• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
15
0
0

Teljes szövegt

(1)

volume 5, issue 2, article 28, 2004.

Received 25 July, 2003;

accepted 09 February, 2004.

Communicated by:N.E. Cho

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

INEQUALITIES DEFINING CERTAIN SUBCLASSES OF ANALYTIC AND MULTIVALENT FUNCTIONS INVOLVING FRACTIONAL

CALCULUS OPERATORS

R.K. RAINA AND I.B. BAPNA

Department Of Mathematics M.P. University Of Agri. & Technology College Of Technology And Engineering Udaipur 313001, Rajasthan, India.

EMail:rainark_7@hotmail.com Department Of Mathematics, Govt. Postgraduate College Bhilwara 311001

Rajasthan, India.

EMail:bapnain@yahoo.com

c

2000Victoria University ISSN (electronic): 1443-5756 102-03

(2)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Abstract

Making use of a certain fractional calculus operator, we introduce two new sub- classesMδ(p;λ, µ, η)andTδ(p;λ, µ, η)of analytic andp−valent functions in the open unit disk. The results investigated exhibit the sufficiency conditions for a function to belong to each of these classes. Several geometric properties of such multivalent functions follow, and these consequences are also mentioned.

2000 Mathematics Subject Classification:30C45, 26A33.

Key words: Analytic functions, Multivalent functions, Starlike functions, Convex func- tions, Fractional calculus operators.

Contents

1 Introduction and Definitions . . . 3 2 Results Required. . . 7 3 Main Results . . . 8

References

(3)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

1. Introduction and Definitions

LetAp denote the class of functions of the form (1.1) f(z) = zp+

X

n=1

an+pzn+p (p∈N={1,2,3, . . .}),

which are analytic and p−valent in the open unit disk U = {z : z ∈ C and

|z|<1}.

A functionf(z)∈ Ap is said to bep−valently starlike inU, if

(1.2) <

zf0(z) f(z)

>0 (z ∈ U),

and the functionf(z)∈ Apis said to bep−valently convex inU, if

(1.3) <

1 + zf00(z) f0(z)

>0 (z ∈ U).

Further, a functionf(z)∈ Apis said to bep−valently close-to-convex inU, if

(1.4) <

f0(z) zp−1

>0 (z∈ U).

One may refer to [1], [2] and [9] for above definitions and other related details.

The operatorJ0,zλ,µ,η occurring in this paper is the Saigo type fractional calcu- lus operator defined as follows ([8]):

(4)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Definition 1.1. Let0≤λ <1andµ,η∈R, then (1.5) J0,zλ,µ,ηf(z)

= d dz

zλ−µ Γ(1−λ)

Z z 0

(z−t)−λF1

µ−λ,1−η; 1−λ; 1− t z

f(t)dt

, where the functionf(z)is analytic in a simply-connected region of thez-plane containing the origin, with the order

f(z) =O(|z|ε) (z →0), where ε >max{0, µ−η} −1.

It being understood that(z−t)−λdenotes the principal value for0≤arg(z−

t)<2π.The2F1function occurring in the right-hand side of (1.5) is the famil- iar Gaussian hypergeometric function (see [9] for its definition).

Definition 1.2. Under the hypotheses of Definition 1.1, a fractional calculus operatorJλ+m,µ+m,η+m

0,z is defined by ([7]) (1.6) Jλ+m,µ+m,η+m

0,z f(z) = dm

dzmJ0,zλ,µ,ηf(z) (z ∈ U;m∈N0 ={0} ∪N). We observe that

(1.7) Dλzf(z) =J0,zλ,λ,ηf(z) (0≤λ <1), and

(1.8) Dλ+mz f(z) = Jλ+m,λ+m,η+m

0,z f(z) (0≤λ <1;m∈N0), whereDzλ+m is the well known fractional derivative operator ([6], [9]).

We introduce here two subclasses of functionsMδ(p;λ, µ, η)andTδ(p;λ, µ, η) which are defined as follows.

(5)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Definition 1.3. Letδ ∈R\{0},p∈N,0≤λ <1,µ <1, andη >max(λ, µ)−

p− 1. Then the function f(z) ∈ Ap is said to belong to Mδ(p;λ, µ, η) if it satisfies the inequality

(1.9)

zJλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!δ

−(p−µ)δ

<(p−µ)δ (z ∈ U),

where the value of

z Jλ+1,µ+1,η+1

0,z f(z)/J0,zλ,µ,ηf(z)δ

is taken as its principal value.

Definition 1.4. Under the hypotheses of Definition1.3, the functionf(z)∈ Ap is said to belong toTδ(p;λ, µ, η)if it satisfies the inequality

(1.10)

zµ−pJ0,zλ,µ,ηf(z)δ

Γ(p+ 1)Γ(p+η−µ+ 1) Γ(p−µ+ 1)Γ(p+η−λ+ 1)

δ

<

Γ(p+ 1)Γ(p+η−µ+ 1) Γ(p−µ+ 1)Γ(p+η−λ+ 1)

δ

(z ∈ U),

where the value of

zµ−pJ0,zλ,µ,ηf(z)δ

is considered to be its principal value.

Forλ=µ, we have

(1.11) Mδ(p;µ, µ, η) =Mδ(p;µ), and

(1.12) Tδ(p;µ, µ, η) =Tδ(p;µ).

(6)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

The classes Mδ(p;µ)and Tδ(p;µ) were studied recently in [4]. In view of the operational relation (1.8), it may be noted that the functions in M1(p; 0) are p−valently starlike in U,whereas, the functions inT1(p; 1) arep−valently close-to-convex inU.

In this paper we investigate characterization properties giving sufficiency conditions for functions of the form (1.1) to belong to the classesMδ(p;λ, µ, η) andTδ(p;λ, µ, η)involving the fractional calculus operator (1.6). Several conse- quences of the main results and their relevance to known results are also pointed out.

(7)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

2. Results Required

We mention the following results which are used in the sequel:

Lemma 2.1. ([8]). If0≤λ <1;µ,η∈Randk > max{0, µ−η} −1, then (2.1) J0,zλ,µ,ηzk= Γ(1 +k)Γ(1−µ+η+k)

Γ(1−µ+k)Γ(1−λ+η+k)zk−µ.

Lemma 2.2. ([5]). Let w(z) be an analytic function in the unit disk U with w(0) = 0, and let0 < r < 1. If |w(z)|attains atz0 its maximum value on the circle|z|=r, then

(2.2) z0w0(z0) =kw(z0) (k≥1).

(8)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

3. Main Results

We begin by proving

Theorem 3.1. Letδ∈R\{0},p∈N,0≤λ <1,µ < 1,η >max(λ, µ)−p−1, and a > 0, b ≥ 0, such thata+ 2b ≤ 1. If a function f(z) ∈ Ap satisfies the inequality

(3.1) <

"

1 +z Jλ+2,µ+2,η+2

0,z f(z)

Jλ+1,µ+1,η+1

0,z f(z)− Jλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!#









< a+b

δ(1 +a)(1−b) (δ >0)

> a+b

δ(1 +a)(1−b) (δ <0)

(z ∈ U),

thenf(z)∈ Mδ(p;λ, µ, η).

Proof. Letf(z)∈ Ap, and define a functionw(z)by

(3.2) zJλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!δ

= (p−µ)δ

1 +aw(z) 1−bw(z)

(z ∈ U).

Then it follows from (2.1) that w(z)is analytic function in U, and w(0) = 0.

(9)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Differentiation of (3.2) gives (

1 +z Jλ+2,µ+2,η+2

0,z f(z)

Jλ+1,µ+1,η+1

0,z f(z)− Jλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!) (3.3)

= 1 δ

(a+b)zw0(z) (1 +aw(z)) (1−bw(z))

=φ(z)(say).

Assume that there exists a pointz0 ∈ U such that max

|z|≤|z0||w(z)|=|w(z0)|= 1.

Then, applying Lemma2.2, we can write

z0w0(z0) = kw(z0) (k ≥1), andw(z0) =e(θ∈[0,2π)), so that from (3.3) we have

<{φ(z0)}= k(a+b) δ <

w(z0)

(1 +aw(z0)) (1−bw(z0))

= k δ<

1

1−bw(z0) − 1 1 +aw(z0)

= k δ<

1−be−iθ

1 +b2−2bcosθ − 1 +ae−iθ 1 +a2+ 2acosθ

= k δ

( 1

2 + 1−bb2−1cosθ − 1 2 + 1+aa2−1cosθ

)

= k∆

δ ,

(10)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

whereθ6= cos−1(−1/a)andθ6= cos−1(−1/b).

Simple calculations (under the constraints mentioned with the hypotheses for the parameters aandb) yield that ∆ ≥ (1+a)(1−b)(a+b) , and sincek ≥ 1,it follows that

(3.4) <{φ(z0)}= k∆

δ





> δ(1+a)(1−b)(a+b) (δ >0),

< δ(1+a)(1−b)(a+b) (δ <0).

This contradicts our condition (3.1), and we conclude from (3.2) that

zJλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,η

!δ

−(p−µ)δ

= (p−µ)δ

(a+b)w(z) 1−bw(z)

< (p−µ)δ

a+b 1−b

≤(p−µ)δ. This completes the proof of Theorem3.1.

Next we prove

Theorem 3.2. Letδ∈R\{0},p∈N,0≤λ <1,µ < 1,η >max(λ, µ)−p−1, and a > 0, b ≥ 0such thata+ 2b ≤ 1. If a functionf(z) ∈ Ap satisfies the inequality

(3.5) < zJλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,η

!

< p−µ+δ(1+a)(1−b)a+b (δ > 0)

> p−µ+δ(1+a)(1−b)a+b (δ > 0)

(z ∈ U),

thenf(z)∈Tδ(p;λ, µ, η).

(11)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Proof. Consider (3.6)

zµ−pJ0,zλ,µ,ηf(z) δ

=

Γ(1 +p)Γ(1 +p+η−µ) Γ(1 +p−µ)Γ(1 +p+η−λ)

δ

1 +aw(z) 1−bw(z)

(z ∈ U).

Using the same method as elucidated in the proof of Theorem3.1, we arrive at the desired result.

Remark 3.1. If we setλ = µ, a= 1, b = 0,then Theorems3.1 and3.2 by ap- pealing to the operational relation (1.8) correspond to the recently established results due to Irmak et al. [4, pp. 271–272].

Theorems3.1and3.2would also yield various results involving analytic and multivalent functions by suitably choosing the values ofa, b,δ,µandp. Setting δ = 1in Theorems3.1and3.2, we have

Corollary 3.3. Let p ∈ N, 0 ≤ λ < 1, µ < 1, η > max(λ, µ)−p−1, and a > 0, b ≥ 0 such that a + 2b ≤ 1. If a function f(z) ∈ Ap satisfies the inequality

(3.7) <

(

1 +z Jλ+2,µ+2,η+2

0,z f(z)

Jλ+1,µ+1,η+1

0,z f(z)− Jλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!)

< a+b

(1 +a)(1−b) (z ∈ U), thenf(z)∈ M1(p;λ, µ, η).

(12)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Corollary 3.4. Let p ∈ N, 0 ≤ λ < 1, µ < 1, η > max(λ, µ)−p−1, and a > 0, b ≥ 0 such that a + 2b ≤ 1. If a function f(z) ∈ Ap satisfies the inequality

(3.8) < zJλ+1,µ+1,η+1

0,z f(z)

J0,zλ,µ,ηf(z)

!

< p−µ+ a+b

(1 +a)(1−b) (z ∈ U), thenf(z)∈ T1(p;λ, µ, η).

Corollaries 3.3 and 3.4 on putting λ = µ = 0, and using (1.8) give the following results:

Corollary 3.5. Let p ∈ N, a > 0, b ≥ 0such that a+ 2b ≤ 1.If a function f(z)∈ Apsatisfies the inequality

(3.9) <

1 + zf00(z)

f0(z) −zf0(z) f(z)

< a+b

(1 +a)(1−b) (z ∈ U), thenf(z)isp-valently starlike inU.

Corollary 3.6. Let p ∈ N, a > 0, b ≥ 0such that a+ 2b ≤ 1.If a function f(z)∈ Apsatisfies the inequality

(3.10) <

zf0(z) f(z)

< p+ a+b

(1 +a)(1−b) (z ∈ U), then <n

f(z) zp

o

>0, (z ∈ U).

Lastly, Corollaries3.3and3.4on puttingλ=µ= 1,and using (1.8) give

(13)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

Corollary 3.7. Let p ∈ N, a > 0, b ≥ 0such that a+ 2b ≤ 1.If a function f(z)∈ Apsatisfies the inequality

(3.11) <

1 + zf000(z)

f00(z) − zf00(z) f0(z)

< a+b

(1 +a)(1−b) (z ∈ U), thenf(z)isp−valently convex inU.

Corollary 3.8. Let p ∈ N, a > 0, b ≥ 0such that a+ 2b ≤ 1.If a function f(z)∈ Ap satisfies the inequality

(3.12) <

zf00(z) f0(z)

< p−1 + a+b

(1 +a)(1−b) (z ∈ U), thenf(z)isp−valently close-to -convex inU.

Remark 3.2. When a = 1, b = 0, then the Corollaries 3.5 3.8 correspond to the known results [3, pp. 457–458] involving inequalities onp−valent func- tions.

(14)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

References

[1] P.L. DUREN, Univalent Functions, Grundlehren der Mathematischen Wis- senschaffen 259, Springer-Verlag, NewYork, Berlin, Heidelberg and Tokyo (1983).

[2] A.W. GOODMAN, Univalent Functions, Vols. I and II, Polygonal Publish- ing House, Washington, New Jersy, 1983.

[3] H. IRMAK AND O.F. CETIN, Some theorems involving inequalities on p−valent functions, Turkish J. Math., 23 (1999), 453–459.

[4] H. IRMAK, G. TINAZTEPE, Y.C. KIM AND J.H. CHOI, Certain classes and inequalities involving fractional calculus and multivalent functions, Fr- acl.Cal. Appl. Anal., 3 (2002), 267–274.

[5] I.S. JACK, Functions starlike and convex of orderα, J. London Math. Soc., 3 (1971), 469–474.

[6] S. OWA, On the distortion theorems. I, Kyungpook Math. J., 18 (1978), 53–59

[7] R.K. RAINA ANDJAE HO CHOI, Some results connected with a subclass of analytic functions involving certain fractional calculus operators, J. Fr- acl. Cal., 23 (2003), 19–25.

[8] R.K. RAINAANDH.M. SRIVASTAVA, A certain subclass of analytic func- tions associated with operators of fractional calculus, Comput. Math. Appl., 32 (1996), 13–19.

(15)

Inequalities Defining Certain Subclasses of Analytic and Multivalent Functions Involving

Fractional Calculus Operators R.K. Raina and I.B. Bapna

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of15

J. Ineq. Pure and Appl. Math. 5(2) Art. 28, 2004

[9] H.M. SRIVASTAVAANDS. OWA (Eds.), Current Topics in Analytic Func- tion Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

Key words and phrases: Univalent functions, Starlike functions of order α, Convex functions of order α, Inverse functions, Coefficient estimates.. 2000 Mathematics

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

Key words and phrases: Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex func- tions.. 2000 Mathematics

In this paper we introduce the class B(p, n, µ, α) of analytic and p-valent functions to obtain some sufficient conditions and some angular properties for functions belonging to

Key words: Meromorphic p-valent functions, Analytic functions, Starlike functions, Convex functions, Spirallike functions, Convex Spirallike functions, Hadamard product

Key words and phrases: Meromorphic p-valent functions, Analytic functions, Starlike functions, Convex functions, Spirallike functions, Convex Spirallike functions, Hadamard product