• Nem Talált Eredményt

CAUCHY’S MEANS OF LEVINSON TYPE

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CAUCHY’S MEANS OF LEVINSON TYPE"

Copied!
16
0
0

Teljes szövegt

(1)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page

Contents

JJ II

J I

Page1of 16 Go Back Full Screen

Close

CAUCHY’S MEANS OF LEVINSON TYPE

MATLOOB ANWAR J. PE ˇCARI ´C

1- Abdus Salam School of Mathematical Sciences University Of Zagreb GC University, Lahore, Faculty Of Textile Technology

Pakistan Croatia

EMail:matloob_t@yahoo.com EMail:pecaric@mahazu.hazu.hr

Received: 14 July, 2008

Accepted: 12 October, 2008 Communicated by: S. Abramovich

2000 AMS Sub. Class.: Primary 26A51; Secondary 26A46, 26A48.

Key words: Convex function, Ky-Fan inequality, Weighted mean

Abstract: In this paper we introduce Levinson means of Cauchy’s type. We show that these means are monotonic.

Acknowledgements: The research of the second author was supported by the Croatian Ministry of Science, Education and Sports under the Research Grants 117-1170889-0888.

(2)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page2of 16 Go Back Full Screen

Close

Contents

1 Introduction and Preliminaries 3

2 Main Results 6

3 Related Results 12

(3)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page3of 16 Go Back Full Screen

Close

1. Introduction and Preliminaries

Letx1, x2, . . . , xn andp1, p2, . . . , pn be real numbers such that xi ∈ [0,12], pi > 0 withPn=Pn

i=1pi. LetGnandAnbe the weighted geometric mean and arithmetic mean respectively defined by

Gn =

n

Y

i=1

xpii

!Pn1

and An = 1 Pn

n

X

i=1

pixi =x.

In particular, consider the means

G0n=

n

Y

i=1

(1−xi)pi

!Pn1

and A0n = 1 Pn

n

X

i=1

pi(1−xi).

The well known Levinson inequality is the following ([1,2] see also [6, p. 71]).

Theorem 1.1. Let f be a real valued 3-convex function on [0,2a]. Then for 0 <

xi < a,pi >0we have

(1.1) 1 Pn

n

X

i=1

pif(xi)−f 1 Pn

n

X

i=1

pixi

!

≤ 1 Pn

n

X

i=1

pif(2a−xi)−f 1 Pn

n

X

i=1

pi(2a−xi)

! .

In [4], the second author proved the following similar result.

Theorem 1.2. Letf be a real valued 3-convex function on[0,2a]and xi (1≤ i ≤ n)npoints on[0, a]. Then

(4)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page4of 16 Go Back Full Screen

Close

(1.2) 1 Pn

n

X

i=1

pif(xi)−f 1 Pn

n

X

i=1

pixi

!

≤ 1 Pn

n

X

i=1

pif(a+xi)−f 1 Pn

n

X

i=1

pi(a+xi)

! .

Lemma 1.3. Letf be a log-convex function. If,x1 ≤y1, x2 ≤y2, x1 6=x2, y1 6=y2, then the following inequality is valid:

(1.3)

f(x2) f(x1)

x 1

2−x1

f(y2) f(y1)

y 1

2−y1

.

Lemma 1.4. Letf ∈ C3(I)for some interval I ⊆ R, such thatf000 is bounded and m= minf000andM = maxf000.Consider the functionsφ1, φ2 defined as,

φ1(t) = M

6 t3−f(t), (1.4)

φ2(t) = f(t)− m 6t3, (1.5)

thenφ1andφ2are3-convex functions.

Lemma 1.5. Let us define the function

(1.6) ϕs(x) =









xs

s(s−1)(s−2), s6=0,1,2;

1

2logx, s=0;

−xlogx, s=1;

1

2x2logx, s=2.

Thenϕ000s(x) =xs−3,that isϕs(x)is3-convex forx >0.

(5)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page5of 16 Go Back Full Screen

Close

LetI ⊆Rbe an interval and letF be some appropriately chosen vector space of real valued functions defined onI. LetΨbe a functional onF and letA :F → R be a linear operator, whereRis the vector of all real valued functions defined onI.

Suppose that for eachf ∈ F, there is aξ∈I such that

(1.7) Ψ(f) = A(f)(ξ).

J. Pe´cari´c, I. Peri´c and H. Srivastava in [5] proved the following important result for φandAdefined above.

Theorem 1.6. For everyf, g∈ F, there is aξ ∈Isuch that

(1.8) A(g)(ξ)Ψ(f) = A(f)(ξ)Ψ(g).

(6)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page6of 16 Go Back Full Screen

Close

2. Main Results

Theorem 2.1. Letf ∈ C3(I). Then forxi > 0and pi > 0there exist ξ ∈ I such that the following equality holds true,

(2.1) f 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pif(xi)

+ 1 Pn

n

X

i=1

pif(2a−xi)−f 1 Pn

n

X

i=1

pi(2a−xi)

!

= f000(ξ) 6

 1 Pn

n

X

i=1

pixi

!3

− 1 Pn

n

X

i=1

pix3i

+ 1 Pn

n

X

i=1

pi(2a−xi)3− 1 Pn

n

X

i=1

pi(2a−xi)

!3

.

Proof. Suppose thatf000 is bounded, that is,minf000 =m,maxf000 =M. By apply- ing the Levinsen inequality (1.1) to the functionsφ1 andφ2 defined in Lemma1.4, we get the following inequalities,

(2.2) f 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pif(xi)

+ 1 Pn

n

X

i=1

pif(2a−xi)−f 1 Pn

n

X

i=1

pi(2a−xi)

!

(7)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page7of 16 Go Back Full Screen

Close

≤ M 6

 1 Pn

n

X

i=1

pixi

!3

− 1 Pn

n

X

i=1

pix3i

+ 1 Pn

n

X

i=1

pi(2a−xi)3− 1 Pn

n

X

i=1

pi(2a−xi)

!3

and

(2.3) m 6

 1 Pn

n

X

i=1

pixi

!3

− 1 Pn

n

X

i=1

pix3i

+ 1 Pn

n

X

i=1

pi(2a−xi)3− 1 Pn

n

X

i=1

pi(2a−xi)

!3

≤f 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pif(xi)

+ 1 Pn

n

X

i=1

pif(2a−xi)−f 1 Pn

n

X

i=1

pi(2a−xi)

! .

By combining both inequalities and using the fact that form ≤ ρ ≤ M there exist ξ ∈I such thatf000(ξ) = ρ, we get (2.1). Moreover, iff000is (for example) bounded from above we have that (2.2) is valid and again (2.1) is valid.

Of course (2.1) is obvious iff000 is not bounded from above and below.

Theorem 2.2. Letf, g ∈ C3(I). Then for xi > 0andpi > 0, i = 1, . . . , nthere

(8)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page8of 16 Go Back Full Screen

Close

existξ∈I such that the following equality holds true,

(2.4) f000(ξ) g000(ξ)

= f

1 Pn

n

P

i=1

pixi

P1

n

n

P

i=1

pif(xi)+P1

n

n

P

i=1

pif(2a−xi)−f

1 Pn

n

P

i=1

pi(2a−xi)

g

1 Pn

n

P

i=1

pixi

P1

n

n

P

i=1

pig(xi)+P1

n

n

P

i=1

pig(2a−xi)−g

1 Pn

n

P

i=1

pi(2a−xi) .

Proof. Consider the linear functionalsΨandAas in (1.7) forF =C3(I)andRthe vector space of real valued functions such thatΨ(k) = A(k)(ξ)for some function k. LetAbe defined as:

(2.5) A(f)(ξ) = f000(ξ) 6

 1 Pn

n

X

i=1

pixi

!3

− 1 Pn

n

X

i=1

pix3i

+ 1 Pn

n

X

i=1

pi(2a−xi)3− 1 Pn

n

X

i=1

pi(2a−xi)

!3

.

Also, consider the linear combinationk =c1f −c2g,wheref, g ∈C3(I)andc1, c2

are defined by

c1 = Ψ(g) =g 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pig(xi) (2.6)

+ 1 Pn

n

X

i=1

pig(2a−xi)−g 1 Pn

n

X

i=1

pi(2a−xi)

! ,

(9)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page9of 16 Go Back Full Screen

Close

c2 = Ψ(f) =f 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pif(xi) (2.7)

+ 1 Pn

n

X

i=1

pif(2a−xi)−f 1 Pn

n

X

i=1

pi(2a−xi)

! .

Obviously, we haveΨ(k) = 0. This implies that (as in Theorem1.6):

(2.8) Ψ(g)A(f)(ξ) = Ψ(f)A(g)(ξ).

Now sinceΨ(g)6= 0andA(g)(ξ)6= 0we have from the last equation

(2.9) Ψ(f)

Ψ(g) = A(f)(ξ) A(g)(ξ). After putting in the values we get (2.4).

Corollary 2.3. Let fg000000 be invertible then (2.4) suggests new means. That is,

(2.10) ξ=

f000 g000

−1

f

1 Pn

n

P

i=1

pixi

1

Pn n

P

i=1

pif(xi)+P1

n n

P

i=1

pif(2a−xi)−f

1 Pn

n

P

i=1

pi(2a−xi)

g

1 Pn

n

P

i=1

pixi

P1

n n

P

i=1

pig(xi)+P1

n n

P

i=1

pig(2a−xi)−g

1 Pn

n

P

i=1

pi(2a−xi)

is a new mean.

Definition 2.4. Define the function (2.11) ξs= 1

Pn

n

X

i=1

pi

ϕs(2a−xi)−ϕs(xi)

−ϕs(2a−x) +ϕs(x),

whens6= 0,1,2. s= 0,1,2are limiting cases defined by ξ0 = 1

2ln

GanAn GnAan

,

(10)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page10of 16 Go Back Full Screen

Close

where

Gan=

" n Y

i=1

(2a−xi)pi

#Pn1

and Aan= 1 Pn

n

X

i=1

pi(2a−xi),

ξ1 = 1 Pn

n

X

i=1

pi

xilnxi−(2a−xi) ln(2a−xi)

+ (2a−x) ln(2a−x)−xlnx,

ξ2 = 1 2

"

1 Pn

n

X

i=1

pi

(2a−xi)2ln(2a−xi)−x2i lnxi

−(2a−x)2ln(2a−x) +x2lnx

# .

Then we define the new meansMs,tas:

Definition 2.5. Let us denote:

(2.12) Ms,t =

ξs ξt

s−t1

fors6=t6= 0,1,2. We define these limiting cases as

Ms,s = exp

"

η

1 Pn

Pn

i=1pi((2a−xi)s−xsi)−(2a−x)¯ s+ ¯xs − 3s2−6s+ 2 s(s−1)(s−2)

# ,

where

η= 1 Pn

n

X

i=1

pi((2a−xi)slog(2a−xi)−xsi logxi)−(2a−x)¯ slog(2a−x) + ¯¯ xslog ¯x

(11)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page11of 16 Go Back Full Screen

Close

fors6= 0,1,2

M0,0 = exp

 2

1 Pn

Pn

i=1pi[(log(2a−xi))2 −(logxi)2] 4ξ0

− (log(2a−x))¯ 2−(log ¯x)200

,

M1,1 = exp

" 1

Pn

Pn

i=1pi[(2a−xi)(log(2a−xi))2−xi(logxi)2] 2ξ1

− (2a−x)(log(2a¯ −x))¯ 2−x(log ¯¯ x)21

,

M2,2 = exp

" 1

Pn

Pn

i=1pi[(2a−xi)2(log(2a−xi))2−x2i(logxi)2] 3ξ2

− (2a−x)¯ 2(log(2a−x))¯ 2 −x¯2(log ¯x)2

2 −1

.

In our next result we prove that this new mean is monotonic.

Theorem 2.6. Letr≤s, t≤u, r 6=t, s 6=u, then the following inequality is valid:

(2.13) Mr,t ≤Ms,u.

Proof. Sinceξs is log convex as proved in [3, Theorem 2.2], then applying Lemma 1.4forr≤s, t ≤u, r6=t, s6=uwe get our required result.

(12)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page12of 16 Go Back Full Screen

Close

3. Related Results

Theorem 3.1. Letf ∈C3(I). Forxi >0andpi >0, i= 1, . . . , nthere existξ ∈I such that the following equality holds true,

(3.1) f 1 Pn

n

X

i=1

pixi

!

− 1 Pn

n

X

i=1

pif(xi)

+ 1 Pn

n

X

i=1

pif(a+xi)−f 1 Pn

n

X

i=1

pi(a+xi)

!

= f000(ξ) 6

 1 Pn

n

X

i=1

pixi

!3

− 1 Pn

n

X

i=1

pix3i

+ 1 Pn

n

X

i=1

pi(a+xi)3− 1 Pn

n

X

i=1

pi(a+xi)

!3

.

Proof. Similar to proof of Theorem2.1.

Theorem 3.2. Letf, g ∈ C3(I). Then for xi > 0andpi > 0, i = 1, . . . , nthere existξ∈I such that the following equality holds true,

(3.2) f000(ξ) g000(ξ)

= f

1 Pn

n

P

i=1

pixi

P1

n

n

P

i=1

pif(xi)+P1

n

n

P

i=1

pif(a+xi)−f

1 Pn

n

P

i=1

pi(a+xi)

g

1 Pn

n

P

i=1

pixi

P1

n

n

P

i=1

pig(xi)+P1

n

n

P

i=1

pig(a+xi)−g

1 Pn

n

P

i=1

pi(a+xi)

(13)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page13of 16 Go Back Full Screen

Close

Proof. Similar to proof of Theorem2.2.

Corollary 3.3. Let fg000000 be invertible. Then (3.2) suggests new means. That is,

(3.3) ξ=

f000 g000

−1

f

1 Pn

n

P

i=1

pixi

P1

n n

P

i=1

pif(xi)+P1

n n

P

i=1

pif(a+xi)−f

1 Pn

n

P

i=1

pi(a+xi)

g

1 Pn

n

P

i=1

pixi

1

Pn n

P

i=1

pig(xi)+P1

n n

P

i=1

pig(a+xi)−g

1 Pn

n

P

i=1

pi(a+xi)

is a new mean.

Definition 3.4. Define the function (3.4) ξ¯s = 1

Pn

n

X

i=1

pi

ϕs(a+xi)−ϕs(xi)

−ϕs(a+x) +ϕs(x),

whens6= 0,1,2. s= 0,1,2are limiting cases defined by ξ¯0 = 1

2ln

anAn Gnan

,

where

an =

n

Y

i=1

(a+xi)pi

!Pn1

, andan = 1 Pn

n

X

i=1

pi(a+xi),

ξ¯1 = 1 Pn

n

X

i=1

pi

xilnxi−(a+xi) ln(2a−xi)

+ (a+x) ln(a+x)−xlnx,

ξ¯2 = 1 2

"

1 Pn

n

X

i=1

pi (a+xi)2ln(a+xi)−x2i lnxi

−(a+x)2ln(a+x) +x2lnx

# .

(14)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page14of 16 Go Back Full Screen

Close

We now define new meansMs,tas:

Definition 3.5. Let us denote:

(3.5) Ms,t =

ξ¯s ξ¯t

s−t1

fors6=t6= 0,1,2. We define these limiting cases as

Ms,s = exp η¯

1 Pn

Pn

i=1pi((a+xi)s−xsi)−(a+ ¯x)s+ ¯xs − 3s2−6s+ 2 s(s−1)(s−2)

! ,

where

¯ η= 1

Pn

n

X

i=1

pi((a+xi)slog(a+xi)−xsilogxi)−(a+ ¯x)slog(a+ ¯x) + ¯xslog ¯x fors6= 0,1,2

M0,0 = exp

 2

1 Pn

Pn

i=1pi[(log(a+xi))2−(logxi)2]

4 ¯ξ0

− (log(a+ ¯x))2−(log ¯x)26 ¯ξ0 4 ¯ξ0

,

M1,1 = exp

" 1

Pn

Pn

i=1pi((a+xi)(log(a+xi))2−xi(logxi)2) 2 ¯ξ1

− (a+ ¯x)(log(a+ ¯x))2−x(log ¯¯ x)2 2 ¯ξ1

,

(15)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page15of 16 Go Back Full Screen

Close

M2,2 = exp

" 1

Pn

Pn

i=1pi((a+xi)2(log(a+xi))2−x2i(logxi)2) 3 ¯ξ2

− (a+ ¯x)2(log(a+ ¯x))2 −x¯2(log ¯x)2

3 ¯ξ2 −1

.

In our next result we prove that this new mean is monotonic.

Theorem 3.6. Letr≤s, t≤u, r 6=t, s6=u, then the following inequality is valid:

(3.6) Mr,t ≤Ms,u.

Proof. Sinceξ¯sis log convex as proved in [3, Theorem 2.5] (ξ¯ss), then applying Lemma1.3forr ≤s, t≤u, r6=t, s6=uwe get our required result.

(16)

Cauchy’s Means of Levinson Type M. Anwar and J. Peˇcari´c vol. 9, iss. 4, art. 120, 2008

Title Page Contents

JJ II

J I

Page16of 16 Go Back Full Screen

Close

References

[1] S. LAWRENCEANDD. SEGALMAN, A generalization of two inequalities in- volving means, Proc. Amer. Math. Soc., 35(1) (1972), 96–100.

[2] N. LEVINSON, Generalization of an inequality of Ky Fan, J. Math. Anal. Appl., 8 (1964), 133–134.

[3] M. ANWARANDJ.E. PE ˇCARI ´C, On logarithmic convexity for Ky-Fan inequal- ity, J. Inequal. and Appl., (2008), Article ID 870950.

[4] J.E. PE ˇCARI ´C, An inequality for 3-convex functions, J. Math. Anal. Appl., 19 (1982), 213–218.

[5] J.E. PE ˇCARI ´C, I. PERI ´C AND H. SRIVASTAVA A family of the Cauchy type mean-value theorems, J. Math. Anal. Appl., 306 (2005), 730–739.

[6] J.E. PE ˇCARI ´C, F. PROSCHAN AND Y.C. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The most important among these were the monographs on mollusks in the environs of Szeged and on the Great Hungarian Plain written by Rotarides and Czógler, on the fluvial mollusks

+&amp;VRNORYLQD5&amp;LRFORYLQD Paleolithic +DELWDWLRQOD\HU +2KiEDSRQRU52KDED3RQRU Paleolithic +DELWDWLRQOD\HU +,JULF5,JULĠD Paleolithic +DELWDWLRQOD\HU +.|U|VORUy5HPHWHOyUpY5 /RUăX

In the paper, upper and lower bounds for the regularized determi- nants of operators from S p are established.. Acknowledgements: This research was supported by the Kamea fund of

Acknowledgements: This work was supported by the Science Research Foundation of Nanjing Univer- sity of Information Science and Technology and the Natural Science Foundation of

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

The second author was supported by the Scientific Research Foundation of Nanjing University of Information Science &amp; Technology, by the project S8113062001 of the Startup

The authors Győri, Methuku, Salia and Tompkins were supported by the National Research, Development and Innovation Office – NKFIH under the grant K116769. The author Vizer was