X

k=p+n

k−β p−β

m Y

j=1

|ak,j|pj

! 5

X

k=p+n

( m Y

j=1

k−αj

p−αj qj1

|ak,j|

1 qj

) .

Therefore, we need to find the largestβsuch that k−β

p−β m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k−αj p−αj

qj1

|ak,j|

1 qj,

which is equivalent to

k−β p−β

m Y

j=1

|ak,j|pjqj1

! 5

m

Y

j=1

k−αj p−αj

qj1

for allk =p+n. Since

m

Y

j=1

k−αj p−αj

pj1

qj |ak,j|pj

1 qj 51

pj− 1 qj =0

, we see that

m

Y

j=1

|ak,j|pj

1

qj 5 1

Qm j=1

k−α

j

p−αj

pj1

qj

.

This implies that

k−β p−β 5

m

Y

j=1

k−αj p−αj

pj

(4)

for allk =p+n. Therefore,βshould be β 5p− (k−p)Qm

j=1(p−αj)pj Qm

j=1(k−αj)pj −Qm

j=1(p−αj)pj (k=p+n).

This completes the proof of the theorem.

Takingpj = 1in Theorem 2.1, we obtain

Corollary 2.2. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenGm(z)∈ Sp(n, β)with

β =p− nQm

j=1(p−αj) Qm

j=1(p+n−αj)−Qm

j=1(p−αj). Proof. In view of Theorem 2.1, we have

β 5 inf

k=p+n

(

p− (k−p)Qm

j=1(p−αj) Qm

j=1(k−αj)−Qm

j=1(p−αj) )

.

LetF(k;m)be the right hand side of the above inequality. Further, let us defineG(k;m)by the numerator ofF0(k;m). Whenm= 2,

G(k; 2) =−(p−α1)(p−α2){(k−α1)(k−α2)−(p−α1)(p−α2)}

+ (k−p)(p−α1)(p−α2){(k−α1) + (k−α2)}

= (p−α1)(p−α2)(k−p)2 >0.

SinceF(k; 2)is an increasing function ofk, we see that F(k; 2)=F(p+n; 2)

(2.1)

=p− n(p−α1)(p−α2)

(p+n−α1)(p+n−α2)−(p−α1)(p−α2).

Therefore, the corollary is true for m = 2. Let us suppose that Gm−1(z) ∈ Sp(n, β) and fm(z)∈ Sp(n, αm), where

β =p− nQm−1

j=1 (p−αj) Qm−1

j=1 (p+n−αj)−Qm−1

j=1 (p−αj). Then replacingα1byβandα2byαmfrom (2.1), we see that

β =p− n(p−β)(p−αm)

(p+n−β)(p+n−αm)−(p−β)(p−αm)

=p− nQm

j=1(p−αj) Qm

j=1(p+n−αj)−Qm

j=1(p−αj).

Therefore, the corollary is true for the integer m. Using mathematical induction, we complete

the proof of the corollary.

Takingαj =αin Theorem 2.1, we have:

Corollary 2.3. Iffj(z)∈ Sp(n, α)for allj = 1,2, . . . , m, thenHm(z)∈ Sp(n, β)with β =p− n(p−α)s

(p+n−α)s−(p−α)s,

(5)

where

s=

m

X

j=1

pj =1 + p−α

n , pj = 1

qj, qj >1 and

m

X

j=1

1 qj =1.

Proof. By means of Theorem 2.1, we obtain that β 5p− (k−p)(p−α)s

(k−α)s−(p−α)s (k =p+n).

Let us defineF(k)by

F(k) = p− (k−p)(p−α)s

(k−α)s−(p−α)s (k =p+n).

Then the numerator ofF0(k)can be written as

(p−α)s(k−α)s{s(k−p)−(k−α)}+ (p−α)s.

Since s = 1 + p−αn , we easily see that the numerator of F0(k) is positive for k = p +n.

Therefore,F(k)is increasing fork =p+n. This gives the value ofβin the corollary.

We consider the example for Corollary 2.3.

Example 2.1. Let us definefj(z)by fj(z) =zp+ p−α

p+n−αzp+n+ p−α

p+n+j−αjzp+n+j (||+|j|51)

for eachj = 1,2, . . . , m, which is equivalent to fj(z) ∈ Sp(n, α). ThenHm(z) ∈ Sp(n, β) with

β =p− n(p−α)s

(p+n−α)s−(p−α)s. Because, for functions

(2.2) fj(z) = zp+ p−α

p+n−αzp+n+ p−α

p+n+j−αjzp+n+j for eachj = 1,2, . . . , m, we have

X

k=p+n

k−α

p−α|ak|= p+n−α

p−α |||ap+n|+p+n+j−α

p−α |j||ap+n+j|

=||+|j|51

from Lemma 1.1 which impliesfj(z)∈ Sp(n, αj). From (2.2), we see that Hm(z) =zp+

p−α p+n−α

s

zp+n.

ThereforeHm(z)∈ Sp(n, β).

We also derive other results aboutSp andTp.

Theorem 2.4. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Tp(n, β)with β = inf

k=p+n

(

p− k(k−p)Qm

j=1(p−αj)pj pQm

j=1(k−αj)pj −kQm

j=1(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

(6)

Proof. Using the same method as the proof in Theorem 2.1, we have to find the largestβsuch that

k(k−β) p(p−β)

m Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k−αj p−αj

qj1

|ak,j|qj1,

which implies that

β 5p− k(k−p)Qm

j=1(p−αj)pj pQm

j=1(k−αj)pj −kQm

j=1(p−αj)pj

for allk =p+n.

Corollary 2.5. Iffj(z)∈ Sp(n, αj)for eachj = 1,2, . . . , m, thenGm(z)∈ Tp(n, β)with β =p− n(p+n)Qm

j=1(p−αj) pQm

j=1(p+n−αj)−(p+n)Qm

j=1(p−αj).

Theorem 2.6. Iffj(z)∈ Tp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Tp(n, β)with

β = inf

k=p+n

(

p− k(k−p)Qm

j=1ppj(p−αj)pj pQm

j=1kpj(k−αj)pj−kQm

j=1ppj(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

Proof. To prove the theorem, we have to find the largestβsuch that k(k−β)

p(p−β)

m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k(k−αj) p(p−αj)

qj1

|ak,j|

1 qj

for allk =p+n.

Corollary 2.7. Iffj(z)∈ Tp(n, αj)for eachj = 1,2, . . . , m, thenGm(z)∈ Tp(n, β)with

β=p− npm−1Qm

j=1(p−αj) (p+n)m−1Qm

j=1(p+n−αj)−pm−1Qm

j=1(p−αj).

Theorem 2.8. Iffj(z)∈ Tp(n, αj)for eachj = 1,2, . . . , m, thenHm(z)∈ Sp(n, β)with

β = inf

k=p+n

(

p− (k−p)Qm

j=1ppj(p−αj)pj Qm

j=1kpj(k−αj)pj −Qm

j=1ppj(p−αj)pj )

, wherepj = q1j,qj >1andPm

j=1 1 qj =1.

Proof. We note that, we need to find the largestβsuch that k−β

p−β

m

Y

j=1

|ak,j|pj

! 5

m

Y

j=1

k(k−αj) p(p−αj)

qj1

|ak,j|qj1

for allk =p+n.

Corollary 2.9. Iffj(z)∈ Tp(n, αj)for eachj = 1,2, . . . , m, thenGm(z)∈ Sp(n, β)with

β =p− npmQm

j=1(p−αj) (p+n)mQm

j=1(p+n−αj)−pmQm

j=1(p−αj).

(7)

REFERENCES

[1] J.H. CHOI, Y.C. KIMANDS. OWA, Generalizations of Hadamard products of functions with nega- tive coefficients, J. Math. Anal. Appl., 199 (1996), 495–501.

[2] J. NISHIWAKI, S. OWAANDH.M. SRIVASTAVA, Convolution and Hölder-type inequalities for a certain class of analytic functions, Math. Inequal. Appl., 11 (2008), 717–727.

[3] S. OWA, On certain classes of p−valent functions with negative coefficients, Simon. Stevin, 59 (1985), 385–402.

[4] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109–116.

[5] H.M. SRIVASTAVA, S. OWAANDS.K. CHATTERJEA, A note on certain classes of starlike func- tions, Rend. Sem. Mat. Univ. Padova, 77 (1987), 115–124.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: A class of univalent functions which provides an interesting transition from star- like functions to convex functions is defined by making use of the Ruscheweyh

Abstract: We use a parabolic region to prove certain inequalities for uniformly p-valent functions in the open unit disk D.... Inequalities for p-Valent

RAINA, On certain classes of functions associated with multivalently analytic and multivalently meromorphic functions, Soochow J. Math., 32(3)

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

We introduce a subclass M p (λ, µ, A, B) of p-valent analytic functions and de- rive certain properties of functions belonging to this class by using the tech- niques of

We introduce a subclass M p (λ, µ, A, B) of p-valent analytic functions and derive certain properties of functions belonging to this class by using the techniques of

SUBRAMANIAN, A class of multivalent functions with negative coefficients defined by convolution, preprint..

In this paper, we introduce a new class of functions which are analytic and univalent with negative coefficients defined by using a certain fractional cal- culus and fractional