• Nem Talált Eredményt

UNIFORMLY STARLIKE AND UNIFORMLY CONVEX FUNCTIONS PERTAINING TO SPECIAL FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "UNIFORMLY STARLIKE AND UNIFORMLY CONVEX FUNCTIONS PERTAINING TO SPECIAL FUNCTIONS"

Copied!
6
0
0

Teljes szövegt

(1)

UNIFORMLY STARLIKE AND UNIFORMLY CONVEX FUNCTIONS PERTAINING TO SPECIAL FUNCTIONS

V.B.L. CHAURASIA AND AMBER SRIVASTAVA DEPARTMENT OFMATHEMATICS

UNIVERSITY OFRAJASTHAN, JAIPUR-302004, INDIA

DEPARTMENT OFMATHEMATICS

SWAMIKESHVANANDINSTITUTE OFTECHNOLOGY, MANAGEMENT ANDGRAMOTHAN

JAGATPURA, JAIPUR-302025, INDIA

amber@skit.ac.in

Received 04 September, 2006; accepted 14 July, 2007 Communicated by H.M. Srivastava

ABSTRACT. The main object of this paper is to derive the sufficient conditions for the function z{pψq(z)} to be in the classes of uniformly starlike and uniformly convex functions. Similar results using integral operator are also obtained.

Key words and phrases: Analytic functions, Univalent functions, Starlike functions, Convex functions, Integral operator, Fox- Wright function.

2000 Mathematics Subject Classification. 30C45.

1. I

NTRODUCTION

Let A denote the class of functions of the form

(1.1) f (z) = z +

X

n=2

a

n

z

n

,

that are analytic in the open unit disk ∆ = {z : |z| < 1}.

Also let S denote the subclass of A consisting of all functions f (z) of the form

(1.2) f(z) = z −

X

n=2

a

n

z

n

, a

n

≥ 0.

A function f ∈ A is said to be starlike of order α, 0 ≤ α < 1, if and only if Re

zf0(z) f(z)

> α, z ∈ ∆. Also f of the form (1.1) is uniformly starlike, whenever

f(z)−f(ξ)

(z−ξ)f0(z)

≥ 0, (z,ξ) ∈

The authors are grateful to Professor H.M. Srivastava, University of Victoria, Canada for his kind help and valuable suggestions in the preparation of this paper.

230-06

(2)

∆ × ∆. This class of all uniformly starlike functions is denoted by U ST [4] (see also [5], [10]

and [14]).

The function f of the form (1.1) is uniformly convex in ∆ whenever Re

1 + (z − ξ)

ff000(z)(z)

≥ 0, (z,ξ) ∈ ∆ × ∆. This class of all uniformly convex functions is denoted by U CV [3]

(also refer [2], [6], [9] and [13]). Further it is said to be in the class U CV (α), α ≥ 0 if Re

1 +

zff(z)0(z)

≥ α

zf00(z) f0(z)

.

A function f of the form (1.2) is said to be in the class U ST N (α), 0 ≤ α ≤ 1, if Re

f(z)−f(ξ)

(z−ξ)f0(z)

≥ α, (z,ξ) ∈ ∆ × ∆.

In the present paper, we shall use analogues of the lemmas in [8] and [7] respectively in the following form.

Lemma 1.1. A function f of the form (1.1) is in the class U ST (α), if

X

n=2

[(3 − α)n − 2] |a

n

| ≤ (1 − α)M

1

, where M

1

> 0 is a suitable constant. In particular, f ∈ U ST whenever

X

n=2

(3n − 2) |a

n

| ≤ M

1

.

Lemma 1.2. A sufficient condition for a function f of the form (1.1) to be in the class U CV (α) is that P

n=2

n[(α + 1)n − α] a

n

≤ M

2

, where M

2

> 0 is a suitable constant. In particular, f ∈ U CV whenever P

n=2

n

2

a

n

≤ M

2

.

The Fox-Wright function [12, p. 50, equation 1.5] appearing in the present paper is defined by

(1.3)

p

ψ

q

(z) =

p

ψ

q

(a

j

, α

j

)

1,p

; (b

j

, β

j

)

1,q

; z

=

X

n=0

Q

p

j=1

Γ(a

j

+ α

j

n)z

n

Q

q

j=1

Γ(b

j

+ β

j

n)n! , where α

j

(j = 1, . . . , p) and β

j

(j = 1, . . . , q) are real and positive and 1+ P

q

j=1

β

j

> P

p j=1

α

j

. 2. M

AIN

R

ESULTS

Theorem 2.1. If

q

X

j=1

|b

j

| >

p

X

j=1

|a

j

| + 1, a

j

> 0 and 1 +

q

X

j=1

β

j

>

p

X

j=1

α

j

,

then a sufficient condition for the function z{

p

ψ

q

(z)} to be in the class U ST (α), 0 ≤ α < 1, is (2.1)

3 − α 1 − α

p

ψ

q

(|a

j

+ α

j

|, α

j

)

1,p

; (|b

j

+ β

j

|, β

j

)

1,q

; 1

+

p

ψ

q

(|a

j

|, α

j

)

1,p

; (|b

j

|, β

j

)

1,q

; 1

≤ M

1

+ Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

.

Proof. Since

z{

p

ψ

q

(z)} = Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

z +

X

n=2

Q

p

j=1

Γ[a

j

+ α

j

(n − 1)]z

n

Q

q

j=1

Γ[b

j

+ β

j

(n − 1)](n − 1)!

so by virtue of Lemma 1.1, we need only to show that (2.2)

X

n=2

[(3 − α)n − 2]

Q

p

j=1

Γ[a

j

+ α

j

(n − 1)]

Q

q

j=1

Γ[b

j

+ β

j

(n − 1)](n − 1)!

≤ (1 − α)M

1

.

(3)

Now, we have

X

n=2

[(3 − α)n − 2]

Q

p

j=1

Γ[a

j

+ α

j

(n − 1)]

Q

q

j=1

Γ[b

j

+ β

j

(n − 1)](n − 1)!

=

X

n=0

[(3 − α)(n + 2) − 2]

Q

p

j=1

Γ[a

j

+ α

j

(n + 1)]

Q

q

j=1

Γ[b

j

+ β

j

(n + 1)](n + 1)!

= (3 − α)

X

n=0

Q

p

j=1

Γ[(a

j

+ α

j

) + nα

j

] Q

q

j=1

Γ[(b

j

+ β

j

) + nβ

j

]n!

+ (1 − α)

"

X

n=0

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)

1 n! −

Q

p j=1

Γa

j

Q

q

j=1

Γb

j

#

= (3 − α)

p

ψ

q

(|a

j

+ α

j

|, α

j

)

1,p

; (|b

j

+ β

j

|, β

j

)

1,q

; 1

+ (1 − α)

p

ψ

q

(|a

j

|, α

j

)

1,p

; (|b

j

|, β

j

)

1,q

; 1

− (1 − α) Q

p

j=1

Γa

j

Q

q j=1

Γb

j

≤ (1 − α)M

1

which in view of Lemma 1.1 gives the desired result.

Theorem 2.2. If

q

X

j=1

b

j

>

p

X

j=1

a

j

+ 1, a

j

> 0 and 1 +

q

X

j=1

β

j

>

p

X

j=1

α

j

,

then a sufficient condition for the function z{

p

ψ

q

(z)} to be in the class U ST N (α), 0 ≤ α < 1, is:

3 − α 1 − α

p

ψ

q

(a

j

+ α

j

, α

j

)

1,p

; (b

j

+ β

j

, β

j

)

1,q

; 1

+

p

ψ

q

(a

j

, α

j

)

1,p

; (b

j

, β

j

)

1,q

; 1

≤ M

1

+ Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

. Proof. The proof of Theorem 2.2 is a direct consequence of Theorem 2.1.

Theorem 2.3. If

q

X

j=1

b

j

>

p

X

j=1

a

j

+ 2, a

j

> 0 and 1 +

q

X

j=1

β

j

>

p

X

j=1

α

j

,

then a sufficient condition for the function z{

p

ψ

q

(z)} to be in the class U CV (α), 0 ≤ α < 1, is (2.3) (1 + α)

p

ψ

q

(a

j

+ 2α

j

, α

j

)

1,p

; (b

j

+ 2β

j

, β

j

)

1,q

; 1

+ (2α + 3)

p

ψ

q

(a

j

+ α

j

, α

j

)

1,p

; (b

j

+ β

j

, β

j

)

1,q

; 1

+

p

ψ

q

(1) ≤ M

2

+ Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

. Proof. By virtue of Lemma 1.2, it suffices to prove that

(2.4)

X

n=2

n[(α + 1)n − α]

Q

p

j=1

Γ[a

j

+ α

j

(n − 1)]

Q

q

j=1

Γ[b

j

+ β

j

(n − 1)](n − 1)! ≤ M

2

.

(4)

Now, we have

(2.5)

X

n=2

n[(α + 1)n − α]

Q

p

j=1

Γ[a

j

+ α

j

(n − 1)]

Q

q

j=1

Γ[b

j

+ β

j

(n − 1)](n − 1)!

= (1 + α)

X

n=1

(n + 1)

2

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ[(b

j

+ β

j

n)n! − α

X

n=1

(n + 1) Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n! . Using (n + 1)

2

= n(n + 1) + (n + 1), (2.5) may be expressed as

(1 + α)

X

n=1

(n + 1)

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)(n − 1)! +

X

n=1

(n + 1) Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n!

(2.6)

= (1 + α)

X

n=2

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)(n − 2)! + (2α + 3)

X

n=0

Q

p

j=1

Γ[(a

j

+ α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

+ β

j

) + β

j

n]n!

+

X

n=1

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n!

= (1 + α)

p

ψ

q

(a

j

+ 2α

j

, α

j

)

1,p

; (b

j

+ 2β

j

, β

j

)

1,q

; 1

+ (2α + 3)

p

ψ

q

(a

j

+ α

j

, α

j

)

1,p

; (b

j

+ β

j

, β

j

)

1,q

; 1

+

p

ψ

q

(1) − Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

,

which is bounded above by M

2

if and only if (2.3) holds. Hence the theorem is proved.

3. A

N

I

NTEGRAL

O

PERATOR

In this section we obtain sufficient conditions for the function

p

φ

q

(a

j

, α

j

)

1,p

; (b

j

, β

j

)

1,q

; z

= Z

z

0

p

ψ

q

(x)dx to be in the classes U ST and U CV .

Theorem 3.1. If

q

X

j=1

b

j

>

p

X

j=1

a

j

, a

j

> 0 and 1 +

q

X

j=1

β

j

>

p

X

j=1

α

j

,

then a sufficient condition for the function

p

φ

q

(z) = R

z

0 p

ψ

q

(x)dx to be in the class U ST is (3.1) 3

p

ψ

q

(1) − 2

p

ψ

q

(a

j

− α

j

, α

j

)

1,p

; (b

j

− β

j

, β

j

)

1,q

; 1

+ 2

Q

p

j=1

Γ(a

j

− α

j

) Q

q

j=1

Γ(b

j

− β

j

) ≤ M

1

+ Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

. Proof. Since

(3.2)

p

φ

q

(z) = Z

z

0

p

ψ

q

(x)dx = Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

z +

X

n=2

Q

p

j=1

Γ[(a

j

− α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

− β

j

) + β

j

n]

z

n

n! ,

(5)

we have

X

n=2

(3n − 2) Q

p

j=1

Γ[(a

j

− α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

− β

j

) + β

j

n]n!

(3.3)

= 3

X

n=1

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n! − 2

"

X

n=0

Q

p

j=1

Γ[(a

j

− α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

− β

j

) + β

j

n]n!

− Q

p

j=1

Γ(a

j

− α

j

) Q

q

j=1

Γ(b

j

− β

j

) − Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

#

= 3

p

ψ

q

(1) − 2

p

ψ

q

(a

j

− α

j

, α

j

)

1,p

; (b

j

− β

j

, β

j

)

1,q

; 1

+ 2

Q

p

j=1

Γ(a

j

− α

j

) Q

q

j=1

Γ(b

j

− β

j

) − Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

.

In view of Lemma 1.1, (3.3) leads to the result (3.1).

Theorem 3.2. If

q

X

j=1

b

j

>

p

X

j=1

a

j

, a

j

> 0 and 1 +

q

X

j=1

β

j

>

p

X

j=1

α

j

,

then a sufficient condition for the function

p

φ

q

(z) = R

z

0 p

ψ

q

(x)dx to be in the class U CV is

(3.4)

p

ψ

q

(a

j

+ α

j

, α

j

)

1,p

; (b

j

+ β

j

, β

j

)

1,q

; 1

+

p

ψ

q

(1) ≤ M

2

+ Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

. Proof. Since

p

φ

q

(z) has the form (3.2), then

X

n=2

n

2

Q

p

j=1

Γ[(a

j

− α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

− β

j

) + β

j

n]n!

(3.5)

=

X

n=1

(n + 1) Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n!

=

X

n=0

Q

p

j=1

Γ[(a

j

+ α

j

) + α

j

n]

Q

q

j=1

Γ[(b

j

+ β

j

) + β

j

n]n! +

X

n=0

Q

p

j=1

Γ(a

j

+ α

j

n) Q

q

j=1

Γ(b

j

+ β

j

n)n! − Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

=

p

ψ

q

(a

j

+ α

j

, α

j

)

1,p

; (b

j

+ β

j

, β

j

)

1,q

; 1

+

p

ψ

q

(1) − Q

p

j=1

Γa

j

Q

q

j=1

Γb

j

,

which in view of Lemma 1.2 gives the desired result (3.4).

4. P

ARTICULAR

C

ASES

4.1. By setting α

1

= α

2

= · · · = α

p

= 1; β

1

= β

2

= · · · = β

q

= 1 and M

1

= M

2

= M

3

=

Q

p j=1

Γa

j

Q

q

j=1

Γb

j

,

Theorems 2.1, 2.3, 3.1 and 3.2 reduce to the results recently obtained by Shanmugam, Ra- machandran, Sivasubramanian and Gangadharan [11].

4.2. By specifying the parameters suitably, the results of this paper readily yield the results due

to Dixit and Verma [1].

(6)

R

EFERENCES

[1] K.K. DIXITANDV. VERMA, Uniformly starlike and uniformly convexity properties for hyperge- ometric functions, Bull. Cal. Math. Soc., 93(6) (2001), 477–482.

[2] A. GANGADHARAN, T.N. SHANMUGAM AND H.M. SRIVASTAVA, Generalized hypergeo- metric functions associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515–1526.

[3] A.W. GOODMAN, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87–92.

[4] A.W. GOODMAN, On uniformly starlike functions, J. Math. Anal. and Appl., 155 (1991), 364–

370.

[5] S. KANASANDF. RONNING, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Sklodowska Section A, 53 (1999), 95–105.

[6] S. KANASANDH.M. SRIVASTAVA, Linear operators associated withk-uniformly convex func- tions, Integral Transform Spec. Funct., 9 (2000), 121–132.

[7] G. MURUGUSUNDARAMOORTHY, Study on classes of analytic function with negative coeffi- cients, Thesis, Madras University (1994).

[8] S. OWA, J.A. KIMANDN.E. CHO, Some properties for convolutions of generalized hypergeomet- ric functions, Surikaisekikenkynsho Kokyuroku, 1012 (1997), 92–109.

[9] C. RAMACHANDRAN, T.N. SHANMUGAM, H.M. SRIVASTAVA ANDA. SWAMINATHAN, A unified class of k-uniformly convex functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput., 190 (2007), 1627–1636.

[10] S. SHAMS, S.R. KULKARNI AND J.M.JAHANGIRI, Classes of uniformly starlike and convex functions, Internat. J. Math. Sci., 55 (2004), 2959–2961.

[11] T.N. SHANMUGAM, C. RAMACHANDRAN, S. SIVASUBRAMANIAN AND A. GANGAD- HARAN, Generalized hypergeometric functions associated with uniformly starlike and uniformly convex functions, Acta Ciencia Indica, XXXIM(2) (2005), 469–476.

[12] H.M. SRIVASTAVA AND H.L. MANOCHA, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1984.

[13] H.M. SRIVASTAVAANDA.K. MISHRA, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computer Math. Appl., 39 (2000), 57–69.

[14] H.M. SRIVASTAVA, A.K. MISHRAAND M.K. DAS, A class of parabolic starlike functions de- fined by means of a certain fractional derivative operator, Fract. Calc. Appl. Anal., 6 (2003), 281–

298.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

Key words and phrases: Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex func- tions.. 2000 Mathematics

In this paper we introduce the class B(p, n, µ, α) of analytic and p-valent functions to obtain some sufficient conditions and some angular properties for functions belonging to

Key words: Meromorphic p-valent functions, Analytic functions, Starlike functions, Convex functions, Spirallike functions, Convex Spirallike functions, Hadamard product

Key words and phrases: Meromorphic p-valent functions, Analytic functions, Starlike functions, Convex functions, Spirallike functions, Convex Spirallike functions, Hadamard product

Key words: Analytic functions, Multivalent functions, Starlike functions, Convex func- tions, Fractional calculus

Key words: Partial sums, Meromorphic starlike functions, Meromorphic convex func- tions, Meromorphic close-to-convex functions, Integral operatorsJ. This work was supported by the