• Nem Talált Eredményt

DIFFERENTIAL SUBORDINATION RESULTS FOR NEW CLASSES OF THE FAMILY E(Φ, Ψ)

N/A
N/A
Protected

Academic year: 2022

Ossza meg "DIFFERENTIAL SUBORDINATION RESULTS FOR NEW CLASSES OF THE FAMILY E(Φ, Ψ)"

Copied!
9
0
0

Teljes szövegt

(1)

DIFFERENTIAL SUBORDINATION RESULTS FOR NEW CLASSES OF THE FAMILY E(Φ,Ψ)

RABHA W. IBRAHIM AND MASLINA DARUS SCHOOL OFMATHEMATICALSCIENCES

FACULTY OFSCIENCE ANDTECHNOLOGY

UNIVERSITIKEBANGSAANMALAYSIA

BANGI43600, SELANGORDARULEHSAN

MALAYSIA

rabhaibrahim@yahoo.com maslina@ukm.my

Received 05 July, 2008; accepted 02 December, 2008 Communicated by S.S. Dragomir

ABSTRACT. We define new classes of the familyE(Φ,Ψ),in a unit diskU :={z C,|z|<

1},as follows: for analytic functionsF(z),Φ(z)andΨ(z)so that<{FF(z)∗Φ(z)(z)∗Ψ(z)} > 0, z U, F(z)Ψ(z)6= 0where the operatordenotes the convolution or Hadamard product. More- over, we establish some subordination results for these new classes.

Key words and phrases: Fractional calculus; Subordination; Hadamard product.

2000 Mathematics Subject Classification. 34G10, 26A33, 30C45.

1. INTRODUCTION AND PRELIMINARIES.

LetB+α be the class of all analytic functionsF(z)in the open diskU :={z ∈ C,|z| < 1}, of the form

F(z) = 1 +

X

n=1

anzn+α−1, 0< α≤1,

satisfyingF(0) = 1.And letBα be the class of all analytic functionsF(z)in the open disk U of the form

F(z) = 1−

X

n=1

anzn+α−1, 0< α≤1, an≥0; n = 1,2,3, . . . ,

satisfyingF(0) = 1.With a view to recalling the principle of subordination between analytic functions, let the functionsf andg be analytic inU.Then we say that the functionf is subor- dinate togif there exists a Schwarz functionw(z),analytic inU such that

f(z) =g(w(z)), z ∈U.

The work presented here was supported by SAGA: STGL-012-2006, Academy of Sciences, Malaysia.

188-08

(2)

We denote this subordination byf ≺g orf(z)≺g(z), z∈U.If the functiongis univalent in U the above subordination is equivalent to

f(0) =g(0) and f(U)⊂g(U).

Letφ :C3 ×U →Cand lethbe univalent inU.Assume thatp, φare analytic and univalent inU andpsatisfies the differential superordination

(1.1) h(z)≺φ(p(z)), zp0(z), z2p00(z);z), thenpis called a solution of the differential superordination.

An analytic functionqis called a subordinant ifq ≺pfor allpsatisfying (1.1). A univalent functionqsuch thatp≺qfor all subordinantspof (1.1) is said to be the best subordinant.

LetB+be the class of analytic functions of the form f(z) = 1 +

X

n=1

anzn, an ≥0.

Given two functionsf, g ∈ B+, f(z) = 1 +

X

n=1

anzn and g(z) = 1 +

X

n=1

bnzn their convolution or Hadamard productf(z)∗g(z)is defined by

f(z)∗g(z) = 1 +

X

n=1

anbnzn, an≥0, bn≥0, z ∈U.

Juneja et al. [1] define the familyE(Φ,Ψ),so that

<

f(z)∗Φ(z) f(z)∗Ψ(z)

>0, z ∈U where

Φ(z) =z+

X

n=2

ϕnzn and Ψ(z) =z+

X

n=2

ψnzn

are analytic inU with the conditionsϕn≥0, ψn ≥0, ϕn≥ψnforn ≥2andf(z)∗Ψ(z)6= 0.

Definition 1.1. LetF(z) ∈ Bα+,we define the familyEα+(Φ,Ψ)so that

(1.2) <

F(z)∗Φ(z) F(z)∗Ψ(z)

>0, z ∈U, where

Φ(z) = 1 +

X

n=1

ϕnzn+α−1 and Ψ(z) = 1 +

X

n=1

ψnzn+α−1

are analytic inU under the conditionsϕn ≥0, ψn≥0, ϕn ≥ψnforn ≥1andF(z)∗Ψ(z)6= 0.

Definition 1.2. LettingF(z) ∈ Bα,we define the familyEα(Φ,Ψ)which satisfies (1.2) where Φ(z) = 1−

X

n=1

ϕnzn+α−1 and Ψ(z) = 1−

X

n=1

ψnzn+α−1

are analytic inU under the conditionsϕn ≥0, ψn≥0, ϕn ≥ψnforn ≥1andF(z)∗Ψ(z)6= 0.

(3)

In the present paper, we establish some sufficient conditions for functions F ∈ Bα+ and F ∈ Bαto satisfy

(1.3) F(z)∗Φ(z)

F(z)∗Ψ(z) ≺q(z), z ∈U,

whereq(z)is a given univalent function inUsuch thatq(0) = 1.Moreover, we give applications for these results in fractional calculus. We shall need the following known results.

Lemma 1.1 ([2]). Letq(z)be convex in the unit diskU withq(0) = 1and<{q} > 12, z ∈ U.

If0≤µ <1, pis an analytic function inU withp(0) = 1and if (1−µ)p2(z) + (2µ−1)p(z)−µ+ (1−µ)zp0(z)

≺(1−µ)q2(z) + (2µ−1)q(z)−µ+ (1−µ)zq0(z), thenp(z)≺q(z)andq(z)is the best dominant.

Lemma 1.2 ([3]). Letq(z)be univalent in the unit diskU and letθ(z)be analytic in a domain Dcontainingq(U).Ifzq0(z)θ(q)is starlike inU,and

zp0(z)θ(p(z))≺zq0(z)θ(q(z)) thenp(z)≺q(z)andq(z)is the best dominant.

2. MAINRESULTS

In this section, we verify some sufficient conditions of subordination for analytic functions in the classesB+α andBα.

Theorem 2.1. Let the function q(z) be convex in the unit disk U such that q(0) = 1 and

<{q}> 12.IfF ∈ Bα+and FF(z)∗Φ(z)(z)∗Ψ(z) an analytic function inU satisfies the subordination

(1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

2

+ (2µ−1)

F(z)∗Φ(z) F(z)∗Ψ(z)

−µ + (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺(1−µ)q2(z) + (2µ−1)q(z)−µ+ (1−µ)zq0(z), then

F(z)∗Φ(z)

F(z)∗Ψ(z) ≺q(z) andq(z)is the best dominant.

Proof. Let the functionp(z)be defined by

p(z) := F(z)∗Φ(z)

F(z)∗Ψ(z), z ∈U.

(4)

It is clear thatp(0) = 1.Then straightforward computation gives us (1−µ)p2(z) + (2µ−1)p(z)−µ+ (1−µ)zp0(z)

= (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

2

+ (2µ−1)

F(z)∗Φ(z) F(z)∗Ψ(z)

−µ + (1−µ)z

F(z)∗Φ(z) F(z)∗Ψ(z)

0

= (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

2

+ (2µ−1)

F(z)∗Φ(z) F(z)∗Ψ(z)

−µ + (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺(1−µ)q2(z) + (2µ−1)q(z)−µ+ (1−µ)zq0(z).

By the assumption of the theorem we have that the assertion of the theorem follows by an

application of Lemma 1.1.

Corollary 2.2. IfF ∈ Bα+andFF(z)∗Φ(z)(z)∗Ψ(z)is an analytic function inU satisfying the subordination

(1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

2

+ (2µ−1)

F(z)∗Φ(z) F(z)∗Ψ(z)

−µ + (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺(1−µ)

1 +Az 1 +Bz

2

+ (2µ−1)

1 +Az 1 +Bz

−µ+ (1−µ)

1 +Az 1 +Bz

(A−B)z (1 +Az)(1 +Bz), then

F(z)∗Φ(z) F(z)∗Ψ(z) ≺

1 +Az 1 +Bz

, −1≤B < A≤1

and(1+Az1+Bz)is the best dominant.

Proof. Let the functionq(z)be defined by q(z) :=

1 +Az 1 +Bz

, z ∈U.

It is clear thatq(0) = 1and<{q}> 12 for arbitraryA, B, z ∈U,then in view of Theorem 2.1

we obtain the result.

(5)

Corollary 2.3. IfF ∈ Bα+andFF(z)∗Φ(z)(z)∗Ψ(z)is an analytic function inU satisfying the subordination

(1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

2

+ (2µ−1)

F(z)∗Φ(z) F(z)∗Ψ(z)

−µ + (1−µ)

F(z)∗Φ(z) F(z)∗Ψ(z)

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺(1−µ)

1 +z 1−z

2

+ (2µ−1)

1 +z 1−z

−µ + (1−µ)

1 +z 1−z

2z 1−z2

, then

F(z)∗Φ(z) F(z)∗Ψ(z) ≺

1 +z 1−z

, and(1+z1−z)is the best dominant.

Define the functionϕα(a, c;z)by ϕα(a, c;z) := 1 +

X

n=1

(a)n

(c)nzn+α−1, (z ∈U; a ∈R, c ∈R\{0,−1,−2, . . .}), where(a)nis the Pochhammer symbol defined by

(a)n := Γ(a+n) Γ(a) =

1, (n= 0);

a(a+ 1)(a+ 2)· · ·(a+n−1), (n∈N).

Corresponding to the functionϕα(a, c;z),define a linear operatorLα(a, c)by Lα(a, c)F(z) := ϕα(a, c;z)∗F(z), F(z) ∈ Bα+ or equivalently by

Lα(a, c)F(z) := 1 +

X

n=1

(a)n

(c)nanzn+α−1. For details see [4]. Hence we have the following result:

Corollary 2.4. Let the function q(z) be convex in the unit disk U such that q(0) = 1 and

<{q}> 12.If LLα(a,c)Φ(z)

α(a,c)Ψ(z) is an analytic function inU satisfying the subordination (1−µ)

Lα(a, c)Φ(z) Lα(a, c)Ψ(z)

2

+ (2µ−1)

Lα(a, c)Φ(z) Lα(a, c)Ψ(z)

−µ + (1−µ)

Lα(a, c)Φ(z) Lα(a, c)Ψ(z)

z(Lα(a, c)Φ(z))0

Lα(a, c)Φ(z) − z(Lα(a, c)Ψ(z))0 Lα(a, c)Ψ(z)

≺(1−µ)q2(z) + (2µ−1)q(z)−µ+ (1−µ)zq0(z), then

Lα(a, c)Φ(z)

Lα(a, c)Ψ(z) ≺q(z) andq(z)is the best dominant.

(6)

Theorem 2.5. Let the function q(z)be univalent in the unit disk U such thatq0(z) 6= 0 and

zq0(z)

q(z) is starlike inU.IfF ∈ Bαsatisfies the subordination a

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺azq0(z) q(z) ,

then F(z)∗Φ(z)

F(z)∗Ψ(z) ≺q(z), z ∈U, andq(z)is the best dominant.

Proof. Let the functionp(z)be defined by p(z) :=

F(z)∗Φ(z) F(z)∗Ψ(z)

, z ∈U.

By setting

θ(ω) := a

ω, a6= 0,

it can easily observed thatθ(ω)is analytic inC− {0}.Then we obtain azp0(z)

p(z) =a

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺azq0(z) q(z) .

By the assumption of the theorem we have that the assertion of the theorem follows by an

application of Lemma 1.2.

Corollary 2.6. IfF ∈ Bαsatisfies the subordination a

z(F(z)∗Φ(z))0

F(z)∗Φ(z) −z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺a (A−B)z (1 +Az)(1 +Bz)

then F(z)∗Φ(z)

F(z)∗Ψ(z) ≺

1 +Az 1 +Bz

, −1≤B < A≤1 and(1+Az1+Bz)is the best dominant.

Corollary 2.7. IfF ∈ Bαsatisfies the subordination a

z(F(z)∗Φ(z))0

F(z)∗Φ(z) − z(F(z)∗Ψ(z))0 F(z)∗Ψ(z)

≺a 2z

1−z2

, then

F(z)∗Φ(z) F(z)∗Ψ(z) ≺

1 +z 1−z

, and(1+z1−z)is the best dominant.

Define the functionφα(a, c;z)by φα(a, c;z) := 1−

X

n=1

(a)n (c)n

zn+α−1, (z ∈U; a ∈R, c ∈R\{0,−1,−2, . . .}), where (a)n is the Pochhammer symbol. Corresponding to the function φα(a, c;z), define a linear operatorLα(a, c)by

Lα(a, c)F(z) :=φα(a, c;z)∗F(z), F(z) ∈ Bα

(7)

or equivalently by

Lα(a, c)F(z) := 1−

X

n=1

(a)n

(c)nanzn+α−1. Hence we obtain the next result.

Corollary 2.8. Let the function q(z) be univalent in the unit disk U such that q0(z) 6= 0and

zq0(z)

q(z) is starlike inU.IfF ∈ Bαsatisfies the subordination a

z(Lα(a, c)Φ(z))0

Lα(a, c)Φ(z) − z(Lα(a, c)Ψ(z))0 Lα(a, c)Ψ(z)

≺azq0(z) q(z) ,

then Lα(a, c)Φ(z)

Lα(a, c)Ψ(z) ≺q(z), z ∈U, andq(z)is the best dominant.

3. APPLICATIONS

In this section, we introduce some applications of Section 2 containing fractional integral operators. Assume thatf(z) =P

n=1ϕnznand let us begin with the following definitions Definition 3.1 ([5]). The fractional integral of orderαfor the functionf(z)is defined by

Izαf(z) := 1 Γ(α)

Z z 0

f(ζ)(z−ζ)α−1dζ; 0≤α <1,

where the functionf(z)is analytic in a simply-connected region of the complexz−plane(C) containing the origin. The multiplicity of(z−ζ)α−1 is removed by requiringlog(z−ζ)to be real when(z−ζ)>0.Note that,Izαf(z) = h

zα−1 Γ(α)

i

f(z),forz >0and0forz ≤0(see [6]).

From Definition 3.1, we have Izαf(z) =

zα−1 Γ(α)

f(z) = zα−1 Γ(α)

X

n=1

ϕnzn=

X

n=1

anzn+α−1

wherean:= Γ(α)ϕn for alln= 1,2,3, . . . ,thus1+Izαf(z) ∈ Bα+and1−Izαf(z) ∈ Bαn ≥0).

Then we have the following results.

Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then (1 +Izαf(z))∗Φ(z)

(1 +Izαf(z))∗Ψ(z)

≺q(z), z 6= 0, z ∈U andq(z)is the best dominant.

Proof. Let the functionF(z)be defined by

F(z) := 1 +Izαf(z), z ∈U.

Theorem 3.2. Let the assumptions of Theorem 2.5 hold. Then

(1−Izαf(z))∗Φ(z) (1−Izαf(z))∗Ψ(z)

≺q(z), z ∈U andq(z)is the best dominant.

(8)

Proof. Let the functionF(z)be defined by

F(z) := 1−Izαf(z), z ∈U.

LetF(a, b;c;z)be the Gauss hypergeometric function (see [7]) defined, forz ∈U,by

F(a, b;c;z) =

X

n=0

(a)n(b)n (c)n(1)nzn.

We need the following definitions of fractional operators in Saigo type fractional calculus (see [8, 9]).

Definition 3.2. Forα >0andβ, η ∈R,the fractional integral operatorI0,zα,β,η is defined by I0,zα,β,ηf(z) = z−α−β

Γ(α) Z z

0

(z−ζ)α−1F

α+β,−η;α; 1− ζ z

f(ζ)dζ,

where the functionf(z)is analytic in a simply-connected region of thez−plane containing the origin, with order

f(z) =O(|z|)(z →0), >max{0, β−η} −1

and the multiplicity of(z−ζ)α−1is removed by requiringlog(z−ζ)to be real whenz−ζ >0.

From Definition 3.2, withβ <0,we have I0,zα,β,ηf(z) = z−α−β

Γ(α) Z z

0

(z−ζ)α−1F(α+β,−η;α; 1− ζ

z)f(ζ)dζ

=

X

n=0

(α+β)n(−η)n (α)n(1)n

z−α−β Γ(α)

Z z 0

(z−ζ)α−1

1− ζ z

n

f(ζ)dζ

=

X

n=0

Bnz−α−β−n Γ(α)

Z z 0

(z−ζ)n+α−1f(ζ)dζ

=

X

n=0

Bn

z−β−1 Γ(α) f(ζ)

= B

Γ(α)

X

n=1

ϕnzn−β−1, where

Bn:= (α+β)n(−η)n

(α)n(1)n and B :=

X

n=0

Bn. Denotean := Γ(α)n for all n = 1,2,3, . . . ,and letα=−β.Thus,

1 +I0,zα,β,ηf(z) ∈ B+α and 1−I0,zα,β,ηf(z) ∈ Bαn≥0), andn we have the following results

Theorem 3.3. Let the assumptions of Theorem 2.1 hold. Then

"

(1 +I0,zα,β,ηf(z))∗Φ(z) (1 +I0,zα,β,ηf(z))∗Ψ(z)

#

≺q(z), z ∈U andq(z)is the best dominant.

(9)

Proof. Let the functionF(z)be defined by

F(z) := 1 +I0,zα,β,ηf(z), z ∈U.

Theorem 3.4. Let the assumptions of Theorem 2.5 hold. Then

"

(1−I0,zα,β,ηf(z))∗Φ(z) (1−I0,zα,β,ηf(z))∗Ψ(z)

#

≺q(z), z ∈U andq(z)is the best dominant.

Proof. Let the functionF(z)be defined by

F(z) := 1−I0,zα,β,ηf(z), z ∈U.

REFERENCES

[1] O. JUNEJA, T. REDDY AND M. MOGRA, A convolution approach for analytic functions with negative coefficients, Soochow J. Math., 11 (1985), 69–81.

[2] M .OBRADOVIC, T. YAGUCHIAND H. SAITOH, On some conditions for univalence and star- likeness in the unit disc, Rendiconti di Math. Series VII, 12 (1992), 869–877.

[3] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Pure and Applied Mathematics, No.225, Dekker, New York, (2000).

[4] J. LIU AND H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566–581.

[5] H.M. SRIVASTAVAANDS. OWA, Univalent Functions, Fractional Calculus, and Their Applica- tions, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.

[6] K.S. MILLERANDB. ROSS, An Introduction to the Fractional Calculus and Fractional Differen- tial Equations, John-Wiley and Sons, Inc., 1993.

[7] H.M. SRIVASTAVA AND S. OWA (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[8] R.K. RAINA AND H.M. SRIVASTAVA, A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl., 32(7) (1996), 13–19.

[9] R.K. RAINA, On certain class of analytic functions and applications to fractional calculus operator, Integral Transf. and Special Func., 5 (1997), 247–260.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

FRASIN, Generalization of partial sums of certain analytic and univalent functions, Appl. BANSAL, Some properties of a new class of analytic functions defined in terms of a

FRASIN, Partial sums of certain analytic and univalent functions, Acta Math.. FRASIN, Generalization of partial sums of certain analytic and univalent

SRIVASTAVA, Neighbor- hoods of certain classes of analytic functions of complex order, J. Pure

RAINA, On certain classes of functions associated with multivalently analytic and multivalently meromorphic functions, Soochow J. Math., 32(3)

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

ON ANALYTIC FUNCTIONS RELATED TO CERTAIN FAMILY OF INTEGRAL OPERATORS.. KHALIDA

A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX

In this paper, we introduce a new class of functions which are analytic and univalent with negative coefficients defined by using a certain fractional cal- culus and fractional