• Nem Talált Eredményt

Key words and phrases: Hilbert’s inequality, Hilbert-Pachpatte type inequality, Hölder’s inequality, Jensen inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Key words and phrases: Hilbert’s inequality, Hilbert-Pachpatte type inequality, Hölder’s inequality, Jensen inequality"

Copied!
9
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 16, 2003

HILBERT-PACHPATTE TYPE INTEGRAL INEQUALITIES AND THEIR IMPROVEMENT

S.S. DRAGOMIR AND YOUNG-HO KIM SCHOOL OFCOMPUTERSCIENCE ANDMATHEMATICS

VICTORIAUNIVERSITY OFTECHNOLOGY

PO BOX14428 , MELBOURNECITYMC VICTORIA8001, AUSTRALIA. sever.dragomir@vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html DEPARTMENT OFAPPLIEDMATHEMATICS

CHANGWONNATIONALUNIVERSITY

CHANGWON641-773, KOREA. yhkim@sarim.changwon.ac.kr

Received 31 October, 2002; accepted 8 January, 2003 Communicated by P.S. Bullen

ABSTRACT. In this paper, we obtain an extension of multivariable integral inequality of Hilbert- Pachpatte type. By specializing the upper estimate functions in the hypothesis and the parame- ters, we obtain many special cases.

Key words and phrases: Hilbert’s inequality, Hilbert-Pachpatte type inequality, Hölder’s inequality, Jensen inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTODUCTION

Hilbert’s double series theorem [3, p. 226] was proved first by Hilbert in his lectures on integral equations. The determination of the constant, the integral analogue, the extension, other proofs of the whole or of parts of the theorems and generalizations in different directions have been given by several authors (cf. [3, Chap. 9]). Specifically, in [10] – [14] the author has established some new inequalities similar to Hilbert’s double-series inequality and its integral analogue which we believe will serve as a model for further investigation. Recently, G.D.

Handley, J.J. Koliha and J.E. Peˇcari´c [2] established a new class of related integral inequalities from which the results of Pachpatte [12] – [14] are obtained by specializing the parameters and the functionsΦi.A representative sample is the following.

ISSN (electronic): 1443-5756 c

2003 Victoria University. All rights reserved.

The authors would like to thank Professor P.S. Bullen, University of British Columbia, Canada, for the careful reading of the manuscript which led to a considerable improvement in the presentation of this paper.

114-02

(2)

Theorem 1.1 (Handley, Koliha and Peˇcari´c [2, Theorem 3.1]). Letui ∈ Cmi([0, xi])fori∈I.

If

u(ki i)(si) ≤

Z si

0

(si−τi)mi−ki−1Φii)dτi, si ∈[0, xi], i∈I,

then

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) Pn

i=1ωisi i+1)/(qiωi)ds1· · ·dsn

≤U

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi −si)βi+1Φi(si)pidsi pi1

,

whereU = 1. Qn

i=1[(αi + 1)qi1i+ 1)pi1 ].

The purpose of the present paper is to derive an extension of the inequality given in Theorem 1.1. In addition, we obtain some new inequalities as Hilbert-Pachpatte type inequalities, these inequalities improve the results obtained by Handley, Koliha and Peˇcari´c [2].

2. MAINRESULTS

In what follows we denote byRthe set of real numbers;R+denotes the interval[0,∞).The symbols N,Z have their usual meaning. The following notation and hypotheses will be used throughout the paper:

I ={1, ..., n} n∈N mi, i∈I mi ∈N

ki, i∈I ki ∈ {0,1, . . . , mi−1}

xi, i∈I xi ∈R, xi >0

pi, qi, i∈I pi, qi ∈R, pi, qi >0, p1

i +q1

i = 1

p, q 1p =Pn

i=1

1 pi

, 1q =Pn i=1

1 qi

ai, bi, i∈I ai, bi ∈R+, ai+bi = 1 ωi, i∈I ωi ∈R, ωi >0, Pn

i=1ωi = Ωn αi, i∈I αi = (ai+biqi)(mi−ki−1) βi, i∈I βi =ai(mi−ki−1)

ui, i∈I ui ∈Cm0i([0, xi]) for some m0i ≥mi Φi, i∈I Φi ∈C1([0, xi]), Φi ≥mi.

Here the ui are given functions of sufficient smoothness, and the Φi are subject to choice.

The coefficients pi, qi are conjugate Hölder exponents to be used in applications of Hölder’s inequality, and the coefficients ai, bi will be used in exponents to factorize integrands. The coefficientsωi will act as weights in applications of the geometric-arithmetic mean inequality.

(3)

The coefficientsαi andβi arise naturally in the derivation of the inequalities. Our main results are given in the following theorems.

Theorem 2.1. Letui ∈Cmi([0, xi])fori∈I.If (2.1)

u(ki i)(si) ≤

Z si

0

(si−τi)mi−ki−1Φii)dτi, si ∈[0, xi], i∈I, then

(2.2)

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤V

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi −si)βi+1Φi(si)pidsi pi1

,

where

(2.3) V = 1

Qn i=1

h

i+ 1)

1

qii+ 1)

1 pi

i.

Proof. Factorize the integrand on the right side of (2.1) as

(si−τi)(ai/qi+bi)(mi−ki−1)×(si−τi)(ai/pi)(mi−ki−1)Φii) and apply Hölder’s inequality [9, p.106]. Then

u(ki i)(si) ≤

Z si

0

(si−τi)(ai+biqi)(mi−ki−1)i

qi1

× Z si

0

(si−τi)ai(mi−ki−1)Φii)pii pi1

= si i+1)/qii+ 1)qi1

Z si

0

(si−τi)βiΦii)pii 1

pi .

Using the inequality of means [9, p. 15]

n

Y

i=1

swii

!Ωn1

≤ 1

n

n

X

i=1

wisri

!1r

forr >0,we deduce that

n

Y

i=1

swiir

"

1 Ωn

n

X

i=1

wisri

#n

forr >0.According to above inequality, we have

n

Y

i=1

u(ki i)(si)

≤ 1 Qn

i=1i+ 1)qi1

"

1 Ωn

n

X

i=1

ωisi i+1)/(qiωi)

#n

×

n

Y

i=1

Z si

0

(si−τi)βiΦii)pii pi1

(4)

forr = (αi + 1)/qiωi.In the following estimate we apply Hölder’s inequality and, at the end, change the order of integration:

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)si

h 1

n

Pn

i=1ωisi i+1)/(qiωi)

in ds1· · ·dsn

≤ 1

Qn

i=1i+ 1)qi1

n

Y

i=1

"

Z xi

0

Z si

0

(si−τi)βiΦii)pii, 1

pi dsi

#

≤ 1

Qn

i=1i+ 1)qi1

n

Y

i=1

x

1 qi

i

Z xi

0

Z si

0

(si−τi)βiΦii)pii,

dsi 1

pi

= 1

Qn

i=1[(αi+ 1)qi1i+ 1)pi1 ]

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1Φi(si)pidsi 1

pi .

This proves the theorem.

Remark 2.2. In Theorem 2.1, settingn= 1, we have Theorem 1.1.

Corollary 2.3. Under the assumptions of Theorem 2.1, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)si

h 1

n

Pn

i=1ωisi i+1)/(qiωi)

in ds1· · ·dsn

≤pr·p1 V

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1Φispiidsi r#r·p1

,

whereV is defined by (2.3).

Proof. By the inequality of means, for anyAi ≥0andr >0,we obtain

n

Y

i=1

A

1 pi

i

"

p

n

X

i=1

1 piAri

#r·p1 .

The corollary then follows from the preceding theorem.

Lemma 2.4. Letγ1 >0andγ2 <−1.Letωi >0, Pn

i=1ωi = Ωnand letsi >0, i= 1, . . . , n be real numbers. Then

n

Y

i=1

sωiiγ1γ2

"

1 Ωn

n

X

i=1

ωis−γi 2

#−γ1n

.

Proof. By the inequality of means, for anyγ1 >0andγ2 <−1,we have

n

Y

i=1

sωiiγ1γ2

"

1 Ωn

n

X

i=1

ωisi

#γ1γ2n

.

(5)

Using the fact thatxγ12 is concave and using the Jensen inequality, we have that

"

1 Ωn

n

X

i=1

ωisi

#γ1γ2n

=

"

1 Ωn

n

X

i=1

ωif(s−γi 2)

#γ1γ2n

"

f 1

n

n

X

i=1

ωis−γi 2

!#γ1γ2n

=

 1 Ωn

n

X

i=1

ωis−γi 2

!γ1

2

γ1γ2n

=

"

1 Ωn

n

X

i=1

ωis−γi 2

#−γ1n

.

The proof of the lemma is complete.

Theorem 2.5. Under the assumptions of Theorem 2.1, ifγ2 <−1,then Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2

i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤V

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1Φi(si)pidsi 1

pi ,

whereV is given by (2.3).

Proof. Using the inequality of Lemma 2.4, for anyγ1 >0andγ2 <−1,we get

n

Y

i=1

sωiiγ1

"

1 Ωn

n

X

i=1

ωis−γi 2

#γ1Ωnγ

2

.

According to above inequality, we deduce that

n

Y

i=1

u(ki i)(si)

≤ 1 Qn

i=1i+ 1)qi1

"

1 Ωn

n

X

i=1

ωis−γi 2

#−W1

×

n

Y

i=1

"

Z (si) 0

(si−τi)βiΦii)pii

#1

pi

,

where W1 = (αi + 1)Ωn2qiωi. The proof of the theorem then follows from the preceding

Theorem 2.1.

Corollary 2.6. Under the assumptions of Theorem 2.5, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2

i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤pr·p1 V

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1Φi(si)pidsi r#r·p1

,

(6)

whereV is given by (2.3).

Proof. By the inequality of means, for anyAi ≥0andr >0,we obtain

n

Y

i=1

A

1 pi

i

"

p

n

X

i=1

1 piAri

#r·p1 .

The corollary then follows from the preceding Theorem 2.5.

In the following section we discuss some choice of the functionsΦi. 3. THEVARIOUSINEQUALITIES

Theorem 3.1. Letui ∈ Cmi([0, xi])be such thatu(j)i (0) = 0forj ∈ {0, . . . , mi −1}, i ∈ I.

Then

(3.1) Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)

in ds1· · ·dsn

≤V1

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi 1

pi ,

where

(3.2) V1 = 1

Qn i=1

h

(mi−ki−1)!(αi+ 1)qi1i+ 1)pi1 i. Proof. Inequality (3.1) is proved when we set

Φi(si) =

u(mi i)(si) (mi−ki−1)!

in Theorem 2.1.

Corollary 3.2. Under the assumptions of Theorem 3.1, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤pr·p1 V1 n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi

r#r·p1 , whereV1is given by (3.2).

Theorem 3.3. Under the assumptions of Theorem 3.1, ifγ2 <−1,then

(3.3) Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤V1

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi pi1

, whereV1is given by (3.2).

(7)

Proof. Inequality (3.3) is proved when we set

Φi(si) =

u(mi i)(si) (mi−ki−1)!

in Theorem 2.5.

Corollary 3.4. Under the assumptions of Theorem 3.3, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2

i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤pr·p1 V1

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi r#r·p1

.

We discuss a number of special cases of Theorem 3.1. Similar examples apply also to Corol- lary 3.2, Theorem 3.3 and Corollary 3.4.

Example 3.1. Ifai = 0andbi = 1fori∈I,then Theorem 3.1 becomes

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(qi imi−qiki−qi+1)/(qiωi)in ds1· · ·dsn

≤V2

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)

u(mi i)(si)

pi

dsi 1

pi ,

where

V2 = 1

Qn i=1

h

(mi −ki−1)!(qimi−qiki−qi+ 1)

1 qi

i.

Example 3.2. Ifai = 0, bi = 1, qi =n, pi =n/(n−1), mi =mandki =kfori∈I,then

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(nm−nk−n+1)/(nωi) i

in ds1· · ·dsn

n

x1· · ·xn (m−k−1)!n

(nm−nk−n+ 1)

×

n

Y

i=1

Z xi

0

(xi−si)

u(m)i (si)

n n−1 dsi

n−1n .

Forq =p= n = 2andωi = 1n this is [12, Theorem 1]. Settingq = p= 2, k = 0, n= 1and ωi = n1, we recover the result of [14].

(8)

Example 3.3. Ifai = 0andbi = 1fori∈I,then Theorem 3.1 becomes Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(mi i−ki)/(qiωi)in ds1· · ·dsn

≤V3 n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)mi−ki

u(mi i)(si)

pi

dsi

pi1 , where

V3 = 1

Qn i=1

(mi−ki)!.

Example 3.4. Ifai = 1, bi = 0, qi = n, pi =n/(n−1), mi = mandki =kfori ∈ I.Then (3.1) becomes

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(m−k)/(nωi i)in ds1· · ·dsn

n

x1· · ·xn

(m−k)!n n

Y

i=1

Z xi

0

(xi−si)m−k

u(m)i (si)

n/(n−1)

dsi (n−1)n

. Example 3.5. Let p1, p2 ∈ R+. If we setn = 2, ω1 = p1

1, ω2 = p1

2, mi = 1 andki = 0 for i= 1,2in Theorem 3.1, then by our assumptionsq1 =p1/(p1−1), q2 =p2/(p2 −1),and we obtain

Z x1

0

Z x2

0

|u1(s1)| |u2(s2)|

h 1 p1p22

p2s(p1 1−1)+p1s(p22−1)i2 ds1ds2

≤x(p1 1−1)/p1x(p22−1)/p2 Z x1

0

(x1−s1)|u01(s1)|p1 ds1 p1

1

× Z x2

0

(x2−s2)|u02(s2)|p2 ds2 p1

2 .

If we setω12 = 1in Example 3.5, then we have [13, Theorem 2]. (The values ofai andbi

are irrelevant.)

REFERENCES

[1] BICHENG YANG, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220 (1988), 778–785.

[2] G.D. HANDLEY, J.J. KOLIHAANDPE ˇCARI ´C, New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–250.

[3] G.H. HARDY, J.E. LITTLEWOODANDG. POLYA, Inequalities, Cambridge Univ. Press, London, 1952.

[4] YOUNG-HO KIM, Refinements and Extensions of an inequality, J. Math. Anal. Appl., 245 (2000), 628–632.

[5] V. LEVIN, On the two-parameter extension and analogue of Hilbert’s inequality, J. London Math.

Soc., 11 (1936), 119–124.

(9)

[6] G. MINGZE, On Hilbert’s inequality and its applications, J. Math. Anal. Appl., 212 (1997), 316–

323.

[7] D.S. MITRINOVI ´C, Analytic inequalities, Springer-Verlag, Berlin, New York, 1970.

[8] D.S. MITRINOVI ´CANDJ.E. PE ˇCARI ´C, On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc., 34 (1991), 411–414.

[9] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[10] B.G. PACHPATTE, A note on Hilbert type inequality, Tamkang J. Math., 29 (1998), 293–298.

[11] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl., 226 (1998), 166–179.

[12] B.G. PACHPATTE, Inequalities similar to the integral analogue of Hilbert’s Inequality, Tamkang J.

Math., 30 (1999), 139–146.

[13] B.G. PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J. Math. Anal.

Appl., 243 (2000), 217–227.

[14] B.G. PACHPATTE, A note on inequality of Hilbert type, Demonstratio Math., in press.

[15] D.V. WIDDER, An inequality related to one of Hilbert’s, J. London Math. Soc., 4 (1929), 194–198.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.. 2000 Mathematics

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequali- ties for products of

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequalities for products of

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

PACHPATTE, On some new inequalities related to a certain inequality arising in the theory of differential

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and