• Nem Talált Eredményt

In this paper we give an approximation ofB-continuous andB-differentiable func- tions by GBS operators of Bernstein bivariate polynomials

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this paper we give an approximation ofB-continuous andB-differentiable func- tions by GBS operators of Bernstein bivariate polynomials"

Copied!
9
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 92, 2006

APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS OF BERNSTEIN BIVARIATE POLYNOMIALS

OVIDIU T. POP AND MIRCEA FARCA ¸S

VESTUNIVERSITY"VASILEGOLDI ¸S"OFARADBRANCH OFSATUMARE

26 MIHAIVITEAZUSTREET

SATUMARE440030, ROMANIA

ovidiutiberiu@yahoo.com NATIONALCOLLEGE"MIHAIEMINESCU"

5 MIHAIEMINESCUSTREET

SATUMARE440014, ROMANIA

mirceafarcas2005@yahoo.com

Received 13 September, 2005; accepted 03 June, 2006 Communicated by S.S. Dragomir

ABSTRACT. In this paper we give an approximation ofB-continuous andB-differentiable func- tions by GBS operators of Bernstein bivariate polynomials.

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators,B-differentiable func- tions, approximation ofB-differentiable functions by GBS operators, mixed modulus of smoothness.

2000 Mathematics Subject Classification. 41A10, 41A25, 41A35, 41A36, 41A63.

1. PRELIMINARIES

In this section, we recall some results which we will use in this article.

In the following, letXandY be compact real intervals. A functionf :X×Y →Ris called aB-continuous (Bögel-continuous) function in(x0, y0)∈X×Y if

(x,y)→(xlim0,y0)∆f((x, y),(x0, y0)) = 0.

Here

∆f((x, y),(x0, y0)) =f(x, y)−f(x0, y)−f(x, y0) +f(x0, y0) denotes a so-called mixed difference off.

A function f : X ×Y → R is called aB-differentiable (Bögel-differentiable) function in (x0, y0)∈X×Y if it exists and if the limit is finite:

lim

(x,y)→(x0,y0)

∆f((x, y),(x0, y0)) (x−x0)(y−y0) .

The limit is named theB-differential off in the point(x0, y0)and is denoted byDBf(x0, y0).

ISSN (electronic): 1443-5756 c

2006 Victoria University. All rights reserved.

272-05

(2)

The definitions ofB-continuity and B-differentiability were introduced by K. Bögel in the papers [5] and [6].

The functionf :X×Y →RisB-bounded onX×Y if there existsK >0such that

|∆f((x, y),(s, t))| ≤K for any(x, y),(s, t)∈X×Y.

We shall use the function setsB(X×Y) =

f :X ×Y → R|f bounded onX×Y with the usual sup-normk · k,Bb(X×Y) =

f :X×Y →R|f B-bounded onX×Y and we setkfkB = sup

(x,y),(s,t)∈X×Y

|∆f((x, y),(s, t))|,where

f ∈Bb(X×Y), Cb(X×Y) =

f :X×Y →R|f B−continuous onX×Y , and Db(X×Y) =

f :X×Y →R|f B−differentiable onX×Y . Letf ∈Bb(X×Y). The functionωmixed(f;·,·) : [0,∞)×[0,∞)→R, defined by (1.1) ωmixed(f;δ1, δ2) = sup{|∆f((x, y),(s, t))|:|x−s| ≤δ1,|y−t| ≤δ2} for any(δ1, δ2)∈[0,∞)×[0,∞)is called the mixed modulus of smoothness.

For related topics, see [1], [2], [3] and [10].

LetL:Cb(X×Y)→B(X×Y)be a linear positive operator. The operatorU L: Cb(X× Y)→B(X×Y)defined for any functionf ∈Cb(X×Y)and any(x, y)∈X×Y by

(1.2) (U Lf)(x, y) = (L(f(·, y) +f(x,∗)−f(·,∗))) (x, y)

is called the GBS operator ("Generalized Boolean Sum" operator) associated to the operatorL, where "·" and "∗" stand for the first and second variable.

Let the functions eij : X ×Y → R, (eij)(x, y) = xiyj for any (x, y) ∈ X ×Y, where i, j ∈N. The following theorem is proved in [1].

Theorem 1.1. Let L : Cb(X × Y) → B(X ×Y) be a linear positive operator and U L : Cb(X×Y) → B(X ×Y) the associated GBS operator. Then for anyf ∈ Cb(X ×Y), any (x, y)∈(X×Y)and anyδ1, δ2 >0, we have

(1.3) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)| |1−(Le00)(x, y)|

+

(Le00)(x, y) +δ−11 p

(L(· −x)2) (x, y) +δ2−1p

(L(∗ −y)2) (x, y) +δ1−1δ−12 p

(L(· −x)2(∗ −y)2) (x, y)

ωmixed(f;δ1, δ2).

In the following, we need the following theorem for estimating the rate of the convergence of theB-differentiable functions (see [11]).

Theorem 1.2. Let L : Cb(X × Y) → B(X ×Y) be a linear positive operator and U L : Cb(X×Y) → B(X×Y)the associated GBS operator. Then for anyf ∈ Db(X ×Y)with

(3)

DBf ∈B(X×Y), any(x, y)∈X×Y and anyδ1, δ2 >0, we have

|f(x, y)−(U Lf)(x, y)|

(1.4)

≤ |f(x, y)||1−(Le00)(x, y)|+3kDBfk

p(L(· −x)2(∗ −y)2) (x, y) +

p(L(· −x)2(∗ −y)2)(x, y) +δ−11 p

(L(· −x)4(∗ −y)2)(x, y) +δ2−1p

(L(· −x)2(∗ −y)4)(x, y) +δ1−1δ2−1 L(· −x)2(∗ −y)2

(x, y)

ωmixed(DBf;δ1, δ2).

2. MAINRESULTS

Let the sets∆2 = {(x, y)∈R×R|x, y ≥0, x+y ≤1} andF(∆2) = {f|f : ∆2 → R}.

For m a non zero natural number, let the operators Bm : F(∆2) → F(∆2), defined for any functionf ∈ F(∆2)by

(2.1) (Bmf)(x, y) = X

k,j=0 k+j≤m

pm,k,j(x, y)f k

m, j m

for any(x, y)∈∆2, where

(2.2) pm,k,j(x, y) = m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j. The operators are named Bernstein bivariate polynomials (see [8]).

Lemma 2.1. The operators(Bm)m≥1are linear and positive onF(∆2).

Proof. The proof follows immediately.

Form a non zero natural number, let the GBS operator of Bernstein bivariate polynomials U Bm (see [1]), U Bm : Cb(∆2) → B(∆2) defined for any function f ∈ Cb(∆2) and any (x, y)∈∆2 by

(U Bmf)(x, y) = (Bm(f(x,∗) +f(·, y)−f(·,∗))) (x, y) (2.3)

= X

k,j=0 k+j≤m

pm,k,j(x, y)

f

x, j m

+f

k m, y

−f k

m, j m

.

Lemma 2.2. The operators(Bm)m≥1verify for any(x, y)∈∆2the following:

(Bme00)(x, y) = 1;

(2.4)

Bm(· −x)2

(x, y) = x(1−x)

m ;

(2.5)

Bm(∗ −y)2

(x, y) = y(1−y)

m ;

(2.6)

(2.7) Bm(· −x)2(∗ −y)2

(x, y) = 3(m−2)

m3 x2y2− m−2

m3 (x2y+xy2) + m−1 m3 xy;

(4)

(2.8) Bm(· −x)4(∗ −y)2 (x, y)

=−5(3m2−26m+ 24)

m5 x4y2+6(3m2−26m+ 24)

m5 x3y2− 6(m2−7m+ 6) m5 x3y

− 3m2−41m+ 42

m5 x2y2+3m2−26m+ 24

m5 x4y+3m2−17m+ 14 m5 x2y

− m−2

m5 xy2+m−1 m5 xy and

(2.9) Bm(· −x)2(∗ −y)4 (x, y)

=−5(m2−26m+ 24)

m5 x2y4+6(3m2−26m+ 24)

m5 x2y3− 6(m2−7m+ 6) m5 xy3

− 3m2−41m+ 42

m5 x2y2+3m2−26m+ 24

m5 xy4+3m2−17m+ 14 m5 xy2

− m−2

m5 x2y+m−1 m5 xy for any non zero natural numberm.

Proof. Let(x, y)∈∆2 andmbe a non zero natural number. We have (Bme00)(x, y) = X

k,j=0 k+j≤m

m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j

= (x+y+ 1−x−y)m = 1, so (2.4) holds,

(Bme10)(x, y) = X

k,j=0 k+j≤m

m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j k m

=x X

k=1,j=0 k+j≤m

(m−1)!

(k−1)!j!(m−k−j)!xk−1yj(1−x−y)m−k−j

=x, it results that

(2.10) (Bme10)(x, y) = x

and similarly

(2.11) (Bme01)(x, y) = y.

In the same way, using the formulas k2 =k(k−1) +k,

k3 =k(k−1)(k−2) + 3k(k−1) +k,

k4 =k(k−1)(k−2)(k−3) + 6k(k−1)(k−2) + 7k(k−1) +k, we obtain

(Bme20)(x, y) = m−1

m x2+ 1 mx, (2.12)

(Bme30)(x, y) = (m−1)(m−2)

m2 x3+ 3(m−1)

m2 x2+ 1 m2 x, (2.13)

(5)

(2.14) (Bme40)(x, y) = (m−1)(m−2)(m−3)

m3 x4

+ 6(m−1)(m−2)

m3 x3+7(m−1)

m3 x2+ 1 m3x and similarly the relations(Bme02)(x, y),(Bme03)(x, y),(Bme04)(x, y).

We have

(Bme11)(x, y) = m−1

m y X

k=0,j=1 k+j≤m

(m−1)!

k!(j−1)!(m−k−j)!xkyj−1(1−x−y)m−k−j k m−1

= m−1

m y(Bm−1e10)(x, y), (Bme21)(x, y)

=

m−1 m

2

y X

k=0,j=1 k+j≤m

(m−1)!

k!(j−1)!(m−k−j)!xkyj−1(1−x−y)mkj k

m−1 2

=

m−1 m

2

y(Bm−1e20)(x, y),

and in the same way, we write (Bme31)(x, y), (Bme41)(x, y), (Bme32)(x, y), (Bme42)(x, y).

Taking (2.12) - (2.14) into account, we obtain (Bme11)(x, y) = m−1

m xy, (2.15)

(Bme21)(x, y) = (m−1)(m−2)

m2 x2y+m−1 m2 xy, (2.16)

(2.17) (Bme31)(x, y) = (m−1)(m−2)(m−3)

m3 x3y

+ 3(m−1)(m−2)

m3 x2y+ m−1 m3 xy,

(2.18) (Bme41)(x, y) = (m−1)(m−2)(m−3)(m−4)

m4 x4y

+6(m−1)(m−2)(m−3)

m4 x3y+ 7(m−1)(m−2)

m4 x2y+m−1 m4 xy,

(2.19) (Bme22)(x, y) = (m−1)(m−2)(m−3) m3 x2y2

+(m−1)(m−2)

m3 (x2y+xy2) + m−1 m3 xy,

(2.20) (Bme32)(x, y) = (m−1)(m−2)(m−3)(m−4)

m4 x3y2

+(m−1)(m−2)(m−3)

m4 x3y+ 3(m−1)(m−2)(m−3) m4 x2y2 + 3(m−1)(m−2)

m4 x2y+ (m−1)(m−2)

m4 xy2+m−1 m4 xy,

(6)

(Bme42)(x, y) = (m−1)(m−2)(m−3)(m−4)(m−5)

m5 x4y2

(2.21)

+ (m−1)(m−2)(m−3)(m−4)

m5 x4y

+ 6(m−1)(m−2)(m−3)(m−4)

m5 x3y2

+ 6(m−1)(m−2)(m−3)

m5 x3y

+ 7(m−1)(m−2)(m−3) m5 x2y2 + 7(m−1)(m−2)

m5 x2y+(m−1)(m−2)

m5 xy2+m−1 m5 xy and similarly the relations (Bme12)(x, y), (Bme13)(x, y), (Bme14)(x, y), (Bme23)(x, y), (Bme24)(x, y).

Now, we have

(Bm(· −x)2)(x, y) = (Bme20)(x, y)−2x(Bme10)(x, y) +x2(Bme02)(x, y), (Bm(· −x)2(∗ −y)2)(x, y) = (Bme22)(x, y)−2y(Bme21)(x, y) +y2(Bme20)(x, y)

−2x(Bme12)(x, y) + 4xy(Bme11)(x, y)−2xy2(Bme10)(x, y)

+x2(Bme02)(x, y)−2x2y(Bme01)(x, y) +x2y2(Bme00)(x, y), (Bm(· −x)4(∗ −y)2)(x, y)

= (Bme40)(x, y)−2y(Bme41)(x, y) +y2(Bme40)(x, y)

−4x(Bme32)(x, y) + 8xy(Bme31)(x, y)−4xy2(Bme30)(x, y)

+ 6x2(Bme22)(x, y)−12x2y(Bme21)(x, y) + 6x2y2(Bme20)(x, y)

−4x3(Bme12)(x, y) + 8x3y(Bme11)(x, y)−4x3y2(Bme10)(x, y)

+x4(Bme02)(x, y)−2x4y(Bme01)(x, y) +x4y2(Bme00)(x, y) and taking (2.9) – (2.21) into account, we obtain (2.5), (2.7) and (2.8). Similarly we obtain

(2.9).

Lemma 2.3. The operators(Bm)m≥1verify for any(x, y)∈∆2the following inequalities:

(Bm(· −x)2)(x, y)≤ 1 4m, (2.22)

(Bm(∗ −y)2)(x, y)≤ 1 4m, (2.23)

for any non zero natural numberm,

(2.24) Bm(· −x)2(∗ −y)2

(x, y)≤ 9 4m2 , for any natural numberm,m ≥2,

Bm(· −x)4(∗ −y)2

(x, y)≤ 9 m3 , (2.25)

Bm(· −x)2(∗ −y)4

(x, y)≤ 9 m3 , (2.26)

for any natural numberm,m ≥8.

(7)

Proof. Becausex(1−x)≤ 14 for anyx∈[0,1], (2.22) and (2.23) results.

From (2.7), we have Bm(· −x)2(∗ −y)2

(x, y) = 2(m−2)

m3 x2y2 +m−2

m3 x(1−x)y(1−y) + 1 m3 xy

≤ 2(m−2)

m3 + m−2 16m3 + 1

m3

= 33m−50 16m3 , from where (2.24) results.

From (2.8), we have Bm(· −x)4(∗ −y)2

(x, y)

= 6(3m2−26m+ 24)

m5 x3y2(1−x) + 3m2−26m+ 24

m5 x4y(y+ 1)

− 6(m2−7m+ 6)

m5 x3y+3m2−17m+ 14

m5 x2y(1−y) +24m−28

m5 x2y2+m−2

m5 xy(1−y) +xy.

But

3m2−26m+ 24

m5 x4y(y+ 1) ≤23m2−26m+ 24 m5 x2y

= 6m2−42m+ 36

m5 x2y− 10m−12 m5 x2y

≤ 6m2−42m+ 36

m5 x2y−10m−12 m5 x3y2 and then, from the inequalities above, we obtain

(2.27) Bm(· −x)4(∗ −y)2 (x, y)

≤ 6(3m2−26m+ 24)

m5 x3y2(1−x) + 6m2−42m+ 36

m5 x2y(1−y) +3m2−17m+ 14

m5 x2y(1−y) + 10m−12

m5 x2y2(1−y) +14m−16

m5 x2y2+m−2

m5 xy(1−y) +xy.

Becausex(1−x)≤ 14,y(1−y)≤ 14,xy≤1for anyx, y ∈[0,1], from (2.27) we have Bm(· −x)4(∗ −y)2

(x, y)

≤ 6(3m2−26m+ 24)

4m5 +6m2−42m+ 36 4m5 + 3m2−17m+ 14

4m5 +10m−12

4m5 + 14m−16

m5 +m−2 4m5 + 1

= 27m2−148m+ 170

m5 ,

from where (2.25) results.

(8)

Theorem 2.4. Let the functionf ∈Cb(∆2). Then, for any(x, y)∈∆2, any natural numberm, m≥2, we have

(2.28) |f(x, y)−(U Bmf)(x, y)|

1 +δ1−1 1 2√

m +δ2−1 1 2√

m +δ−11 δ2−1 3 2m

ωmixed(f;δ1, δ2) for anyδ1,δ2 >0and

(2.29) |f(x, y)−(U Bmf)(x, y)| ≤ 7 2ωmixed

f; 1

√m, 1

√m

.

Proof. For the first inequality we apply Theorem 1.1 and Lemma 2.3. The inequality (2.29) is

obtained from (2.28) by choosingδ12 = 1m .

Corollary 2.5. Iff ∈Cb(∆2), then

(2.30) lim

m→∞(U Bmf)(x, y) = f(x, y) uniformly on2.

Proof. Because f ∈ Cb(∆2), there results that f is uniform B-continuous on ∆2 and then

m→∞lim ωmixed

f;1m,1m

= 0(see [2] or [3]). From (2.29), there results the conclusion.

Theorem 2.6. Let the function f ∈ Db(∆2) withDBf ∈ B(∆2). Then for any(x, y) ∈ ∆2, any natural numberm,m≥8, we have

(2.31) |f(x, y)−(U Bmf)(x, y)| ≤ 9

2mkDbfk

+ 3

2m+δ1−1 3 m√

m+δ−12 3 m√

m+δ1−1δ2−1 9 4m2

ωmixed(DBf;δ1, δ2) for anyδ1, δ2 >0and

(2.32) |f(x, y)−(U Bmf)(x, y)| ≤ 3 4m

6kDBfk+ 13ωmixed

DBf; 1

√m

√1 m

.

Proof. It results from Theorem 1.2 and Lemma 2.3.

REFERENCES

[1] C. BADEAANDC. COTTIN, Korovkin-type theorems for generalised boolean sum operators, Col- loquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hunagary), 1990, 51–67.

[2] C. BADEA, Modul de continuitate în sens Bögel ¸si unele aplica¸tii în aproximarea printr-un operator Bernstein, Studia Univ. "Babe¸s-Bolyai", Ser. Math.-Mech., 18(2) (1973), 69–78 (Romanian).

[3] C. BADEA, I. BADEA, C. COTTIN ANDH.H. GONSKA, Notes on the degree of approximation ofB-continuous andB-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95–108.

[4] D. B ˘ARBOSU, Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj-Napoca, 2002 (Romanian).

[5] K. BÖGEL, Mehrdimensionale Differentiation von Funtionen mehrerer Veränderlicher, J. Reine Angew. Math., 170 (1934), 197–217.

[6] K. BÖGEL, Über die mehrdimensionale differentiation, integration und beschränkte variation, J.

Reine Angew. Math., 173 (1935), 5–29.

(9)

[7] K. BÖGEL, Über die mehrdimensionale differentiation, Jber. DMV, 65 (1962), 45–71.

[8] G.G. LORENTZ, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.

[9] M. NICOLESCU, Contribu¸tii la o analiz˘a de tip hiperbolic a planului, St. Cerc. Mat., III, 1-2, 1952, 7–51 (Romanian).

[10] M. NICOLESCU, Analiz˘a Matematic˘a, II, E. D. P. Bucure¸sti, 1980 (Romanian).

[11] O.T. POP, Approximation ofB-differentiable functions by GBS operators (to appear in Anal. Univ.

Oradea).

[12] D.D. STANCU, Gh. COMAN, O. AGRATINIAND R. TRÎMBI ¸TA ¸S, Analiz˘a Numeric˘a ¸si Teoria Aproxim˘arii, I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (Romanian).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Dunkl operators, Dunkl transform, Dunkl translation operators, Dunkl convolu- tion, Besov-Dunkl spaces.. Abstract: In this paper, we define subspaces of L p by

Key words and phrases: Parametric Marcinkiewicz operators, rough kernels, Fourier transforms, Parametric maximal func- tions.. 2000 Mathematics

The purpose of this paper is to obtain sufficient bound estimates for harmonic func- tions belonging to the classes S H ∗ [A, B], K H [A, B] defined by subordination, and we give

Key words and phrases: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic for- mula, Error estimate, Local direct results,

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors, B-differentiable functions, approximation of B-differentiable func- tions by GBS operators,

OWA, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric func- tions, Hadamard products, linear operators, and certain subclasses

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded deriv- ative..